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Abstract. In this paper we introduce distribution rules, a kind of as-
sociation rules with a distribution on the consequent. Distribution rules
are related to quantitative association rules but can be seen as a more
fundamental concept, useful for learning distributions. We formalize the
main concepts and indicate applications to tasks such as frequent pattern
discovery, sub group discovery and forecasting. An efficient algorithm for
the generation of distribution rules is described. We also provide interest
measures, visualization techniques and evaluation.

1 Introduction

Learning and discovering probability distributions is an important and difficult
problem in statistics, machine learning and data mining [12]. Machine learning
has focused particularly on learning conditional probabilities of one target vari-
able y (either numerical or categorical) with respect to a set of input variables X.
However, the output of a learning algorithm is typically reduced to associating
the most adequate value of y to each combination of values of the variables in X.
This is the case in regression, classification and association discovery. Learning
whole distributions goes beyond point estimation. In this paper, we approach
the problems of discovering and presenting important conditional distributions
of a target variable with respect to a set of input variables. Our approach is
based on association rule discovery [1].

Association rules (AR) are highly legible chunks of knowledge that can be
discovered from data. On top of that, the process for generating association rules
is efficient enough to deal with very large databases, and the intended result is
very well defined and free of heuristics. Although devised mainly for descriptive
purposes, AR can also be useful in classification [14], clustering [10], regression
[17], recommendation and subgroup discovery [11].

Typically, algorithms for the discovery of AR deal with categoric attributes
only. Srikant [19] proposed a specific approach for the discretization of numer-
ical attributes bearing in mind the descriptive aim of AR. In predictive tasks
such as regression, [17] or classification [14] the independent numeric variables
can be discretized using the supervised discretization MDL based algorithm [8].
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Avoiding pre-discretization, Fukuda et al. [9] proposed an algorithm for handling
pairs of numeric attributes on the LHS of association rules. Aumann and Lindell
[2] introduced Quantitative Association Rules (QAR), where a frequent itemset
(on the LHS of the rule) is associated with a statistical summary of a numeric
attribute of interest(on the RHS). Numeric attributes appearing on the LHS
are pre-discretized. Other authors have meanwhile improved some aspects of the
original QAR [20, 21], in a different direction from the work proposed here.

To learn and discover distributions we propose distribution rules (DR). These
associate a frequent itemset with an empirical distribution of a numeric attribute
of interest without any loss of information. Distribution rules can be used in de-
scriptive data mining tasks with the advantage of avoiding pre-discretization
of the numeric variable of interest. We provide an efficient algorithm that dis-
covers distribution rules and describe how to filter interesting rules, using the
statistical distribution of Kolmogorov-Smirnov. Distribution rules can be easily
visualized as frequency polygons and viewed by a domain expert or data analyst.
Besides, DRs can also potentially be used in a predictive setting, and are not
fundamentally limited to numeric properties of interest.

2 Distribution Rules

Definition: A distribution rule (DR) is a rule of the form A → y = Dy|A, where
A is a set of items as in a classical association rule, y is a property of interest
(the target attribute), and Dy|A is an empirical distribution of y for the cases
where A is observed. This attribute y can be numerical or categorical. Dy|A is
a set of pairs yj/freq(yj) where yj is one particular value of y occurring in the
sample and freq(yj) is the frequency of yj for the cases where A is observed.�

In this paper we will assume y is a numeric variable. Nevertheless, the concept
of distribution rules is extended for categorical attributes as well. The attributes
on the antecedent are either categorical or are discretized as in [8].

Example: Suppose we have clinical data describing habits of patients and
their level of cholesterol. The distribution rule smoke∧young → chol = {180/2,
193/4, 205/3, 230/1} represents the information that, of the young smokers on
the data set, 2 have a cholesterol of 180, 4 of 193, 3 of 205 and 1 of 230. This
information can be represented graphically, for example, as a frequency polygon.
The attribute chol is the property of interest.�

Given a dataset S, the task of distribution rule discovery consists in finding all
the DR A → y = Dy|A, where A has a support above a determined mininum σmin

and Dy|A is statistically significantly different (w.r.t. a pre-defined threshold)
from the default distribution Dy|∅. The default distribution is the one obtained
with all the values of y for the whole dataset.

2.1 Presentation and visualization

Although distribution rules can be output as text, the length of the empirical
distribution is normally too long to be readable in practice. Since the consequent
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Fig. 1. Graphical representation of one distribution rule for the dataset auto-mpg

of one distribution rule is an empirical distribution, it can be represented as a
frequency polygon. In Figure 1 we can see 4 rules obtained from the dataset auto-
mpg [16]. The antecedent of each rule (e.g., the leftmost) is displayed as the main
title. Some selected measures of the distribution and the name of the property
of interest (P.O.I.: MPG) are shown within the plot. The x axis is the domain of
the P.O.I. and the y axis the estimated probability density. The polygon is drawn
by binning the domain of the P.O.I. into a given number of intervals (default
10) with equal width w. For each interval I, the pair x, y is plotted. The value
of x is the lower limit of the interval and y = freqI/(freqr ∗w), where freqI is
the number of values in I and freqr is the total number of values of the P.O.I.
covered by the rule.

The distribution for the set of cases that satisfy the condition is shown in
black, and the default distribution for the whole population is shown in grey. For
the distribution rule shown in Figure 1 we can see that cars with 6 cylinders built
on the US tend to make less miles per galon than the whole set of cars. For those
cars, the values of MPG are very concentrated around 20. Nevertheless, we can
see that there are some economic cars in this group because of the right tail of
the black curve. The interest of this rule is shown as KS.int, the complement to
1 of the Kolmogorov-Smirnov test p-value as explained in the following section.

Alternatively, the empirical distribution could be represented by a parametric
distribution curve (e.g., Normal), or a boxplot. In this paper we adopted the fre-
quency polygon, since it does not require any assumption about the distribution
of the P.O.I. and it minimizes the loss of information regarding the distribution.

2.2 Measuring the interest of DRs

The interest of a discovered pattern can be measured according to objective
and subjective criteria [18]. In the case of association rules, objective interest
measures typically try to assess how much the observed frequency of the conse-
quent of the rule, under the conditions imposed by the antecedent, deviate from
the frequency that would be expected assuming that antecedent and consequent
were independent. This is the case of measures such as lift (a.k.a. interest), lever-
age or conviction[5]. The χ2 statistical test has also been extensively used for
testing the statistical independence between the antecedent and consequent of
association rules [15].



In the case of distribution rules, objective interest can be measured by as-
sessing the difference between the distribution of the consequent and a reference
distribution. This, in principle, is the distribution of the whole population. The
difference between two empirical distributions can be assessed through a statis-
tical goodness of fit test, such as Kolmogorov-Smirnov [7].

Definition. Given a set of transactions DS, a property of interest y in DS,
and a distribution rule A → Dy|A obtained from DS, the KS-interest of that
rule is 1− p where p is the p-value of the Kolmogorov Smirnov test for the two
empirical distributions Dy|A and Dy|∅.�

Given this notion of the interest of a distribution rule, we can filter a set of
DR’s by selecting the ones with KS-interest above a pre-defined threshold. This
threshold can be intuitively set by a data analyst since it has a clear statistical
meaning. Although other notions of interest can also be defined using other
statistical tests, we will for now focus on the use of the KS test.

3 Using DRs

Distribution rules can be used in descriptive pattern discovery tasks, although
they can also be adopted in predictive tasks as well. One immediate advantage
of their use in these situations is that it is not required to previously discretize
the attribute y.

One way to handle distribution rules is by working with them as regular asso-
ciation rules. In Table 1 we can see a textual representation of one rule discovered
for the dataset Determinants of Wages from the 1985 Current Population Sur-
vey in the United States, a.k.a. Wages, also used in [2]. While the antecedent of
each of these rules is a frequent itemset, the consequent is a raw distribution.
Although the rules can be represented in this textual form, they are internally
stored using compact data structures. To present the rule, it is more effective to
graphically visualize them, or to summarize them, as for example in [2].

Having obtained a set of distribution rules, these can be presented, sorted
and filtered in many different ways. In this paper, we propose one particular
graphical multi-plot presentation (Figure 2). In each plot, the default distri-
bution is used as a term of comparison and appears in grey. The rules shown
are a subset of the 35 rules produced for the dataset Wages, obtained with a
minimal antecedent support of 0.1 and a min KS-interest of 0.95. We have also
applied an improvement filter, as suggested in [4], on the KS-interest. In this
case, improvement(A → B) can be defined as min({KS-interest(A → B)−KS-

Table 1. A distribution rule produced for the dataset Wages, with min-sup=0.1, min-
KS.int=1− 0.05 and a minimal KS improvement of 0.01

Sup=0.118 KS.int=1-0.0085 Mean=10.982 St.Dev=6.333

EDUCATION=(12.5-15.5] & SOUTH=0 & RACE=3

-> WAGE={ 3.98/1,4.0/1,4.17/1,4.5/1,4.55/1,4.84/1,5.0/1,5.62/1,5.65/1,5.8/1,6.0/1,6.25/4,7.14/1,7.5/1,7.67/1,7.7/1,7.96/1,

8.0/2,8.4/1,8.56/1,8.63/1,8.75/1,8.9/1,9.22/1,9.63/1,9.75/1,9.86/1,10.0/3,10.25/1,10.5/1,10.53/1,10.58/1,10.61/1,

11.11/1,11.25/2,12.0/1,12.47/1,12.5/4,13.07/1,13.75/1,13.98/1,14.29/1,15.0/1,16.0/1,16.14/1,16.42/1,17.25/1,17.86/1,

18.5/1,21.25/1,22.5/1,26.0/1,44.5/1 }



interest(As → B) | As ⊆ A}. The minimal KS-interest improvement used in
these experiments was 0.01.
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Fig. 2. Multi plot of a set of 8 distribution rules. Each is plotted against the default
distribution

The 35 rules can be visualized in mosaic plots of n ×m. We show a mosaic
of 2 × 4 with 8 rules selected from the 35. The selection can be done visually
by paging the 35 rules in mosaics of n×m. We will refer to the rules on Figure
2 by number from 1 to 8, reading from left to right and from top to bottom.
Rules 1 and 2 describe people with 13 to 15 years of education which are not
from the South. Their wages distribution is significantly different from the whole
population and visibly better although concentrated on the same interval. Rule
2 is a refinement of rule 1 with higher interest. It seems that people with race=3
(white) in the conditions stated before have a slightly but significantly better
situation. Rule 3 describes married males, and rules 4 and 5 show that occupation
1 has a wider and higher range of income than occupation 3. Rule 6 shows the
impact of age, and rule 8 the positive effect of holding a union membership. Rule
7 indicates that people with higher education have higher wages.

Used in this setting, distribution rules are selected by the Kolmogorov-
Smirnov statistic. Improvement enables the elimination of non informative sub
rules. The visualization of the distributions gives a broader picture of the subset
of data covered by each rule. With these parameters (min KS-int=0.95 and min
improvement=0.01) we get very few rules.

Distribution rules can be naturally applied to the data minig task of sub-
group discovery [13] both for numeric and categorical properties of interest. An
interesting subgroup corresponds to a KS-interesting distribution rule.

Distribution rules can also potentially be used in predictive tasks such as
regression as in [17] or probability density estimation as in [6]. In this paper we
have focused on the fundamental concepts and on the processes of generating,
filtering and presenting the rules.



Input: minsup, KS-int = 1− α, DB
Rules = ∅;1

First database scan (count items)2

Build DI = {items of the form y = vi belonging to property of interest};3

Build AI = {antecedent items with count ≥ minsup} ;4

Second database scan (bitmaps mounting)5

Mount coverage bitmap for each item in AI and DI;6

Compute Dy|∅ using DI bitcounting;7

foreach transaction t ∈ DB do8

Set correspondent bit in each item (in AI and DI) occurring in t;9

Count 2-itemsets occurring in t;10

end11

/* (Expansion phase) */

foreach frequent item i ∈ AI do12

Compute Dy|i from bitmap(i) and bitmaps(DI);13

if KS(Dy|∅, Dy|i) < α then Rules = Rules ∪ {i → Dy|i};14

foreach frequent item i′ > i (> refers to items ordering) do15

a = {i, i′}16

bitmap(a) = bitmap(i)⊕ bitmap(i′);17

if support(a) ≥ minsup then18

Compute Dy|a from bitmap(a) and bitmaps(DI);19

if KS(Dy|∅, Da) < α then Rules = Rules ∪ {a → Dy|a};20

Rules = Rules ∪ Expansion(a, i′, Dy|∅, α);21

end22

end23

end24

Output: Rules
Algorithm 1: CAREN-DR Depth First Distribution rules derivation

4 Rule Generation

A set of distribution rules can be obtained from a given database by computing
all the frequent itemsets a not involving the property of interest y. For each
frequent itemset a we compute the associated distribution Dy|a. Counting oper-
ations are efficiently implemented through the use of bitmaps.

4.1 Algorithm and computational complexity

The algorithm CAREN-DR works by finding frequent itemsets and, simultane-
ously, their associated p.o.i. distributions. For each antecedent item, a bitmap
that represents its coverage is built. Antecedents are formed by depth first ex-
pansion. When an item is added to the antecedent to build a new itemset, a new
bitmap is calculated (through bit-intersection) and its support can be counted
through a bitcounting operation. To help in unfrequent itemset pruning during
itemset expansion, the algorithm builds a flat matrix with 2-itemsets counts.
Thus, expensive bitcounting operations can be avoided if subsets of the candi-
date itemsets are not frequent.



Input: (itemset,lastitem,Dy|∅,α)
R = ∅;1

foreach i ∈ AI , i > lastitem (> refers to items ordering) do2

if ∀ a ∈ itemset support({a, i}) ≥ minsup then3

new = itemset ∪ {i};4

bitmap(new) = bitmap(itemset)⊕ bitmap(i);5

support(new) = bitcount(new);6

if support(new) ≥ minsup then7

Compute Dy|new from bitmap(new) and bitmaps(DI);8

if KS(Dy|∅, Dnew) < α then R = R ∪ {new → Dnew}9

R = R ∪ Expansion(new, i, Dy|∅, α);10

end11

end12

end13

return R14

Function Expansion(itemset,lastitem,Dy|∅,α)

For an efficient rule’s consequent calculation, each distribution item (the nu-
meric values associated with the p.o.i.) also keeps a bitmap. Deriving a new dis-
tribution requires intersection operations between the bitmap of the antecedent
itemset and the bitmaps of the distribution items. The algorithm extracts sig-
nificant rules by performing a Kolmogorov-Smirnov test between each new rule
(Dy|a) and the a priori distribution (Dy|∅).

The algorithm receives as input a minsup for antecedent filtering and an α
that is used to set the minimal KS-interest threshold in 1−α. It can also receive
an improvement threshold value. The theoretical complexity of the method is
dominated by the complexity of finding frequent itemsets, which is known to
be linear on the number of cases. Bitmap operations for the P.O.I. distribution
update are also linear on the number of cases.

CAREN-DR algorithm conceptually resembles OPUS-IR algorithm [20], since
it also uses a depth-first approach. In fact, with minimal adjustments, our pro-
posal can be easily modified to work in a top-N rules search mode. However, we
use bitmaps to represent itemset coverage and to calculate p.o.i. distributions.
Our implementation of CAREN-DR is part of the java-based association rule
discovery engine CAREN [3]. In relation to the QAR proposal of Aumann and
Lindell, our algorithm does not require an extra database scan to compute the
distributions associated to each rule. Furthermore our method outputs whole
distributions and defines the interest of a rule in terms of comparison of distri-
butions rather than the comparison of means.

5 Evaluation

In this section we show how our algorithm CAREN-DR performs on 4 different
datasets described in Table 2. The algorithm has been run with different values
of minimal support for a minimal KS-interest of 0.95 and with the improvement



Table 2. Description of the datasets used to measure the computation time (upper
table). The column #Distinct indicates the number of distinct values of the property
of interest (p.o.i.). Times in seconds and number of rules generated for the datasets for
different minimal supports (lower table).

Dataset #Attr #Records p.o.i. #Distinct
mpg 7 398 MPG 129
housing 13 506 MEDV 211
abalone 8 4177 RINGS 28
cal. houses 9 20640 mhousevalue 3842

Time in seconds Number of rules generated
min.sup MPG Housing Abalone Cal. Houses MPG Housing Abalone Cal. Houses

0.3 3.202 6.811 12.425 36.993 4 98 4 6
0.2 3.220 7.107 12.313 43.936 15 310 4 22
0.1 3.629 8.790 12.281 56.326 67 1490 41 74

0.05 5.089 13.894 12.790 72.084 240 5848 516 197
0.01 5.643 48.962 15.095 153.867 1369 51185 3158 1867

switch turned off. We can see that the algorithm scales up quite well with the
number of examples and the value of minimal support. Table 2 (bottom) shows
the times in seconds spent on a Pentium IV, 1.6GHz and 1GB RAM. These
times include writing the rules to a csv file (one of the possible output modes).
Table 2 (bottom) also shows the number of rules produced per run. We stress,
however, that by turning improvement on, the number of rules falls dramatically.

These experiments show that the algorithm is capable of generating a very
large number of distribution rules (and writing them as text to disk) in a very
reasonable time (51185 rules for Housing in 49 seconds). In the case of the dataset
Cal. Houses, CAREN-DR processes the 20640 cases in 2.5 minutes. Additional
experiments with this dataset show that the time spent by CAREN-DR grows
practically linearly as the number of examples rises from 5000 to 20000. In
another set of experiments we observe that the time spent by the KS-test is also
linear w.r.t the size of the distributions.

In our approach, the number of different values of the property of interest is
also a source of complexity. However, typical numerical attributes tend to have
low numerical precision, thus low variety of values. In the event of having to deal
with a high precision attribute, we can round the values to a reasonable number
of significant digits. Experimentally, we observe that the p-value of the KS test
is robust to rounding to 3 significant digits.

5.1 An artificial dataset

In order to test the ability of the KS test to identify interesting rules, we have
generated an artificial dataset with 1000 cases. The values of the attributes were
chosen so that specific interesting distribution rules should appear. Thus, we have
randomly initially generated the values for the p.o.i. y from a N(0,1) distribution.
After that we have randomly assigned values of r or s to the categorical attributes
a, b, and c. Whenever a and b had the values r we added to the value of y an extra
random value from a distribution N(-2,1). The algorithm CAREN-DR produced
the distribution rules shown in Figure 3 with a minimal support of 0.1, and a
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Fig. 3. Distribution rules for the artificial dataset

minimal KS-interest of 0.95. The minimal improvement on KS-interest used was
0.001. If the improvement filter is turned off, some redundant rules appear.

As we can see, only 5 rules have been identified, apart from the a priori rule.
The condition a = r & b = r appears as expected, but also its items separately
and their complements. The attribute c does not appear since the distribution
of y|c is similar to the distribution of y|∅.

6 Case Study

We have applied distribution rules to the analysis of the main causes of delays in
trip time duration for buses in a urban centre. This is a real dataset with about
8000 cases describing trips of a specific bus line. The dataset has 16 attributes
plus the property of interest TripTime. The numeric attributes of the antecedent
have been previously discretized using an implementation of the algorithm of
Fayyad and Irani [8]. Since this discretization approach requires a class attribute,
it is done with respect to a discretized version of the P.O.I, as in [17]. Afterwards,
the P.O.I. is used in its continuous version. We obtain 36 relevant rules with
support above 0.05 and KS-interest above 1-1E-05. Improvement is 0.0001.

In Figure 4 we can see a selection of the rules. Most rules have only one
condition on the antecedent due to the effect of improvement filtering. We can
see for example the difference in the distribution of the time a bus takes to make
its route in March (Month=3) and in August (Month=8). Holydays also have
a positive impact on trip time (plot 6) . The last two plots show the difference
between Sundays and Fridays. The other attributes that appear on Figure 4 are
Start, which is the starting time of the bus trip in seconds, DayOfYear, which is
the number of days passed since 1st of January of the year being studied, and
TypeOfDay, which can have values normal, or bank holiday.
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Fig. 4. Distribution rules for the buses dataset

This type of rules are being used to attempt to reduce the costs with per-
sonnel, since unpredicted delays often force the bus company management to
pay for extra labour time. This way, distribution rules can be used both to give
managers indications about the most relevant causes of delay and also enable to
predict the probability that TripTime will be higher than a certain threshold.

7 Related Work

Distribution rules are mainly related to learning probability distributions [12],
subgroup discovery [13] and quantitative association rules (QAR).

Aumann and Lindell’s work on QAR uses a z-test to identify rules signifi-
cance. As already pointed by Webb [20], z-test is inappropriate for small samples.
The OPUS-IR authors propose the use of the standard t-test to decide on rules
significance since the t-test tends to the z-test as the number of degrees of free-
dom increases. However, both z-test and t-test assume normality which in pratice
cannot be guaranted. In this sense, using the KS approach is an advantage since
no further distribution assumptions need to be considered.

Aumann and Lindell [2] propose an elaborated mechanism to identify and
filter all the significante basic rules and sub-rules. They propose a notion of basic
rule and an algorithm to find all significante “sub-rules” and “super-rules”. The
algorithm works as a post-mining step and builds a lattice of frequent sets to
identify when a rule is basic or a sub-rule. The notion of super-rule is related to
our notion of improvement. We also filter super-rules that do not bring about an
improvement in the property of interest (in our case the KS-interest). However,
applying improvement filtering does not require any sofisticated algorithm with
lattice traversel. In fact, improvement filtering is computed on the fly, along rule
derivation.



The QAR authors also present a mechanism to derive rules with more than
one p.o.i. in the consequent. In pratice, it seems interesting to analyse several
numerical properties in parallel. QAR has this feature as a post-processing step.
We include this feature in the CAREN-DR engine during rule derivation. Thus,
it is only required to specify the different properties to derive rules for.

Association rules have been used in subgroup discovery. APRIORI-SD [11]
uses association rules to discover interesting subgroups with categorical proper-
ties of interest. Our approach enables the discovery of subgroups with numeric
and categoric properties of interest. In this paper we employ the KS test to
handle numeric properties.

8 Conclusion

We have introduced the concept of Distribution Rules as a generalization of asso-
ciation rules. We provide the basic concepts, such as the general form, support
and objective interest of distribution rules. We also describe how to visualize
distribution rules. DRs are particulary interesting when there is a numerical
property of interest, although the concept can be extended to categorical prop-
erties as well. With classical association rules we would have to pre-discretize
the numerical attribute of interest. With quantitative association rules, we would
reduce the set of values in the consequent to a summary given by the mean or
median. In the case of distribution rules, we keep the whole set of values of the
property of interest and use these in graphical representations or post process-
ing. Distribution rules can be presented as text or graphically and can be used
in tasks of descriptive and predictive knowledge discovery.
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