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Abstract. One way of exploring protein unfolding events associated with the 
development of Amyloid diseases is through the use of multiple Molecular Dy-
namics Protein Unfolding Simulations. The analysis of the huge amount of data 
generated in these simulations is not a trivial task. In the present report, we 
demonstrate the use of Association Rules applied to the analysis of the varia-
tion profiles of the Solvent Accessible Surface Area of the 127 amino-acid 
residues of the protein Transthyretin, along multiple simulations. This allowed 
us to identify a set of 28 hydrophobic residues forming a hydrophobic cluster 
that might be essential in the unfolding and folding processes of Transthyretin.  

1   Introduction 

One of the most challenging problems in molecular biology today is the protein fold-
ing problem, i.e. the acquisition of the functional three-dimensional structure of a 
protein from its linear sequence of amino-acids. This sequence of amino-acids is 
encoded by the linear sequence of nucleotides in a gene, but protein function is medi-
ated by its exquisite three-dimensional structure. Predicting the 3D structure of a 
protein from the linear sequence of amino-acids is as yet an unsolved problem today, 
and a challenge for those eager to harness the information content of the genomes. 

In recent years, the issues of protein folding became also pivotal in the understand-
ing of a series of human and animal diseases, generally know as conformational dis-
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orders or amyloid disorders, and ranging from Alzheimer´s to bovine spongiform 
encephalopathies (BSE). Although the proteins involved differ in sequence, structure 
and function, the amyloid pathologies share common molecular mechanisms. In par-
ticular, it seems that in all studied cases, due to proteolysis, mutation or unfolding 
events, the normally soluble proteins are converted into molecular forms prone to 
aggregation, leading to cytotoxic oligomeric species and amyloid fibrils. 

We have been particularly interested in the structural characterization of the mo-
lecular species present in the aggregation pathway of Transthyretin (TTR), a human 
plasma protein responsible for such amyloid diseases as Familial Amyloid Polyneu-
ropathy (FAP), Familial Amyloid Cardiomyopathy (FAC) and Senil Systemic Amy-
loidosys (SSA), using both experimental and computational methodologies [1,2,3]. 
One way of exploring the unfolding events that may be responsible for TTR aggrega-
tion is through the use of Molecular Dynamics Protein Unfolding Simulations 
(MDPUS). However, we know today that in an ensemble of protein molecules not all 
of them follow the same folding or unfolding route. Thus, multiple simulations are 
required in order to have some idea of the conformational space available to a protein 
molecule in its unfolding process. These simulations are computationally expensive 
and generate a huge amount of data. In order to contrast, compare and characterize 
the molecular properties associated with each simulation, Data Mining techniques are 
required. 

In the present paper, we report the use of Association Rules, a specific Data Min-
ing technique to identify relations between atomic elements of the data, in order to 
detect potential coordinated movements of different amino-acid residues in unfolding 
simulations of the protein Transthyretin. In particular, through the analysis of the 
Solvent Accessible Surface Area (SASA) of each amino-acid residue along multiple 
unfolding simulations of TTR, we identify a group of hydrophobic residues moving 
in a coordinated fashion and most likely forming a hydrophobic cluster essential in 
the folding and unfolding processes of Transthyretin. 

2   Molecular Dynamics Protein Unfolding Simulations 

Molecular Dynamics (MD) simulations have recently become an important tool to 
explore folding and unfolding processes in proteins [4,5,6] and we have put forward 
some of the challenges facing the researcher when comparing and contrasting the 
results of multiple MD simulations in different proteins [7].  

In Molecular Dynamics simulations, molecules are treated as spheres connected by 
springs and classical mechanics are used to calculate forces and velocities. Although 
this treatment is highly approximated and does not take into account quantum effects, 
the realism of the simulation depends on the ability of the potential energy function to 
reproduce the inter-atomic interactions characteristic of the molecular system under 
study. In fact, several decades of research in small molecules and biological macro-
molecules allowed the definition of a generally accepted set of empirical functions, 
and today MD is a well established method for studying equilibrium protein dynamics 
and non-equilibrium processes such as protein folding and unfolding. 

 



 
Fig. 1. Secondary structure ribbon representations of the monomer of WT-TTR along four 
different Molecular Dynamics unfolding simulations. Beta-strands, alpha-helices and turns and 
coil are represented by arrows, cylinders and tubes, respectively. The difference in the setup of 
each of the four runs resides in the assignment of initial atomic velocities  

2.1   Simulation Details  

Initial coordinates for Transthyretin were obtained from the crystal structure (PDB 
entry 1tta) [8] and hydrogen atoms were added. All minimization and MD procedures 
were performed with the program NAMD [9], using version 27 of the CHARMM 
force field [10]. All atoms were explicitly represented. Internal waters were placed 
with the program Dowser [11] and the program Solvate 
(http://www.mpibpc.mpg.de/abteilungen/071/solvate/node8.html) was used to add 
solvent water molecules and Na+Cl- ions around the protein. The complete system 
was comprised of 45,256 atoms. 

The system was minimized, equilibrated and heated to the target temperature. Sev-
eral simulations were performed using Centopeia, a Linux computer cluster at UC. 
Control simulations, at 310 K, and several unfolding simulations, at 500 K, were 
performed for up to 10 ns. The simulations were carried out using periodic boundary 
conditions and a time step of 2 fs, with distances between hydrogen and heavy atoms 
constrained. Short range non-bonded interactions were calculated with a 12 Å cut-off, 

http://www.mpibpc.mpg.de/abteilungen/071/solvate/node8.html


and long range electrostatic interactions were treated using the particle mesh Ewald 
summation (PME) algorithm. Figure 1 shows a set of representative trajectories for 
the thermally-induced unfolding of a TTR monomer. 

2.2   Trajectory Analysis  

Several global molecular properties, such as radius of gyration (Rg), root mean square 
deviation (RMSD), secondary structure and native contacts, among others, may be 
calculated along each trajectory in order to characterize and map the unfolding 
events. Here we calculated the Solvent Accessible Surface Area (SASA) of each 
individual amino-acid residue along the MD unfolding trajectories in order to study 
potentially correlated behavior among different residues. 
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Fig. 2. Variation of the Solvent Accessible Surface Area (SASA) for individual amino-acid 
residues along a Molecular Dynamics unfolding simulation of the protein Transthyretin, at 500 
K. 0% indicates an accessible surface of 0 Å2 and 100% indicates a SASA for X equal to what 
is determined in the tripeptide Ala-X-Ala 

 
The solvent accessible surface area (SASA) is the surface of the protein available 

to a spherical probe of 1.4 Å diameter, and was calculated using the program naccess 
[12]. The monomer of TTR has 127 amino-acid residues and each simulation trajec-
tory analyzed here is constituted by 8,000 frames (one frame saved per ps simulated). 



Thus, for each simulation we have 127 plots (one per residue) of SASA vs time with 
8,000 points (one point per frame). Figure 2 shows four examples of these plots. 
Leu55 is unexposed in the native structure and in the first half of the simulation, but it 
becomes highly exposed to the solvent late in the simulation. Ala109 is always unex-
posed to the solvent, even late in the simulation when the protein is already dena-
tured. In general terms, some of the residues roughly follow the SASA patterns 
shown in Figure 2, but several other patterns are also observed. In order to find 
groups of residues that change solvent exposure in a coordinated fashion during the 
unfolding simulations, we have searched for Association Rules as detailed below. 

3   Searching for Association Rules 

Association Rules [13] represent a pattern language to describe relations among 
atomic elements (items) of the data. They hold simple and clear semantics and are of 
the form: 

A1 & A2 & A3 & … & An  C 

A rule is derived from a co-occurring set of items (itemset). In the present case, the 
itemset could be C,A1,A2,A3,...,An. For the specific problem of SASA data analysis, 
items correspond to attribute/value pairs (residue / SASA value). The consequent C 
may be a set of items but here we only consider rules with a single item as conse-
quent. 

Quality and usability of the rules are measured through two types of metrics - pre-
dictability and incidence. Traditional metrics are Support (for incidence) and Confi-
dence. Support is calculated by itemset counting among the transactions (records) 
contained in the data. Confidence corresponds to the strength of the rule and is ob-
tained from the conditional probability of the consequent knowing the antecedent. 

The aim of a rule generator algorithm is to derive high strength and interesting 
(surprising) rules. The user provides a minimal incidence (Support) value to avoid 
considering rare phenomena in the data. Thus, a minimal Support value filters out 
items (and itemsets) that occur in a low number of records. A minimal Confidence 
threshold is also supplied to select only high strength rules. The number of frequent 
items (which occurrence satisfies the minimal Support) is an important parameter for 
the computational complexity of the data analysis. 

3.1   The Data 

The studied data is composed of four different unfolding simulations of WT-TTR and 
L55P-TTR (with a Proline replacing a Leucine in position 55). The data describes 
SASA variations along 8000 frames (records) corresponding to the 8 ns of each run 
(simulation). 127 attributes (amino-acid residues that constitute the protein) are pre-
sent. We removed the temporal label present in each frame so that only intra-
transactional relations would be extracted. These datasets turn out to be filled with 
very dense data, which makes rule generation into a computational hard task. 



We exposed all datasets to a discretization process that, according to the analysis, 
reduced the number of values per attribute to 2 or at most 3. The values correspond to 
low ([0,25[ ), high ([75,100[ ) and medium SASA values. The latter was interpreted 
as a null value, which the system was programmed to ignore. Thus, the data was 
discretized to mainly consider unexposed or highly exposed amino-acid residues, 
along the MD simulations. Hence, we managed to reduce the number of frequent 
items being considered and consequently the complexity of the computational prob-
lem. In general, discretization reduces the complexity of the problem and leads to the 
derivation of higher quality rules.  

3.2   Rule Generation  

The standard algorithm to derive association rules is Apriori [13,16]. This algorithm 
is divided in two main steps: i) mining of frequent patterns (the extraction of itemsets 
that satisfy minimal support); and ii) rule generation (to derive rules using the fre-
quent itemsets). The first step is the computational hard task and it has received con-
siderable attention from the Data Mining community. Several proposals exist in the 
literature. We use CAREN (developed in [14]) which includes an algorithm for min-
ing frequent patterns based on depth first expansion with bitwise representation. 
CAREN also implements several features for rule derivation and selection, namely 
antecedent and consequent filtering (item or attribute specification), max/min number 
of items in a rule, different metrics, χ2 test during itemset mining (which significantly 
reduces the number of relevant itemsets), improvement filtering on rules (to eliminate 
redundant rules), etc [15,16]. There are several metrics to evaluate association rules. 
We used the standard confidence metric. However, other metrics are available in the 
CAREN system. 

Several extractions (queries) were performed on each discretized simulation. Each 
query was designed to answer a relevant biochemical question. For example, we were 
particularly interested in verifying which chemical classes of amino-acid residues 
behaved in a similar fashion and, among these classes, which particular residues be-
haved similarly. We designed queries to relate the following groups of amino-acid 
residues: 

 i) hydrophobics vs hydrophobics 
 ii) aromatics vs aromatics 
 iii) hydrophobics vs hydrophilics 
 iv) positively charged vs negatively charged  
For instance, to derive rules that represent the interaction between hydrophobic 

residues (i) we designed a script to invoke the CAREN system with specific parame-
ters: consequent filter, list of hydrophobic residues as possible antecedents, specific 
minimal number of items as 4, among other less relevant parameters. The minimal 
number of items varied, depending on the query being addressed. For example, in 
query i) we used 4 and in query iv) we used 2 as the minimal number of items.  
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Fig. 3. Example of two Association Rules (at the top of each panel) generated by CAREN and 
involving hydrophobic residues. Panel A shows a low Support rule and Panel B a high Support 
rule. The plots on the left show the change in relative SASA along one MD unfolding simula-
tion of WT-TTR for the residues involved in each derived rule. The plots on the right show 
inter-residue distances for each pair of residues involved in each derived rule  

 



This difference is justifiable by chemical arguments. In the first case (i), we were 
looking for interactions between 4 or more residues - a hydrophobic cluster. In the 
last case (iv) we were looking for interactions between pairs of positively and nega-
tively charged residues - a salt bridge.  

3.3 Rule Selection 

At this stage, we were mostly interested in finding amino-acid residues that had simi-
lar patterns of solvent exposure. Rules with high support are more significant since 
they represent a phenomenon that persists along a larger interval of data frames. As a 
first approach, we considered rules with Support above 30% and Confidence above 
90%. It turns out that the only rules having very high Support are those relating hy-
drophobic residues with hydrophobic residues. All other queries generate rules with 
low Support. Figure 3 shows two examples of hydrophobic rules, one with relatively 
low Support (Fig. 3A) and another with very high Support (Fig. 3B). In both cases, 
the rules have 3 antecedents and 1 consequent, but there are rules involving 5, 6, 7 
and more antecedents. 

In order to have a deeper understanding of the processes being revealed by the As-
sociation Rules, we determined the inter-residue distances among all the residue pairs 
involved in each rule (Fig. 3, Panels on the right). While for the lower Support rule 
(Fig. 3A) the inter-residue distances vary more widely, for the high Support rule (Fig. 
3B) inter-residue distances vary much less along the unfolding simulation. This met-
ric clearly reveals amino-acid residues that not only have similar SASA behaviors but 
also maintain the same spatial relation among them along the unfolding simulation. 
Using a similar treatment for all the rules obtained, we were able to define a set of 28 
hydrophobic amino-acid residues that share two main characteristics: i) they remain 
unexposed to the solvent; and ii) they display a constant spatial relation during most 
of the unfolding simulation. As may be seen in Figure 4, the 28 identified hydropho-
bic residues are concentrated in the interior of the protein. Thus, we may conclude 
that this set of 28 residues out of 127 may constitute a hydrophobic cluster essential 
in TTR unfolding and folding. 

4   Conclusions 

In this report we show that Data Mining techniques, such as searching of Association 
Rules, applied to the analysis of a massive quantity of data generated in Molecular 
Dynamics Protein Unfolding Simulations, are in fact very useful in the detection of 
hidden relations among the constituents of the molecular system under study. Asso-
ciation rules appear as a pattern language with high potential to express common 
behavior among amino-acid residues during the protein unfolding process. Rules are 
simple objects with clear reading. They are easy to interpret and useful for future 
prediction tasks. 



 
Fig. 4. Schematic representations of the backbone structure of the monomer of Transthyretin. 
Black spheres indicate the positions of the Cα atoms of the 28 hydrophobic residues identified 
by the Association Rules. The two views are related by a 90º rotation  

In the case of the molecular system studied here - the unfolding behavior of the 
protein Transthyretin -, we searched for Association Rules among the variation pro-
files of Solvent Accessible Surface Area (SASA) of each one of the 127 residues of 
TTR in several unfolding simulations. This allowed us to define a group of 28 hydro-
phobic residues which appear to form a hydrophobic cluster essential in the unfolding 
and folding processes of TTR. Thus, the application of specific data mining tech-
niques to an extremely large set of data generated from protein unfolding simulations 
helped us uncover new biochemically relevant knowledge.  
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