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Abstract. The discovery of frequent patterns present in biological sequences has
a large number of applications, ranging from classification, clustering and un-
derstanding sequence structure and function. This paper presents an algorithm
that discovers frequent sequence patterns (motifs) present in a query sequence
in respect to a database of sequences. The query is used to guide the mining
process and thus only the patterns present in the query are reported. Two main
types of patterns can be identified: flexible and rigid gap patterns. The user
can choose to report all or only maximal patterns. Constraints and Substitution
Sets are pushed directly into the mining process. Experimental evaluation shows
the efficiency of the algorithm, the usefulness and the relevance of the extracted
patterns.

1. Introduction
Due to the exponential growth of newly discovered biological sequences (DNA, proteins
and other types of fragments), witnessed in the last decades, the subject of sequence
analysis plays a central role in bioinformatics. In this context, one of the most impor-
tant tasks is the discovery of sequence patterns also calledmotifs. Different approaches
and several methods have been proposed to tackle this problem. Earlier type of propos-
als consisted in a multiple alignment of the evaluated sequences [Hirosawa et al. 1995],
with a subsequent report of a consensus sequence with the regions of detected similar-
ity. Due to the inherent high computational costs this approach is only suitable for small
sets of closely related sequences. Another possible solution is based on sequence pat-
tern enumeration, where candidate patterns are obtained from combination of the differ-
ent events present in the input sequences. Enumeration methods can be distinguished
by the way they traverse the solution space and by the order that they enumerate the
patterns. The Data Mining community has a large body of work on the related task
of discovering event-set sequence patterns from transactional datasets. The proposed
algorithms are best suited for datasets with many (typically millions) sequences with
a relative small length (from 10 to 20), and an alphabet of thousands of events, e.g.
[Srikant and Agrawal 1996, Zaki 2000, Jian Pei 2002, Ayres etal. 2002]. In these algo-
rithms, several types of constraints are included and studied. Considering the character-
istics inherent to biological sequence databases, namely protein databases (hundreds of



sequences with big average length, usually greater than 100), alternative methods were
proposed by the bioinformatics community. An example of such method os the Teiresias
[Rigoutsos and A.Floratos 1998] algorithm. When a particular(query) sequence is given
for investigation, for instance a recently discovered protein, the detection of sequence
patterns may provide valuable insights about the proteins.A possible analysis solution
is to scan the query sequence against a database of signaturepatterns like PROSITE
[Bairoch 1991] or Pfam [A. Bateman 2003], trying to identify the respective sequence
family. A signature pattern is a pattern that ideally matches all the sequences in a certain
family and no other sequences. These patterns can express important functional properties
related to the family. Several tools like interProScan [EMBL-EBI ] or eMotif [Wu et al. ]
can be used. These tools essentially differ in the type of patterns they search and in the
way they output patterns. The signature patterns can be obtained through manual inspec-
tion of the sequences or through automatic programs like Pratt [Jonassen et al. 1995].
Pratt searches for conserved patterns in a set of related protein sequences reporting a a
small number of patterns with the highest quality. Unfortunately, Pratt is not suited for
finding conserved patterns in small subsets of a database.

Bearing in mind this last problem and the importance of pattern analysis in a large
number of biological problems, we present a method that reports all the frequent patterns
occurring in a query sequence with respect to an user defined database. The query se-
quence is used to drive the mining process ensuring containment of the reported patterns.
The difference to the previous approaches is that patterns need not to be known in ad-
vance as is the case of PROSITE or Pfam and need not to be signature patterns as the
ones outputted by Pratt. Therefore, our algorithm allows a refined analysis by enumer-
ating patterns that eventually occur in a small subset of thedatabase sequences. It may
yield the identification of sub-families and overcome the high computational demands
typical of the multiple alignment problems. Two types of patterns, with variable or fixed
length spacing between events, satisfying the user restrictions and associated options can
be identified.

Two possible applications of this method are sequenceclassifica-
tion [Ferreira and Azevedo 2005b, Ben-Hur and Brutlag 2003] andclustering
[Guralnik and Karypis 2001]. Sequence patterns appear as highly discriminative
features to predict a protein family or to group sequences according to their similarity.
The discovery of patterns can also be used in the detection ofsubfamilies within a
larger set of sequences from one family [Brazma et al. 1996], in a task calledSubFamiliy
Detection. The proposed method can also be used to create a profile for each of the
sequences, through the respective extracted patterns.

2. Preliminaries

In this work our main concern is protein databases, thus we are only considering the
alphabet of amino-acids, denoted asΣ. Each symbol of the sequence is generically called
aneventand the distance between consecutive events asgaps. Two main types of patterns



can be distinguished:

• Rigid Gap Patterns only contain gaps with a fixed length. The symbol “.” is
used to denote a gap of size one and it matches any symbol of thealphabet. Ex:
MN..A.CA

• Flexible Gap Patterns allow a variable number of gaps between events of the
sequence. We will use the notation−x(n,m)− to denote a variable gap withn
minimum and am maximum number of gaps. Ex:MN−x(1, 2)−A−x(0, 1)−C

A patternS is contained in a patternS ′, if S can be obtained by dropping some
events ofS ′. A sequence patternS is frequentif it occurs in at leastσ (minimum support)
sequences of the database andinfrequentotherwise. Thecover listrepresents the list of all
the sequence identifiers where the pattern occurs. We will follow a definition approximate
to the one used in [Rigoutsos and A.Floratos 1998] and consider a pattern to bemaximal
if it is not contained in any other pattern and can not be made more specific, i.e. it is
not possible to replace a wild card symbol by a concrete eventand still have a frequent
pattern. When extending a sequence patternS =< s1 s2 . . . sn >, with a new eventsn+1,
S is called abase sequenceandS ′ =< s1 s2 . . . sn sn+1 > theextended sequence. If an
eventb occurs aftera, it is denoted it as:a → b. a is called thepredecessor (pred)and
b the successor (succ). When some prior knowledge on the type of patterns that one is
looking for is available, constraints appear as an efficientway to prune the search space
and to focus the search on the expected patterns. The most common and generic types of
constraints are:

• Item Constraints: restricts the set of the events (excludedEventsSet) that may ap-
pear in the pattern.

• Gap Constraints: defines the (minGap) minimum or the maximum distance (max-
Gap) that may occur between two adjacent events in the sequence patterns.

• gapPenalty Constraints: measures the density of a pattern, through the ratio be-
tween the number of concrete events and the span of the pattern.

• Duration or Window Constraints: defines the maximum distance (window) be-
tween the first and the last event of the sequence patterns.

Another useful feature in biological sequence pattern mining is the use ofEquiv-
alent/Substitution Sets. When used during the mining process an event can be substituted
by another event belonging to the same set without lost of meaning. To report our patterns
a syntax similar to the PROSITE [Bairoch 1991] syntax will be used. Since the maximal
patterns may not necessarily be the most interesting ones, we designed our algorithm in
order to derive both all or maximal patterns.

The problem we address in this paper can be formulated as follow: given a
database of sequencesD, a query sequenceQ, a minimum supportσ, and the optional
parametersminGap, maxGap, window, excludedEventsSetandsubstitutionSets, density
thresholdgapPenalty, find all or the maximal frequent rigid or flexible gap sequence pat-
terns present inD and contained inQ, which respect previous constraints.



Sid Sequence
1 < A B C D E >
2 < A C D >
3 < B C B C >
4 < B C B A >
5 < A B B C D >

Table 1. An example database (alphabet of 5 symbols)

3. Algorithm

One way to tackle the stated problem would be to mine all frequent patterns in the
databaseD and then select those that occur inQ. Because unnecessary computation
would be done, this “query blind” method is clearly a naive approach. Instead we will use
an adaptation of the algorithmic approach followed in [Ferreira and Azevedo 2005a] (an
algorithm calledgIL) to mine frequent sequence patterns ofD present inQ, under user
defined constraints. Our proposed method uses a Bottom-Up search space enumeration
and a combination of frequent pairs of events to extend and find all the frequent patterns.
The algorithm is divided in two phases:scanning phaseandsequence extension phase.
Since the frequent patterns are obtained from the set of frequent pairs, the first phase of
the method consists in traversing all the sequences in the database and building two aux-
iliary data structures. The first structure contains the setof all pairs of events found in the
database. Each pair representation points to the sequenceswhere they appear (through
a sequence identifier bitmap), see Figure 1 (a). The second data structure consists of a
vertical representation of the database. It contains the positions or offsets of the events
in the sequences where they occur, see Figure 1 (b). This information is required to en-
sure the order of the events. At the end of the scanning phase we obtain a map of all the
pairs of events present in the database and a vertical formatrepresentation of the original
database. In the second phase, the pairs of events are successively combined to find all
the frequent patterns. These operations are fundamentallybased on two properties:

Property 1Anti-Monotonic, All supersequences of an infrequent sequence are infrequent.

Property 2Sequence Transitive Extension, Let S =< s1 . . . sn >, CS is its cover list
andOS the list of the offset values ofS for all the sequences inCS . LetP = (sj → sm), CP is it
cover list andOP the offset list ofsucc(P ) for all sequences inCP . If succ(S) = pred(P ), i.e.,
sn = sj , then the extended sequenceE =< s1 . . . snsm > will occur in CE , whereCE = {x ∈

CS ∩ CP , OP (x) > OS(x)}.

Hence, the basic idea is to successively extend all the frequent pair of events
present in the query sequenceQ with another frequent pair. This extension holds as long
as the predecessor of the extension pair is equal to the successor of the extended sequence
and the extension pair is contained and respects the order ofQ. This joining step is sound
provided that the above mentioned properties (1 and 2) are respected. Property 2 yields
the cover list of the extended sequence (CE) and the offsetList ofsucc(E). The joining of
pairs combined with a depth first traversal yields all the frequent patterns in the database



also contained inQ.

3.1. Scanning Phase

The first phase of the algorithm consists in the following procedure: For each sequence
in D, all ordered pairs of events without repetitions are obtained. Additionally an N-
bidimensional matrix (N is the size of the alphabet) is builtand updated. We call this
structure theBitmap Matrix (BM). EachCell(i, j) contains the information relative to the
pair i → j. This information consists of a bitmap that indicates the presence (1) or the
absence (0) in the respective sequence (i-th bit corresponds to the sequence i inD) and an
integer that contains the support count. This last value allows a fast support checking. As
an example see figure 1 (a).
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Figure 1. (a) Content of the pair A → C in the Bitmap Matrix; (b) Representation
of event B in the Offset Matrix

Simultaneously, as each event in the database is being scanned, a second data
structure calledOffset Matrix (OM)is also built. Conceptually, this data structure consists
of an adjacency matrix that will contain all the offset (positions) of all the events in the
entire database. Each event is a key that points to a list of pairs <Sid,OffsetList>, where
OffsetListis a list of all the positions of the event in the sequenceSid. The Offset Matrix
is a vertical representation of the database. Figure 1 (b) shows the information stored in
the Offset Matrix for the event B.One should note that the scanning phase is performed
once and the two data structures are kept in main memory. Several algorithm runs with
different support values do not imply additional database scanning. Only the sequence
extension phase is performed during the various interactions.

3.2. Sequence Extension Phase

input : S(BaseSequence); P (ExtensionPair); σ(Support)
CS = bitmap(S) andCP = BM.bitmap(P )1
C

S′ = CS ∩ CP2
if support(C

S′ ) ≥ σ then3
return OK4

end5
Algorithm 1: Support Test

For implementing the extension phase we present two tests (algorithms). Conjunc-
tively they are necessary and sufficient conditions to consider as frequent a new extended
sequence. Algorithm 1 is a quick test that implements property 1. Thebitmapfunction
gets the correspondent bitmaps ofS andP . The intersection operation is also very fast



and simple and the support function retrieves the support ofthe intersection bitmap. This
test allows the verification of anecessary but not sufficientcondition for the extended
sequence to be frequent. A second test is necessary to ensurethat the order of the events
is kept along the sequences thatCS′ bitmap points to. Algorithms 1 and 2 assumes that
for each frequent sequence, additional information besides the sequence event list is kept
during the extension phase. Namely, the correspondent bitmap, that for the case exposed
in algorithm 1 will beCS′ if S ′ is determined to be frequent. Also two offset lists in the
form <Sid, offset> are kept. One will contain the offset of the last event of the sequence,
offsetLastEvent, and will be used for the “Order Test”. The second,offsetStartEvent, con-
tains the offset of the first event of the sequence pattern in all the Sid where it appears.
This will be used when the verification of the window constraint is performed. In the Or-
der Test given a bitmap resulted from the support test thegetSeqIdLstfunction returns the
list of the sequence identifiers for the bitmap. The functionoffsetLstreturns a list of offset
values of the event in the respective Sid. For each sequence identifier it is tested whether
the extension pair has an offset greater than the offset value of the extended sequence.
This implements the computation ofCE and the offsetList ofsucc(E) as in property 2.
In case the user chooses to obtain flexible gap patterns the functiongetFMinMaxGap
returns the minimum and the maximum gaps from the list of gaps(line 13). For rigid gap
mode the method searches for the minimum gap value (throughgetRGap function) that
still enable the pattern to be frequent. Note that all the different gap values can be used to
obtain a pattern extension with the same event. Next, all theSid that allow a gap of this
size (lines 16 to 21) are selected. At the end of the procedure(line 24) it is tested whether
the order of the extended sequence pattern is respected in a sufficient number of database
sequences. In the positive case the extended sequence is considered frequent.

input : C
S′ (Bitmap); S(Base Seq); P (Ext. Pair); σ(Support)

seqLst = getSeqIdLst(C
S′ );1

Ev = succ(P );2
cnt = 0;3
foreach Sid in seqLstdo4

Ov = OM .offsetLst(Sid, Ev);5
Y = S.offsetLastEvent(Sid);6
W = S.offsetStartEvent(Sid);7
if ∃X ∈ Ov , X > Y then8

gap = X − Y ; gapLst.add(gap);9
cnt = cnt + 1;10

end11
if mode = FLEXIBLE then12

(fMin, fMax) =getFMinMaxGap(gapLst);13
else14

rGap = getRGap(gapLst, σ);15
foreach Sid in seqLstdo16

Repeat Step 5 to 7;17
if ∃X ∈ Ov , X − Y = rGap then18

cnt = cnt + 1;19
end20

end21
end22

end23
if cnt ≥ σ then24

return OK;25
end26

Algorithm 2: Order Test

Given algorithm 1 and 2, property 3 guarantees the necessaryand sufficient con-
ditions to safely extend a base sequence into a frequent one.



Property 3Frequent Extended Sequence, Given a minimum supportσ, a frequent base
sequenceS =< E1 . . . En >, where |S| ≥ 2 and a pair P = Ek → Ew. If En = Ek,
thenS′ =< E1 . . . En gn,k Ek >, wheregn,k = −x(mingap, maxgap)− if in flexible mode or
x(mingap) if in rigid mode, is frequent if algorithm 1 and 2 returnOK.

3.3. Space Search Traversal

Guided by the query sequenceQ, the search space can be traversed using adepth first
traversal mode. During the traversal, the set of the frequent sequences starts as the set of
the frequent pairs present inQ (named asseed pairs- in gray at Figure 2) . The traversal
begins with a sequence of size 2 that is successively expanded until it can not be further
extended. If we view the search space as a tree this means thatfor a given branch of
the tree (which represents a sequence), we step down as much as possible in the tree.
Then we backtrack and re-start search using another path. Anadvantage of this type of
traversal is that when looking for maximal sequences all thesubsequences of the longest
sequence found when traversing a branch of the space tree canbe rejected. Consequently,
it reduces the number of potential maximal sequences to consider. In the example of
Figure 2, we do a level-by-level search of the frequent patterns present inQ. Each level
corresponds to a position event inQ that is the prefix of all the seed pairs at that level.
For instance, level 1 starts with the event at position 1 inQ and containsA → B, A → C
andA → D. If an event is repeated inQ then the correspondent level it is not tested
since all patterns obtained from the repeated seed pair willbe contained in the frequent
patterns found before. When extending a frequent pattern andobtaining an infrequent
one, the suffix event is neglected and the posterior event inQ is then tested (ex: the
patternAB − x(0, 1)−C becomes infrequent when extended withB. ThusB is rejected
and a new extension is tested withD, since it followsB in Q. During the mining process
a list of the maximal patterns is kept. Only the longest sequence patterns (marked within
a box) found are tested. The test consists in checking whether the pattern iscontained
or containsother sequences from this list. The maximal patterns for this example are:
AB − x(0, 1) − CD andBCB. We should note that the procedure, described in Figure
2, is identical for rigid and flexible gap patterns. Also, in the rigid patterns extraction, the
gap size of the sequences inD match the respective gaps inQ.

4. Constraints

The introduction in our method of constraints likemin/max gap, window size, items exclu-
sion is a straightforward process and typically translates intoconsiderable performance
gains. The introduction ofsubstitution setsis also very easy to achieve. Implementing
the event exclusion constraint and substitution sets requires only simple changes in the
Bitmap Matrix (used to verify if patterns are frequent) and inthe Offset Matrix (discrim-
inates the positions of the events in every sequence where they occur). These features are
applied between the scanning phase and the sequence extension phase, before algorithm
2 is performed.



Q = < A B C B D >
A ->B A -> C A -> DA -> B

B -> C B -> B B -> D

C -> B C -> D

B -> D

A-x(0,2)-C (3)

A-x(0,2)-CB (0)

A-x(0,2)-CD (3)

Not Tested

BC (4)

BCB (2)

BCBD (0)

B-x(0,1)-B (3)

 B-x(0,1)-B-x(1)-B (1)

B-x(1)-D (2)

CB (2)

CBD (0)

CD (3)

Not Tested

AB (2)

AB-x(0,1)-C (2)

AB-x(0,1)-CB (0)

AB-x(0,1)-CD (2)

A-x(1,3)-D (3)

Min. Support = 2

OKOK

OK

OK

OK

OK

OK

OK

OK OK

OK OK

Figure 2. Example of the frequent flexible pattern finding in r espect to Q and D

(Table 1) for a minimum support of 2. Patterns labelled with O K are frequent. The
support is also provided for each pattern.

4.1. Events Exclusion and Substitution Sets

The event exclusion constraint is applied traversing the rows and columns of the Bitmap
Matrix where the excluded events occurs. At those cells, setto zero the support1 count
variable. When substitution sets are activated we have one ormore sets of equivalent
events. For each set of equivalent events one has to make the union of the rows (horizontal
union) and columns (vertical union) in Bitmap Matrix, where those events occur. The
vertical union is similar to the horizontal union. Moreover, for all the equivalent events,
one needs to pairwisely intersect the sequences (through the bitmaps) where they occur
and then perform the union of the offsetLists for the intersected sequences. This results
in the new offsetLists of the equivalent events.

4.2. Min / Max Gap and Window Size

These constraints are trivially introduced in the “Order Test”. In algorithm 2, the test in
line 8 and 15 is extended with three additional tests:(X − Y ) < maxGap AND (X −
Y ) > minGap AND (X − W ) < windowSize.

5. Experimental Evaluation

To test our algorithm we developed a prototype written in theC++ language and compiled
with g++, for linux and windows XP. All the experiments were performed on 1.5GHz In-
tel Centrino machine with 512MB of main memory, running windows XP Professional.
Performance evaluation was done through the use of three different protein datasets which
exhibit different features. Two of the datasets were obtained from PFAM (see Table 2 (a)).

1Future interactions on this data set still have the Bitmap Matrix intact since the bitmaps remain un-
changed



The A2M consists of a family of the A-macroglobulin receptors (PF07677). The CRYS-
TALLIN is composed by a set of proteins that occur in high concentration in the cytoplasm
of eye lens fiber cells (PF00525). The Yeast (saccharomyces cerevisiae) dataset is avail-
able at [GenBank ]. In this section we focus our attention in the performance issues of
the method. We applied a “leave-one-out” methodology for computational performance
evaluation. The presented values represent average results. The time to perform the scan-
ning phase is almost negligible. It takes less than 0.1 seconds for the above two datasets
and 0.6 seconds for a synthetic dataset with 8000 sequences with an average length of 60.

Dataset Protein Intra Similarity Avg. length Stdev length No instances
A2M A-macroglobulin 32 % 88.4 3.03 54

CRYSTALLYN Crystallin 67 % 53.6 1.70 13
Yeast Yeast 43% 255 256 393

Relativeσ Absoluteσ Max. All Span Max. Num. Events Time Max (secs)
4% 2 128 253804 25.6 4.9 50.7
5% 3 119 26752 22.7 4.3 2.9
6% 4 105 8592 21.0 3.8 0.2

Table 2. (a) Properties of the Protein Datasets; (b) Results for the A2M dataset in
RIGID gap mode.

Relativeσ Absoluteσ Max All Avg. Events Time (secs) Max Time (secs) All
80% 42 27777 797930 6.35 745.0 24.07
85% 45 16519 366502 5.80 95.0 11.2
90% 48 3848 102074 5.35 7.06 3.20
95% 50 1411 33810 5.03 1.41 1.07

gapPenaltyThresholdMax All Avg. Events Span Max. Time (secs) Max
10 50 2199 3.53 6.2 0.18
15 55 4966 4.61 10.3 0.40
20 62 5202 5.40 13.6 1.09
25 71 6342 5.49 16.9 1.39
30 83 7966 5.97 21.2 2.94

Table 3. (a) Results for the A2M dataset in FLEXIBLE gap mode; (b) Results for
the gap penalty threshold in the A2M dataset for a support of 8 % in the rigid gap
mode and mining maximal patterns.

In table 2 (b) we have, for each value of relative support, thenumber of All and
Maximal rigid gap patterns found. As we can see, Maximal patterns represent only a
small fraction of All patterns. Constraints are checked but are set to neutral values in
order to not interfere in the mining process. We also show thespan length and the av-
erage number of events of the maximal sequences. Results showthat for lower support
values more frequent patterns are found with greater average span. Table 3 shows the re-
sults for the FLEXIBLE mode applied to the A2M dataset. This mode is more expensive
since the solution space is larger than in the rigid mode. Themore demanding operation,
largely due to the ratio All/Max patterns is the maximal test. If we ignore this test we
can achieve significant time improvements. For instance in table 3(a) we can see that
for a support of 80% in A2M dataset it took 745 seconds to find the maximal flexible
patterns. However, when ignoring the maximal test, computation reduces to 24.07 sec-
onds representing an improvement around 97%. It is also presented the average number
of events present in a flexible pattern. Again, we can see thatfor lower support values
the average of the pattern length and span increases. Figure3 (a) shows runtime for the
A2M dataset in Flexible mode, for a support of 80% and maximalpatterns, with rela-
tion to two constraints. For a value less than 50 both constraints have a very restrictive
impact in the pattern extraction process. For values greater than 70 the impact of the
constraints becomes neutral. Figure 3 (b) shows the runtimes for different support val-
ues in the presence of the maxGap and window constraints. Dueto its relative high intra
similarity, the Crystallin dataset has a high density, in contrast to A2M dataset which is
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Figure 3. (a) Flexible patterns for A2M dataset in the presen ce of the Window
and the gapPenalty Constraints; (b) Simultaneous applicat ion of the maxGap and
Window constraint to find Flexible patterns in the Crystallin dataset; (c) Runtime
for RIGID mode for different sizes of the query sequence A2m d ataset; σ = 5% (d)
gIL and Teiresias[L=2 and W(maxGap)= 10] algorithms, suppor t variation for the
Yeast dataset.

sparser. Additionally, the two datasets have different sizes. This explains the different
range of minimum support values used. Clearly the introduction of the constraints rep-
resents a significant runtime reduction. Figure 3 (c) shows the impact of the sequence
length in the algorithm runtime. From table 3 (b), we can see that thegapPenaltyThresh-
old is also a constraint with a direct impact in the number of reported patterns. Lower
values for this threshold restricts the span of the patternsand consequently the average
number of events present in a pattern is smaller. For a comparison of the performance of
the proposed approach with two other algorithms: SPAM [Ayres et al. 2002] (for flexible
gap patterns) and Teiresias [Rigoutsos and A.Floratos 1998](for rigid gap patterns) see
[Ferreira and Azevedo 2005a]. In this work we show that the gIL algorithm, in which this
method is based, outperforms the methods mentioned above.

Considering all experiments, we conclude that the algorithm’s runtime is essen-
tially affected by the number of reported frequent patterns. The query sequence length
and the intra similarity of the sequences in the database arethe two variables that have the
major impact in the number of outputted patterns. In more computationally demanding
situations or when user wants to specify the type of patterns, constraints have proved to
be effective and very efficient.

The efficiency of our query driven approach can be assessed through a comparison
with the query blind approach. Consider a query blind application where for the A2M
dataset (see section 5) and a support of 15%. Mining (all and rigid gap patterns) the
entire database takes 91.5 seconds. Comparing this time (plus the time to extract only the
patterns present in the query sequence) with the time that our method takes for the same
support, 0.15 seconds, the first approach takes at least 610 times more time. For the Yeast
dataset our method takes 0.7 and 1.2 seconds for a support of respectively 10% and 5%.
The gIL algorithm [Ferreira and Azevedo 2005a] (see Figure 3(d), for a comparison with
Teiresias where L and W are respectively the number of non-wild cards events in a pattern



and the maximum spanning between two consecutive events) takes 9.6 and 147 seconds
for the same support values, which is 16 and 122 times more expensive. This difference
becomes more significant for lower support values. This seems a sound evidence that
query driven mining appears as a promising approach.

5.1. Pattern Quality

In the past, several sequence pattern analysis algorithms have used the PROSITE
[Bairoch 1991] database to evaluate their work. PROSITE contains high quality patterns,
represented by an enhanced regular expression. Regular expression patterns consist in a
very convenient tool for fast sequence analysis but have a limited descriptive power and
do not take into account the overall diversity of the input sequences. Also they do not re-
port deviant but closely related patterns. Enumerating allthe frequent patterns that occurs
in the input set provides a more complete overview of the sequence similarities.

5.1.1. Test Cases

We demonstrate the application of our algorithm and the relevance of the extracted pat-
terns in real life data. We used two examples of well know protein sequences families,
one from PROSITE (release 19.3) and one from eMotif [Wu et al.]. For each family we
randomly selected one query sequence and submitted it to thesequence miner.

Zinc Finger (C2H2) {prosite id: ps00028}

’Zinc finger’ domains are protein structures first identifiedin the Xenopus tran-
scription factor TFIIIA and since than have been found in numerous nucleic acid-binding
proteins. It consists in two cysteines (C) and two histidines(H) residues at both extremi-
ties of the domain. Prosite reports a dataset with 5547 sequences in Swiss-Prot containing
the consensus pattern. The prosite pattern for the C2H2 domains is:

C - x(2,4) - C - x(3) - [LIVMFYWC] - x(8) - H - x(3,5)-H

Analyzing the query sequence from figure 4 (a), with a supportof 40% (2219)
against this dataset we obtained a total of 57 patterns, which three of them are maximal.
It took 0.219 seconds to mine.

Tubulin Dataset {emotif}

This dataset is used as an example in the emotif database [Wu et al. ]. It contains
a total of 159 sequences with an average length of 40. Emotif generates patterns on a set
of aligned sequences, depending on the specificity or the sentitivity required by the user.
An example emotif pattern is:
m[fy].[kr].af[ilv]h.[fy]..egm[de]e.[de]f[ast][de]a..[dn]...l..[de][fy]..[filvy]

This motif matches 134 out of the 158 sequences supplied. Scanning the query se-
quence in figure 4(b) against the tubulin dataset with a support of 90% (143) 123 frequent
patterns are found in 0.016 seconds. Two of these patterns are maximal and are aligned
with the query sequence. For a support of 60% (95) 1435 sequences were found in 0.23
seconds. Seven of these sequences are maximal.



Figure 4. Extracted maximal patterns, with respective supp ort and density: (a)
Alignment of a query sequence from the C2H2 family; (b) Align ment of a query
sequence from the Tubulin family.

5.2. Pattern Selection

In order to assess the quality and the usefulness of the reported patterns we apply the
query driven miner to three different situations. First we define a set of statistics to
be obtained for each pattern. These statistics enable the scoring selection of the most
interesting patterns. We will use the termSensitivity(Sn) [Brazma et al. 1995] to mea-
sure the proportion of sequences of the target family covered by the pattern. The term
Specificity(Sp) is used to measure the proportion of sequences outside the target fam-
ily that are matched by the pattern. The two measures are defined as:Sensitivity =
TP/(TP + FN); Specificity = TN/(TN + FP ), whereTP , TN andFN correspond
respectively to the number of True Positives, True Negatives and False Positive matches
of a pattern. Additionally, we make use of an adaptation of another measure calledDis-
crimination Power(Dp) [Ben-Hur and Brutlag 2003] that we define as:Dp = TP

|IF |
− FP

|OF |
.

In this case|IF | and|OF | correspond respectively to the number of sequences in the target
family and outside the target family. Note that the range of values for Dp is between -1
and 1, whereas for the Sensitivity and Specificity is in between 0 and 1. This measure is
particularly useful as a filter since the greater the Dp value, the more selective the pattern
is.

5.2.1. Experiment One

In this experiment we made use of a set proteins related by a group of PROSITE (release
19.6) entries. This group is called Inhibitors and is composed by 13 entries (families). For
each entry we retrieve the sequences in Swiss-Prot matchingthe respective pattern. We
considered a unique dataset with all the 3865 sequences and for each family we randomly
choose 10 sequences to mine. For each evaluated sequence we determined a base support
which corresponds to the maximum support where the query sequence contains at least
one frequent pattern. To obtain the frequent patterns we apply a support of 80% of the
base support. Only patterns with a size greater than 3 amino-acids and aDp > 0 are
considered. Table 4 summarizes the obtained results for the13 sets of proteins. The
families ps00280, ps00282 and ps00286 present the set of motifs with the highest family
correlation, ie. the highestDp. Figure 5(a) shows a graph of the distribution of the



Family Num Seq Supp(%) Dp > 0 Patterns Total Patterns Sn Sp Dp
ps00280 427 0.015 4.5 7.2 0.477 0.968 0.591
ps00281 132 0.027 10.4 20.2 0.145 0.950 0.212
ps00282 288 0.038 6.0 12.2 0.280 0.970 0.386
ps00283 604 0.026 5.0 21.6 0.107 0.990 0.183
ps00284 1230 0.030 7.2 15.0 0.050 0.982 0.086
ps00285 74 0.030 4.0 16.0 0.054 0.930 0.063
ps00286 35 0.195 6.2 7.6 0.351 0.955 0.404
ps00287 312 0.020 6.9 28.9 0.025 0.951 0.024
ps00288 64 0.035 5.7 7.9 0.155 0.926 0.221
ps00426 73 0.025 5.5 12.4 0.127 0.931 0.165
ps00477 178 0.022 7.1 28.1 0.026 0.955 0.027
ps00553 14 0.034 4.7 6.4 0.261 0.920 0.342
ps50279 434 0.015 11.0 41.3 0.040 0.974 0.060

Table 4. Results of the evaluation of the sequences from the g roup of Inhibitors.
The last three rows shows the average results of Sn, Sp and Dp f or each family.

patterns with respect to the Sensitivity versus Specificityfor three of the families.

5.2.2. Experiment Two

Although our sequence miner algorithm finds interesting sequence patterns in a set of un-
related proteins, like for example in the dataset of the previous experiment where proteins
from 13 families are considered together, it is best suited for sets of related proteins. In this
experiment we analyze the query sequence with relation to a unique protein family. This
allows us to directly control the sensitivity of the patterns since the support defines a min-
imum bound for this measure. In this case the specificity is defined like in [Wu et al. ] as
the expected number of false positives a pattern may match. So, letS = s1 s2 . . . sn, then
P (S) =

∏n

i=1
p(si), wherep(si) is the frequency ofsi in the Swiss-Prot database and for

si =′ .′, p(si) = 1. The number of expected false positives, EFP(S)=P(S)× NResidues,
where NResidues is the number of possible match positions (number of residues in Swiss-
Prot). It can be verified by empirical observation that this calculation gives a reasonably
estimate of the number of occurrences of a sequence pattern.We choose the family Zinc
finger PHD-type (ps00516) also called C4HC3. This family contains 2654 sequences,
where the sequences contain an average length of 597.8 amino-acids. In this experiment
we evaluated 100 randomly chosen sequences. Only patterns with a length greater than 3
were extracted. Constraints were set to: maxgap = 20; window =25. The average time
to mine each sequence was 1.5 seconds, with an average numberof 8 frequent patterns
reported. For the 100 sequences a total of 1151 patterns werereported. Figure 5 (b) dis-
plays the support variation versus the expected number of false positives that the reported
patterns will match in the Swiss-Prot database. We can observe that due to the large size
of the family, only for small support values a significant number of patterns is found.

5.2.3. Experiment Three

In this last experiment we developed a simple classifier. We select the set of proteins that
match the patterns in the group of Receptors from the PROSITE database. This group
contains 27 entries matching a total of 13458 protein sequences. To classify a sequence
S, we defined the Match Expectation Score (MES) with respect to a family of proteinsCi

as,MES(S|Ci) =
∑n

j=1
{motifSpan × support}j, where n corresponds to the number

of motifs for S w.r.tCi. Next, we performed a “sequence-against-family” analysisfor all
the 27 families. All the sequences of each family were evaluated and the average of the
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Figure 5. (a) Distribution of Sensitivity versus Specificit y for the patterns from
the families ps00280, ps00282 and ps00286; (b) Distributio n of the expected false
positive in the Swiss-Prot database for different values of support for the patterns
of the sequences in C4HC3 dataset; (c) Similarity Matrix for the classification per-
formed on the 27 families on the group of Receptors from the Pr osite database.
Rows and columns indicate the respective family identifier.

MES values calculated. Finally a similarity matrix for all the 27 families was obtained.
This matrix is represented in figure 5 (c). The black areas indicate higher similarity and
white areas a low similarity. Despite the aim of the experiment was not to build a robust
classifier, the quality of the results obtained suggest the use of this approach in complex
problems like protein sequence classification.

6. Conclusions
In this paper we propose a method that given a sequence to be analyzed (query sequence)
and a database of sequences, it finds all the frequent patterns present in the query sequence
with respect to the database. In this way, only the frequent patterns present in the query
sequence are reported. It provides a closer analysis of the query sequence in relation to all
the sequences in the database. The use of the method results into a considerable efficiency
gain when compared to a query blind approach. It is, as far as we know, the first method
to tackle the problem of sequence patterns analysis from this perspective. The method has
a high adaptability making possible the extraction of two main types of patterns,rigid and
flexible gap patterns, under the same algorithmic framework. The data organization turns
the introduction ofconstraints, substitution setsandscoring measuresa straightforward
process.
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