
Guião 4

Laboratório de Algoritmia I Laboratórios de Informática II
Ano letivo 2020/21

Resumo

I Grande subida de dificuldade em relação aos guiões anteriores
I Testes muito exigentes
I Difícil ter 100% no MOOshak!
I Dificuldades:

I Polimorfismo
I Arrays
I Gestão de memória

Arrays e strings
"" Criar uma string
[] Criar um array
~ Colocar na stack todos os elementos do array
+ Concatenar strings ou arrays

(ou array/string com elemento)
* Concatenar várias vezes strings ou arrays
, Tamanho ou range
= Ir buscar um valor por índice
< > Ir buscar X elems/carat do início ou fim
() Remover 1º ou últ. elt. e colocar na stack

após o array/string
Procurar substring na string e devolver o índice

Ou -1 se não encontrar
t Ler todo o input => String
/ Separar string por substring => Array
S/ Separar uma string por whitespace => Array
N/ Separar uma string por newlines => Array

Exemplos

Input Resultado

5 , 01234
5 , ~ \ 01243
[1 2 3] 2 * [4 5] \ + 45123123
[3 1 9]) 7 * + 3 * 316331633163
[7 1 4] (147
[7 1 4] (+ _ , S \ 147 3
[2 3 * 1 5.0 / 98 c 5 2 \ #] 60.2b32
t N/ ~ #
planetas
neta

3

“planetas” 3 > tas
[[2 3 4] [5 6] \ + _ ,] 562345

Exemplos

Input Resultado

[7 2 3] , 3
“abc” 3 * _ S \ , abcabcabc 9
1 [2 3] + 3 * 123123123
[3 5 7 1 2] 2 = 7
[1 2 3] [4 5] \ + 45123
[7 2 9] (297
5 , 3 > 234
[1 2 3] (+ [7 5] + 23175
[1 2 3] ~ * + 7
“olaqqabcqqxyz” “qq” / , 3
t S/ ,
tres tristes tigres
barao vermelho

5

Sugestões

I Proibido usar variáveis globais
I Sempre que possível, usar funções em vez de macros
I Escrever funções pequenas e genéricas
I Cada função deve tentar resolver um único problema
I Evitar funções grandes que tentam atacar muitas frentes ao

mesmo tempo
I Evitar muitos ciclos e/ou condições aninhados
I Documentar todo o código!

Sugestões: Parser

I Remover o strtok
I Criar uma função que separa o token do resto do input
I Devolve o token e o resto da linha

char *get_token(char *line, char **rest);

line A linha que recebe
rest Serve para devolver o resto da linha

Sugestões: parser de arrays e strings

I Recebe uma linha que começa com [ou "
I Devolve a parte da linha que contém o array ou string que está

no início da linha
I É preciso cuidado nos arrays porque podem estar aninhados!

char *get_delimited(char *line, char *seps, char **rest);

line A linha que recebe
seps Os separadores: a string "\"" ou "[]"
rest Serve para devolver o resto da linha

Sugestões: avaliador

I Recebe a linha e um apontador para a estrutura (e.g., stack)
I Se a estrutura for NULL, cria uma nova
I Senão usa a que recebeu
I Devolve um apontador para a stack

STACK *eval(char *line, STACK *init_stack);

line a linha para avaliar
init_stack stack inicial, pode ser NULL

Sugestões: função eval

I Receber a linha e a stack inicial
I Se não existe stack inicial => cria
I Enquanto houver linha

I Pegar no token
I Tratar números
I Tratar arrays
I Tratar strings
I Tratar operações
I Linha passa a ser o resto

I Devolve stack atual

Sugestões: arrays

Se o token atual começar com um [

1. Usar a função get_delimited para receber a parte da linha
que contém o array e o resto da linha

2. Usar a função eval para tratar do array (passar a stack vazia)
3. Pegar na stack que é devolvida e colocar na stack atual como

um ARRAY

Sugestões: operadores

I Há operadores que funcionam de forma diferente conforme o
que está na stack

I Optar por funções mais genéricas conforme o que está no topo
da stack
I handle_arithmetic
I handle_logic
I handle_array
I handle_string

