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Abstract. The discovery of frequent patterns present in biologicguesces has
a large number of applications, ranging from classificatictustering and un-

derstanding sequence structure and function. This papssgts an algorithm
that discovers frequent sequence patterns (motifs) ptesenquery sequence
in respect to a database of sequences. The query is usedde the mining

process and thus only the patterns present in the query a@ted. Two main

types of patterns can be identified: flexible and rigid gaperats. The user
can choose to report all or only maximal patterns. Constraemd Substitution
Sets are pushed directly into the mining process. Expetimhemaluation shows
the efficiency of the algorithm, the usefulness and theaeals of the extracted
patterns.

1. Introduction

Due to the exponential growth of newly discovered biologsejuences (DNA, proteins
and other types of fragments), witnessed in the last decddessubject of sequence
analysis plays a central role in bioinformatics. In this teo, one of the most impor-
tant tasks is the discovery of sequence patterns also calbdifls. Different approaches
and several methods have been proposed to tackle this proBarlier type of propos-
als consisted in a multiple alignment of the evaluated secp®[Hirosawa et al. 1995],
with a subsequent report of a consensus sequence with tlomsegf detected similar-
ity. Due to the inherent high computational costs this appihas only suitable for small
sets of closely related sequences. Another possible gpligibased on sequence pat-
tern enumeration, where candidate patterns are obtaineddombination of the differ-
ent events present in the input sequences. Enumeratiorodsetan be distinguished
by the way they traverse the solution space and by the or@erthley enumerate the
patterns. The Data Mining community has a large body of warkttee related task
of discovering event-set sequence patterns from tramsedtdatasets. The proposed
algorithms are best suited for datasets with many (typicadillions) sequences with
a relative small length (from 10 to 20), and an alphabet otisamds of events, e.g.
[Srikant and Agrawal 1996, Zaki 2000, Jian Pei 2002, Ayres.e2002]. In these algo-
rithms, several types of constraints are included and stlidConsidering the character-
istics inherent to biological sequence databases, nametgip databases (hundreds of



sequences with big average length, usually greater tha)) a@érnative methods were
proposed by the bioinformatics community. An example ohsmethod os the Teiresias
[Rigoutsos and A.Floratos 1998] algorithm. When a partic(daery) sequence is given
for investigation, for instance a recently discovered @mtthe detection of sequence
patterns may provide valuable insights about the protefnpossible analysis solution
is to scan the query sequence against a database of sigpatieens like PROSITE
[Bairoch 1991] or Pfam [A. Bateman 2003], trying to identifyethespective sequence
family. A signature pattern is a pattern that ideally matcak the sequences in a certain
family and no other sequences. These patterns can expnesgamt functional properties
related to the family. Several tools like interProScan [EMBEI | or eMotif [Wu et al. ]
can be used. These tools essentially differ in the type dépe they search and in the
way they output patterns. The signature patterns can benebtéhrough manual inspec-
tion of the sequences or through automatic programs likét Rlanassen et al. 1995].
Pratt searches for conserved patterns in a set of relateeipiequences reporting a a
small number of patterns with the highest quality. Unfodighy, Pratt is not suited for
finding conserved patterns in small subsets of a database.

Bearing in mind this last problem and the importance of patsalysis in a large
number of biological problems, we present a method thatrteadi the frequent patterns
occurring in a query sequence with respect to an user defiaedhase. The query se-
guence is used to drive the mining process ensuring congainaf the reported patterns.
The difference to the previous approaches is that pattezad not to be known in ad-
vance as is the case of PROSITE or Pfam and need not to besigmattterns as the
ones outputted by Pratt. Therefore, our algorithm allowsfamed analysis by enumer-
ating patterns that eventually occur in a small subset ofiitabase sequences. It may
yield the identification of sub-families and overcome thghhtomputational demands
typical of the multiple alignment problems. Two types oftpats, with variable or fixed
length spacing between events, satisfying the user résiricand associated options can
be identified.

Two possible applications of this method are sequencassifica-
tion [Ferreira and Azevedo 2005b, Ben-Hur and Brutlag 2003] amdustering
[Guralnik and Karypis 2001].  Sequence patterns appear ghlyhidiscriminative
features to predict a protein family or to group sequencesraing to their similarity.
The discovery of patterns can also be used in the detectissulofamilies within a
larger set of sequences from one family [Brazma et al. 1986} ,task calledsubFamiliy
Detection The proposed method can also be used to create a profile doradahe
sequences, through the respective extracted patterns.

2. Preliminaries

In this work our main concern is protein databases, thus weoaly considering the
alphabet of amino-acids, denoteddastEach symbol of the sequence is generically called
aneventand the distance between consecutive evengaips Two main types of patterns



can be distinguished:

e Rigid Gap Patterns only contain gaps with a fixed length. The symbol “.” is
used to denote a gap of size one and it matches any symbol afpgthabet. Ex:
MN. A.CA

e Flexible Gap Patterns allow a variable number of gaps between events of the
sequence. We will use the notatienc(n, m)— to denote a variable gap with
minimum and an maximum number of gaps. ER/ N —z(1,2)—A—x(0,1)-C

A pattern$ is contained in a patterf’, if S can be obtained by dropping some
events ofS’. A sequence pattersiis frequentf it occurs in at least (minimum support)
sequences of the database arfcequentotherwise. Theover listrepresents the list of all
the sequence identifiers where the pattern occurs. We Walda definition approximate
to the one used in [Rigoutsos and A.Floratos 1998] and conaigattern to benaximal
if it is not contained in any other pattern and can not be madeemspecific, i.e. it is
not possible to replace a wild card symbol by a concrete emedtstill have a frequent
pattern. When extending a sequence pattesa< s; s, ... s, >, with a new eveng,,, 1,
S'is called abase sequenand S’ =< s; 5o ..., S,i1 > theextended sequencH an
eventb occurs aftem, it is denoted it asu — b. a is called thepredecessor (precind
b the successor (succ)When some prior knowledge on the type of patterns that one is
looking for is available, constraints appear as an effioreay to prune the search space
and to focus the search on the expected patterns. The most@oend generic types of
constraints are:

¢ Item Constraintsrestricts the set of the evenextludedEventsSahat may ap-
pear in the pattern.

e Gap Constraintsdefines therinGap minimum or the maximum distancen@x-
Gap) that may occur between two adjacent events in the sequerticens.

e gapPenalty Constraintsmeasures the density of a pattern, through the ratio be-
tween the number of concrete events and the span of therpatter

e Duration or Window Constraintsdefines the maximum distanceidow) be-
tween the first and the last event of the sequence patterns.

Another useful feature in biological sequence pattern mgms the use oEquiv-
alent/Substitution Set¥hen used during the mining process an event can be subdtitut
by another event belonging to the same set without lost ohingaTo report our patterns
a syntax similar to the PROSITE [Bairoch 1991] syntax will Ised. Since the maximal
patterns may not necessarily be the most interesting oresleaigned our algorithm in
order to derive both all or maximal patterns.

The problem we address in this paper can be formulated asaollyiven a
database of sequencés a query sequena@, a minimum support, and the optional
parametersninGap maxGap window, excludedEventsSand substitutionSetsdensity
thresholdgapPenaltyfind all or the maximal frequent rigid or flexible gap sequepat-
terns present i and contained iid), which respect previous constraints.



Sid Sequence
1 |<ABCDE>
2 <ACD>
3 <BCBC>
4 <BCBA>
5 |<ABBCD>

Table 1. An example database (alphabet of 5 symbols)

3. Algorithm

One way to tackle the stated problem would be to mine all feegyatterns in the
databaseD and then select those that occurGh Because unnecessary computation
would be done, thisquery blind method is clearly a naive approach. Instead we will use
an adaptation of the algorithmic approach followed in [Egarand Azevedo 2005a] (an
algorithm calledglL) to mine frequent sequence patterns/bpresent in(), under user
defined constraints. Our proposed method uses a Bottom-Uphssgace enumeration
and a combination of frequent pairs of events to extend awicklirthe frequent patterns.
The algorithm is divided in two phasescanning phasandsequence extension phase
Since the frequent patterns are obtained from the set ofiémopairs, the first phase of
the method consists in traversing all the sequences in tladase and building two aux-
iliary data structures. The first structure contains thesatl pairs of events found in the
database. Each pair representation points to the sequehess they appear (through
a sequence identifier bitmap), see Figure 1 (a). The secdladsttacture consists of a
vertical representation of the database. It contains tiséipos or offsets of the events
in the sequences where they occur, see Figure 1 (b). Thismiat@mn is required to en-
sure the order of the events. At the end of the scanning phassbtain a map of all the
pairs of events present in the database and a vertical foapegsentation of the original
database. In the second phase, the pairs of events are Suetyesombined to find all
the frequent patterns. These operations are fundamebtasld on two properties:

Property 1Anti-Monotonic, All supersequences of an infrequent sequence are infrequent.

Property 2Sequence Transitive Extension, Let S =< s1...s, >, Cg is its cover list
andOg the list of the offset values 6ffor all the sequences ifs. LetP = (s; — s,,), Cpisit
cover list andOp the offset list okucc(P) for all sequences i€'p. If succ(S) = pred(P), i.e.,
sp = sj, then the extended sequenfEe=< s; ... s, s, > Will occur in Cg, whereCp = {x €
CsNCp, Op(z) > Og(x)}.

Hence, the basic idea is to successively extend all the émqgpair of events
present in the query sequen@ewith another frequent pair. This extension holds as long
as the predecessor of the extension pair is equal to thessoraef the extended sequence
and the extension pair is contained and respects the ordgrDhis joining step is sound
provided that the above mentioned properties (1 and 2) apeoted. Property 2 yields
the cover list of the extended sequen€g ) and the offsetList ofucc(E). The joining of
pairs combined with a depth first traversal yields all thgdrent patterns in the database



also contained ir).

3.1. Scanning Phase

The first phase of the algorithm consists in the followinggedure: For each sequence
in D, all ordered pairs of events without repetitions are ola@din Additionally an N-
bidimensional matrix (N is the size of the alphabet) is baitd updated. We call this
structure théBitmap Matrix (BM) EachCell(i, ) contains the information relative to the
pairi — j. This information consists of a bitmap that indicates thespnce (1) or the
absence (0) in the respective sequence (i-th bit corresgporttie sequence i i) and an
integer that contains the support count. This last valumwlla fast support checking. As
an example see figure 1 (a).
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Figure 1. (a) Content of the pair A — C in the Bitmap Matrix; (b) Representation
of event B in the Offset Matrix

Simultaneously, as each event in the database is beingestaarsecond data
structure calle®ffset Matrix (OM)is also built. Conceptually, this data structure consists
of an adjacency matrix that will contain all the offset (gimsis) of all the events in the
entire database. Each event is a key that points to a listicf §&id OffsetList>, where
OffsetListis a list of all the positions of the event in the sequeBk The Offset Matrix
is a vertical representation of the database. Figure 1 @jyslhe information stored in
the Offset Matrix for the event B.One should note that the sra@nphase is performed
once and the two data structures are kept in main memory.r&eatlgorithm runs with
different support values do not imply additional databassneing. Only the sequence
extension phase is performed during the various intenagtio

3.2. Sequence Extension Phase

input : S(BaseSequence); P(ExtensionPair); o(Support)
Cg = bitmap(S)andCp = BM.bitmap(P)
Cgqr =CsnCp
if support(Cgs) > o then
return OK

GRAWNEF

end

Algorithm 1. Support Test

For implementing the extension phase we present two tdgtgifams). Conjunc-
tively they are necessary and sufficient conditions to aersas frequent a new extended
sequence. Algorithm 1 is a quick test that implements ptgper Thebitmapfunction
gets the correspondent bitmapsand P. The intersection operation is also very fast



and simple and the support function retrieves the suppdheointersection bitmap. This
test allows the verification of aecessary but not sufficienbndition for the extended
sequence to be frequent. A second test is necessary to eéhatitee order of the events
is kept along the sequences tldat bitmap points to. Algorithms 1 and 2 assumes that
for each frequent sequence, additional information badige sequence event list is kept
during the extension phase. Namely, the correspondenapijtthat for the case exposed
in algorithm 1 will beCy if S’ is determined to be frequent. Also two offset lists in the
form <Sid offset> are kept. One will contain the offset of the last event of thguence,
offsetLastEventnd will be used for the “Order Test”. The secoafisetStartEventon-
tains the offset of the first event of the sequence patterti the Sid where it appears.
This will be used when the verification of the window consttas performed. In the Or-
der Test given a bitmap resulted from the support tesget8eqldLstunction returns the
list of the sequence identifiers for the bitmap. The functtisetLstreturns a list of offset
values of the event in the respective Sid. For each sequdaanéfier it is tested whether
the extension pair has an offset greater than the offseewaiiuhe extended sequence.
This implements the computation 6fz and the offsetList okucc(F) as in property 2.
In case the user chooses to obtain flexible gap patterns tieéida get F'Min M axGap
returns the minimum and the maximum gaps from the list of @eps 13). For rigid gap
mode the method searches for the minimum gap value (thrgetgbGap function) that
still enable the pattern to be frequent. Note that all theeteiht gap values can be used to
obtain a pattern extension with the same event. Next, albiighat allow a gap of this
size (lines 16 to 21) are selected. At the end of the procetinee24) it is tested whether
the order of the extended sequence pattern is respectedifficéesit number of database
sequences. In the positive case the extended sequencesidered frequent.

input : Cg/(Bitmap); S(Base Seq); P(Ext. Pair); o(Support)

1 seqLst = getSeqldLstC g/ );
2 E, = succ(P);
3 cent = 0;
4 foreach Sid in seqLstlo
5 0O, = OM offsetLs(Sid, E,);
6 Y = S.offsetLastEver(tSid);
7 W = S.offsetStartEver{tSid);
8 if3X € Oy, X > Y then
9 gap = X — Y; gapLst.addfap);
10 cnt = ent + 1;
11 end
12 if mode = FLEXIBLE then
13 (fMin, f Maz) =getFMinMaxGaggapLst);
14 else
15 rGap = getRGafjgapLst, o);
16 foreach Sid in seqLstlo
17 Repeat Step 5to 7;
18 if3X € Oy, X — Y = rGap then
19 cnt = ent + 1;
20 end
21 end
22 end
23 end
24 if ent > o then
25 return OK;
26 end

Algorithm 2: Order Test

Given algorithm 1 and 2, property 3 guarantees the necessadysufficient con-
ditions to safely extend a base sequence into a frequent one.



Property 3Frequent Extended Sequence, Given a minimum suppott, a frequent base
sequenceS =< E;...E, >, where|S| > 2and aparP = E, — E,. If E, = Ej,
thenS’ =< Ei ... E, gnk Er >, Whereg, , = —z(mingap, mazgap)— if in flexible mode or
x(mingap) if in rigid mode, is frequent if algorithm 1 and 2 retufmk .

3.3. Space Search Traversal

Guided by the query sequengk the search space can be traversed usidgph first
traversal mode. During the traversal, the set of the fregsegquences starts as the set of
the frequent pairs presentdp (named aseed pairs in gray at Figure 2) . The traversal
begins with a sequence of size 2 that is successively exdandé it can not be further
extended. If we view the search space as a tree this meanfothaigiven branch of
the tree (which represents a sequence), we step down as raymbssible in the tree.
Then we backtrack and re-start search using another patladdantage of this type of
traversal is that when looking for maximal sequences alktiiesequences of the longest
sequence found when traversing a branch of the space trdecajected. Consequently,
it reduces the number of potential maximal sequences toidemsin the example of
Figure 2, we do a level-by-level search of the frequent padgteresent irf). Each level
corresponds to a position eventdhthat is the prefix of all the seed pairs at that level.
For instance, level 1 starts with the event at position @ iand containsd — B, A — C
andA — D. If an event is repeated i then the correspondent level it is not tested
since all patterns obtained from the repeated seed paibwidontained in the frequent
patterns found before. When extending a frequent patterroatadning an infrequent
one, the suffix event is neglected and the posterior eve ia then tested (ex: the
patternAB — x(0, 1) — C' becomes infrequent when extended withThusB is rejected
and a new extension is tested with since it followsB in ). During the mining process
a list of the maximal patterns is kept. Only the longest saqga@atterns (marked within
a box) found are tested. The test consists in checking whétkeepattern iontained

or containsother sequences from this list. The maximal patterns f& ¢éixample are:
AB — z(0,1) — CD and BC B. We should note that the procedure, described in Figure
2, is identical for rigid and flexible gap patterns. Also, e trigid patterns extraction, the
gap size of the sequenceslinmatch the respective gapsdn

4. Constraints

The introduction in our method of constraints likén/max gapwindow sizeitems exclu-
sionis a straightforward process and typically translates auosiderable performance
gains. The introduction adubstitution setss also very easy to achieve. Implementing
the event exclusion constraint and substitution sets reguinly simple changes in the
Bitmap Matrix (used to verify if patterns are frequent) andha Offset Matrix (discrim-
inates the positions of the events in every sequence wheyetttur). These features are
applied between the scanning phase and the sequence ertphsise, before algorithm
2 is performed.



Q =<ABCBD > Win. Support=2
A->B A->C A->B A->D
AB (2) oK Ax(02-C(3) ok NotTested [A-x(1.3)-D|(3) ok
AB-x(01)-C (2) ok Ax(0,2-CB (0) X
AB-x(0.2)-CB (0) X  [Ax(02-CD](3) ok
IAB-x(0,1)-CD](2) ok
B->C B->B B->D
BC (4) ok B-x(0.1)-B](3) ok (2) ok
BCB (2)| ok B-x(0,1)-B-x(1)-B (1) X
BCBD (0) X

C->B C->D
CB (2) ok [CDI(3) ok
cBDl(0)

B->D

Not Tested

Figure 2. Example of the frequent flexible pattern finding in r espectto @ and D
(Table 1) for a minimum support of 2. Patterns labelled with O K are frequent. The
support is also provided for each pattern.

4.1. Events Exclusion and Substitution Sets

The event exclusion constraint is applied traversing tesrand columns of the Bitmap
Matrix where the excluded events occurs. At those cellstoseéro the support count
variable. When substitution sets are activated we have omeooe sets of equivalent
events. For each set of equivalent events one has to makaeitireaf the rows (horizontal
union) and columns (vertical union) in Bitmap Matrix, wheh®$e events occur. The
vertical union is similar to the horizontal union. Moreoyviar all the equivalent events,
one needs to pairwisely intersect the sequences (throweghbititmaps) where they occur
and then perform the union of the offsetLists for the intetsé sequences. This results
in the new offsetLists of the equivalent events.

4.2. Min/Max Gap and Window Size

These constraints are trivially introduced in the “OrdestTeln algorithm 2, the test in
line 8 and 15 is extended with three additional tesfs:— Y') < maxGap AND (X —
Y) > minGap AND (X — W) < windowSize.

5. Experimental Evaluation

To test our algorithm we developed a prototype written inGhe- language and compiled
with g++, for linux and windows XP. All the experiments wererfprmed on 1.5GHz In-
tel Centrino machine with 512MB of main memory, running windoXP Professional.
Performance evaluation was done through the use of threeatit protein datasets which
exhibit different features. Two of the datasets were olediinom PFAM (see Table 2 (a)).

IFuture interactions on this data set still have the BitmagriMantact since the bitmaps remain un-
changed



The A2M consists of a family of the A-macroglobulin recept@F07677). The CRYS-
TALLIN is composed by a set of proteins that occur in high antcation in the cytoplasm
of eye lens fiber cells (PF00525). The Yeasiqcharomyces cerevisjpgataset is avail-
able at [GenBank ]. In this section we focus our attention anplrformance issues of
the method. We applied déave-one-otitmethodology for computational performance
evaluation. The presented values represent averagesteblaét time to perform the scan-
ning phase is almost negligible. It takes less than 0.1 skctor the above two datasets
and 0.6 seconds for a synthetic dataset with 8000 sequerittesnaverage length of 60.

Dataset Protein Intra Similarity | Avg. length| Stdev lengthl N° instances||| Relatives | Absolutes | Max. | All Span Max.| Num. Events| Time Max (secs;

A2M A-macroglobulin 32 % 88.4 3.03 54 4% 2 128 | 253804 25.6 4.9 50.7
CRYSTALLYN Crystallin 67 % 53.6 1.70 13 5% 3 119 | 26752 22.7 4.3 2.9

Yeast Yeast 43% 255 256 393 6% 4 105 | 8592 21.0 3.8 0.2

Table 2. (a) Properties of the Protein Datasets; (b) Results for the A2M dataset in
RIGID gap mode.

gapPenaltyThresholdMax | All | Avg. Events| Span Max.| Time (secs) Ma:
10

Relatives | Absolutes | Max All Avg. Events| Time (secs) Max Time (secs) All 50 [ 2199 353 6.2

80% 42 27777 797930 6.35 745.0 24.07

I

il 15 55 [ 4966 461 103 0.40
”H 20 62 | 5202 5.40 13.6 1.09
If

|

1L

85% 45 16519| 366502 5.80 95.0 11.2
90% 48 3848 | 102074 5.35 7.06 3.20
95% 50 1411 | 33810 5.03 1.41 1.07

25 71 | 6342 5.49 16.9 1.39
30 83 | 7966 5.97 21.2 2.94

Table 3. (a) Results for the A2M dataset in FLEXIBLE gap mode; (b) Results for
the gap penalty threshold in the A2M dataset for a support of 8 % in the rigid gap
mode and mining maximal patterns.

In table 2 (b) we have, for each value of relative support,nimeaber of All and
Maximal rigid gap patterns found. As we can see, Maximalgoat represent only a
small fraction of All patterns. Constraints are checked betset to neutral values in
order to not interfere in the mining process. We also showspgan length and the av-
erage number of events of the maximal sequences. Resultstehbtor lower support
values more frequent patterns are found with greater agespgn. Table 3 shows the re-
sults for the FLEXIBLE mode applied to the A2M dataset. Thisdeds more expensive
since the solution space is larger than in the rigid mode.mibiee demanding operation,
largely due to the ratio All/Max patterns is the maximal tel§twe ignore this test we
can achieve significant time improvements. For instancelet3(a) we can see that
for a support of 80% in A2M dataset it took 745 seconds to firelrttaximal flexible
patterns. However, when ignoring the maximal test, contfmrtaeduces to 24.07 sec-
onds representing an improvement around 97%. It is alse@pted the average number
of events present in a flexible pattern. Again, we can seeftihddower support values
the average of the pattern length and span increases. Rga)eshows runtime for the
A2M dataset in Flexible mode, for a support of 80% and maxipaterns, with rela-
tion to two constraints. For a value less than 50 both coimssr&iave a very restrictive
Impact in the pattern extraction process. For values greéh#ga 70 the impact of the
constraints becomes neutral. Figure 3 (b) shows the rustforedifferent support val-
ues in the presence of the maxGap and window constraintstditeerelative high intra
similarity, the Crystallin dataset has a high density, intcast to A2M dataset which is



A2M (FLEXIBLE) Crystallin (FLEXIBLE) maxGap = 5 Window = 40 A2M (Rigid) Time VS Query Seq. Length Yeast (Rigid Patterns) L=2 W=10
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Figure 3. (a) Flexible patterns for A2M dataset in the presen  ce of the Window
and the gapPenalty Constraints; (b) Simultaneous applicat ion of the maxGap and
Window constraint to find Flexible patterns in the Crystallin dataset; (c) Runtime
for RIGID mode for different sizes of the query sequence A2m d ataset; o = 5% (d)
glL and Teiresias[L=2 and W(maxGap)= 10] algorithms, suppor t variation for the
Yeast dataset.

sparser. Additionally, the two datasets have differerésizThis explains the different
range of minimum support values used. Clearly the introdactif the constraints rep-
resents a significant runtime reduction. Figure 3 (c) shawsimpact of the sequence
length in the algorithm runtime. From table 3 (b), we can be¢ thegapPenaltyThresh-
old is also a constraint with a direct impact in the number of reggbpatterns. Lower
values for this threshold restricts the span of the pattanisconsequently the average
number of events present in a pattern is smaller. For a casgpeof the performance of
the proposed approach with two other algorithms: SPAM [8yatal. 2002] (for flexible
gap patterns) and Teiresias [Rigoutsos and A.Floratos 1@88tigid gap patterns) see
[Ferreira and Azevedo 2005a]. In this work we show that theadgiorithm, in which this
method is based, outperforms the methods mentioned above.

Considering all experiments, we conclude that the algorghomtime is essen-
tially affected by the number of reported frequent patterfise query sequence length
and the intra similarity of the sequences in the databastharnvo variables that have the
major impact in the number of outputted patterns. In morepaationally demanding
situations or when user wants to specify the type of pattermsstraints have proved to
be effective and very efficient.

The efficiency of our query driven approach can be assessaabina comparison
with the query blind approach. Consider a query blind appboawhere for the A2M
dataset (see section 5) and a support of 15%. Mining (all ajd gap patterns) the
entire database takes 91.5 seconds. Comparing this timgetf@dime to extract only the
patterns present in the query sequence) with the time thhahethod takes for the same
support, 0.15 seconds, the first approach takes at leasiné@® more time. For the Yeast
dataset our method takes 0.7 and 1.2 seconds for a suppespeatively 10% and 5%.
The glL algorithm [Ferreira and Azevedo 2005a] (see Figuid) 3for a comparison with
Teiresias where L and W are respectively the number of ndehaards events in a pattern



and the maximum spanning between two consecutive evelkes 886 and 147 seconds
for the same support values, which is 16 and 122 times morensxe. This difference
becomes more significant for lower support values. This seareound evidence that
guery driven mining appears as a promising approach.

5.1. Pattern Quality

In the past, several sequence pattern analysis algoritrame hsed the PROSITE
[Bairoch 1991] database to evaluate their work. PROSITEainsthigh quality patterns,
represented by an enhanced regular expression. Regulassipr patterns consist in a
very convenient tool for fast sequence analysis but havmiseld descriptive power and
do not take into account the overall diversity of the inpujusnces. Also they do not re-
port deviant but closely related patterns. Enumeratinthalfrequent patterns that occurs
in the input set provides a more complete overview of the sege similarities.

5.1.1. Test Cases

We demonstrate the application of our algorithm and thevaslee of the extracted pat-
terns in real life data. We used two examples of well know girosequences families,
one from PROSITE (release 19.3) and one from eMotif [Wu e} &tor each family we
randomly selected one query sequence and submitted it gethesnce miner.

Zinc Finger (C2H2) {prositeid: ps00028}

'Zinc finger’ domains are protein structures first identifiadhe Xenopus tran-
scription factor TFIIIA and since than have been found in rupns nucleic acid-binding
proteins. It consists in two cysteines (C) and two histidifi¢)sresidues at both extremi-
ties of the domain. Prosite reports a dataset with 5547 seggen Swiss-Prot containing
the consensus pattern. The prosite pattern for the C2H2 derisai

C- x(2,4 - C- x(3) - [LIVMFYWC] - x(8) - H- x(3,5-H

Analyzing the query sequence from figure 4 (a), with a suppbr0% (2219)
against this dataset we obtained a total of 57 patterns,hnthiee of them are maximal.
It took 0.219 seconds to mine.

Tubulin Dataset {emotif}

This dataset is used as an example in the emotif databaset[al/u] elt contains
a total of 159 sequences with an average length of 40. Ematiéigates patterns on a set
of aligned sequences, depending on the specificity or thi#igiy required by the user.
An example emotif pattern is:

nffy].[kr].af[ilvlh.[fy]..egnfde]e.[de]f[ast][de]a..[dn]...|..[de][fy]..[filvy]

This motif matches 134 out of the 158 sequences suppliechnBaathe query se-
guence in figure 4(b) against the tubulin dataset with a sujgh&0% (143) 123 frequent
patterns are found in 0.016 seconds. Two of these patteenmaximal and are aligned
with the query sequence. For a support of 60% (95) 1435 segsemere found in 0.23
seconds. Seven of these sequences are maximal.



MFKRKAFLHYYTGEGMEPVEFSEAQSDLEDLILEY( QY (Query Sequence)

(Supp = 90%)
m....... H.Y..EGHM....F.E [144 ; 0.267]
m....... H....EGM....F.ER [143 ; 0.258]

CPECGKIFRSAHTILRIHLEDH {5y = 61%)

H........... G....... F.EA.......... 1 [133 ; 0.150]

{Sup = 40%) w... AFP.H.Y.GEGN....E..A.......... 1 1127 ; 0.261]

) Mo RF.H. Y. GEGN. .. F.BE..cooooo. .. T3 0.6

C..C.K. P L..X (241 0272 0 kv eren. e bk {134 : 0.383]
.. 0.Kk....... L..H.. . H [2306;0.931] ¥ . AF.H... . EGN.. . .E.E....... L 195 ; 0.250]
Mo KoY. BGM....P.E....... L 195 ; 0.331]

C..C...F..... L. E.. . 0 813, 0231] ... ... H....EGM....P.Eh...... L [35 ; 0.23]

Figure 4. Extracted maximal patterns, with respective supp ort and density: (a)
Alignment of a query sequence from the C2H2 family; (b) Align ment of a query
sequence from the Tubulin family.

5.2. Pattern Selection

In order to assess the quality and the usefulness of thetegbpatterns we apply the
guery driven miner to three different situations. First wefime a set of statistics to
be obtained for each pattern. These statistics enable thengcselection of the most
interesting patterns. We will use the te®ensitivity(Sn) [Brazma et al. 1995] to mea-
sure the proportion of sequences of the target family cavesethe pattern. The term
Specificity(Sp) is used to measure the proportion of sequences outsd@arnget fam-
ily that are matched by the pattern. The two measures areedefis: Sensitivity =
TP/(TP+ FN);Specificity=TN/(TN + FP),wherel' P, TN andF'N correspond
respectively to the number of True Positives, True Negatamed False Positive matches
of a pattern. Additionally, we make use of an adaptation aftla&r measure calledis-

crimination Power(Dp) [Ben-Hur and Brutlag 2003] that we define &% = % — %,

In this casélr| and|OF| correspond respectively to the number of sequences inriipet ta
family and outside the target family. Note that the rangeadtigs for Dp is between -1
and 1, whereas for the Sensitivity and Specificity is in betwe and 1. This measure is
particularly useful as a filter since the greater the Dp vahle more selective the pattern
is.

5.2.1. Experiment One

In this experiment we made use of a set proteins related bgupgf PROSITE (release
19.6) entries. This group is called Inhibitors and is congaldsy 13 entries (families). For
each entry we retrieve the sequences in Swiss-Prot matthéngespective pattern. We
considered a unique dataset with all the 3865 sequencesaaddh family we randomly
choose 10 sequences to mine. For each evaluated sequenetwerided a base support
which corresponds to the maximum support where the quenyeseg contains at least
one frequent pattern. To obtain the frequent patterns wé appupport of 80% of the
base support. Only patterns with a size greater than 3 aatis and aDp > 0 are
considered. Table 4 summarizes the obtained results fot3heets of proteins. The
families ps00280, ps00282 and ps00286 present the set démith the highest family
correlation, ie. the highesbp. Figure 5(a) shows a graph of the distribution of the



Family | Num Seq| Supp(%)| Dp > 0 Patterns| Total Patterng Sn Sp Dp
ps00280 427 0.015 4.5 7.2 0.477| 0.968| 0.591
ps00281 132 0.027 10.4 20.2 0.145| 0.950| 0.212
ps00282 288 0.038 6.0 12.2 0.280| 0.970| 0.386
ps00283 604 0.026 5.0 21.6 0.107| 0.990| 0.183
ps00284 1230 0.030 7.2 15.0 0.050| 0.982| 0.086
ps00285 74 0.030 4.0 16.0 0.054| 0.930| 0.063
ps00286 35 0.195 6.2 7.6 0.351| 0.955| 0.404
ps00287 312 0.020 6.9 28.9 0.025| 0.951| 0.024
ps00288 64 0.035 5.7 7.9 0.155| 0.926| 0.221
ps00426 73 0.025 55 12.4 0.127| 0.931| 0.165
ps00477, 178 0.022 7.1 28.1 0.026| 0.955| 0.027
ps00553 14 0.034 4.7 6.4 0.261| 0.920| 0.342
ps50279| 434 0.015 11.0 41.3 0.040| 0.974| 0.060

Table 4. Results of the evaluation of the sequences from the g roup of Inhibitors.
The last three rows shows the average results of Sn, Sp and Dp f or each family.

patterns with respect to the Sensitivity versus Speciffaityhree of the families.

5.2.2. Experiment Two

Although our sequence miner algorithm finds interestingisaege patterns in a set of un-
related proteins, like for example in the dataset of theiptessexperiment where proteins
from 13 families are considered together, it is best suibedéts of related proteins. In this
experiment we analyze the query sequence with relation tocua protein family. This
allows us to directly control the sensitivity of the pattegince the support defines a min-
imum bound for this measure. In this case the specificity imdd like in [Wu et al. ] as
the expected number of false positives a pattern may matghetS = s; s5 ... s, then
P(S) =TI, p(si), wherep(s;) is the frequency of; in the Swiss-Prot database and for
s; ="/ p(s;) = 1. The number of expected false positives, EFP(S)=R(8)Residues,
where NResidues is the number of possible match positiomsl{auof residues in Swiss-
Prot). It can be verified by empirical observation that thakalation gives a reasonably
estimate of the number of occurrences of a sequence patterchoose the family Zinc
finger PHD-type (ps00516) also called C4HC3. This family cmist2654 sequences,
where the sequences contain an average length of 597.8 -auigk® In this experiment
we evaluated 100 randomly chosen sequences. Only pattéina lgngth greater than 3
were extracted. Constraints were set to: maxgap = 20; wind@u.=The average time
to mine each sequence was 1.5 seconds, with an average nafrdé&equent patterns
reported. For the 100 sequences a total of 1151 patternsregoeted. Figure 5 (b) dis-
plays the support variation versus the expected numbets# positives that the reported
patterns will match in the Swiss-Prot database. We can ebskeat due to the large size
of the family, only for small support values a significant menof patterns is found.

5.2.3. Experiment Three

In this last experiment we developed a simple classifier. §l&cs the set of proteins that
match the patterns in the group of Receptors from the PROS&E&bdse. This group
contains 27 entries matching a total of 13458 protein sexpgenTo classify a sequence
S, we defined the Match Expectation Score (MES) with respegfamily of proteins”;
as,MES(S|C;) = > 7 {motifSpan x support};, where n corresponds to the number
of motifs for S w.r.tC;. Next, we performed a “sequence-against-family” analisisll
the 27 families. All the sequences of each family were evalliand the average of the



Al against Al of the Receptors
group (PROSITE entries)

-y

‘‘‘‘‘‘‘‘‘‘‘ ‘Supportof the Pattern (%)

Figure 5. (a) Distribution of Sensitivity versus Specificit y for the patterns from
the families ps00280, ps00282 and ps00286; (b) Distributio  n of the expected false
positive in the Swiss-Prot database for different values of support for the patterns
of the sequences in C4HC3 dataset; (c) Similarity Matrix for the classification per-
formed on the 27 families on the group of Receptors from the Pr osite database.
Rows and columns indicate the respective family identifier.

MES values calculated. Finally a similarity matrix for dilet 27 families was obtained.
This matrix is represented in figure 5 (c). The black areagatd higher similarity and

white areas a low similarity. Despite the aim of the experibveas not to build a robust
classifier, the quality of the results obtained suggest seead this approach in complex
problems like protein sequence classification.

6. Conclusions

In this paper we propose a method that given a sequence tahaed (query sequence)
and a database of sequences, it finds all the frequent paftersent in the query sequence
with respect to the database. In this way, only the frequatieps present in the query
sequence are reported. It provides a closer analysis oty gequence in relation to all
the sequences in the database. The use of the method regulixpnsiderable efficiency
gain when compared to a query blind approach. It is, as fareaknow, the first method
to tackle the problem of sequence patterns analysis frampttispective. The method has
a high adaptability making possible the extraction of twomtgpes of patternsjgid and
flexible gap patternsunder the same algorithmic framework. The data orgamizatirns
the introduction ofconstraints substitution setandscoring measurea straightforward
process.
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