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Abstract. In this paper we study the predictive ability of some asso-
ciation rule measures typically used to assess descriptive interest. Such
measures, namely conviction, lift and χ2 are compared with confidence,
Laplace, mutual information, cosine, Jaccard and φ-coefficient. As pre-
diction models, we use sets of association rules generated as such. Clas-
sification is done by selecting the best rule, or by weighted voting (ac-
cording to each measure). We performed an evaluation on 17 datasets
with different characteristics and conclude that conviction is on average
the best predictive measure to use in this setting.

1 Introduction

Association rule mining is a technique primarily used for exploratory data min-
ing. In such a setting it is useful to discover relations between sets of variables,
which may represent products in an on-line store, disease symptoms, keywords,
demographic characteristics, to name a few. To guide the data analyst identi-
fying interesting rules, many objective interestingness rule measures have been
proposed in the literature [17]. Although these measures have descriptive aims,
we will evaluate their use in predictive tasks. One of these measures, conviction,
will be shown as particularly successful in classification.

Classification based on association rules has been proved as very competi-
tive [12]. The general idea is to generate a set of association rules with a fixed
consequent (involving the class attribute) and then use subsets of these rules to
classify new examples. This approach has the advantage of searching a larger
portion of the rule version space, since no search heuristics are employed, in
contrast to decision tree and traditional classification rule induction. The extra
search is done in a controlled manner enabled by the good computational be-
havior of association rule discovery algorithms. Another advantage is that the
produced rich rule set can be used in a variety of ways without relearning, which
can be used to improve the classification accuracy [8].

In this work, we study the predictive power of many of the known interest-
ingness measures. Although this is done in terms of association rule based clas-
sification, the results can be potentially useful to other classification settings.
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We start by describing in detail the classification approach used, and define each
of the used measures, previously appraised for descriptive data mining tasks in
[10][17]. We perform a thorough experimental validation and study the results
using Best Rule and Weighted Voting prediction implemented in the CAREN
system [1].

1.1 Classifying with Association Rules

The classification approach we describe in this paper consists in obtaining a
classifier, or a discriminant model M , from a set of association rules. The rules
are generated from a particular propositional data set, involve categorical and
numerical < attribute = value > pairs in the antecedent and a class value in
the consequent. We want the model M to be successful in the prediction of the
classes of unseen cases taken from the same distribution as D. A Bayesian view
of the success of a classifier defines that the optimal classifier MBayes maximizes
the probability of predicting the correct class value for a given case x [7].

Previous work on classification from association rules has confirmed the pre-
dictive power of confidence [12]. In this paper we provide empirical indication
that another measure, conviction, tends to obtain better results.

2 The Measures

In this section we describe the measures used in this work. Let us first introduce
some notation. Let r be a rule of the form A → C where A and C are sets of
items. In a classification setting, each item in A is a pair < attribute = value >,
and C has one single pair < class attribute = class value >. We are assuming
that the rule was obtained from a a dataset D. The size of D is N .

In an association rule framework, Confidence is a standard measure, and is
defined as:

conf(A → C) =
sup(A ∪ C)

sup(A)
(1)

Confidence ranges from 0 to 1. Confidence is an estimate of Pr(C | A), the
probability of observing C given A. After obtaining a rule set, one can immediatly
use confidence as a basis for classifying one new case x. Of all the rules that
apply to x (i.e., the rules whose antecedent is true in x), we choose the one
with highest confidence. This loosely follows the optimal Bayes classifier. In the
extreme case where there is exactly one rule that covers each new case, the
Best Rule-confidence classifier concides with the optimal Bayes. In general, the
BRconf classifier approximates the MBayes but ignores the combined effect of
evidence. For rules with the same confidence, the rule with the highest support
is preferred. The rationale is that the estimate for confidence is more reliable.

Another measure sometimes used in classification is Laplace. It is a confidence
estimator that takes support into account, becoming more pessimistic as the
support of A decreases. It ranges within [0, 1[ and is defined as:



lapl(A → C) =
sup(A ∪ C) + 1

sup(A) + 2
(2)

Confidence alone (or Laplace) may not be enough to assess the descriptive
interest of a rule. Rules with high confidence may occur by chance. Such spurious
rules can be detected by determining whether the antecedent and the consequent
are statistically independent. This inspired a number of measures for association
rule interest. One of them is Lift, defined as:

lift(A → C) =
conf(A → C)

sup(C)
(3)

Lift measures how far from independence are A and C. It ranges within
[0,+∞[. Values close to 1 imply that A and C are independent and the rule
is not interesting. Values far from 1 indicate that the evidence of A provides
information about C. Lift measures co-occurrence only (not implication) and
is symmetric with respect to antecedent and consequent. Lift is also used to
characterize the classification rules derived by C4.5 [15].

Conviction is another measure proposed in [4] to tackle some of the weak-
nesses of confidence and lift. Unlike lift, conviction is sensitive to rule direction
(conv(A → C) 6= conv(C → A)). Conviction is somewhat inspired in the logical
definition of implication and attempts to measure the degree of implication of
a rule. Conviction is infinite for logical implications (confidence 1), and is 1 if
A and C are independent. It ranges along the values 0.5, ..., 1, ...∞. Like lift,
conviction values far from 1 indicate interesting rules. It is defined as:

conv(A → C) =
1− sup(C)

1− conf(A → C)
(4)

According to [4], conviction intuitively captures the notion of implication
rules. Logically, A → C can be rewritten as ¬(A ∧ ¬C). Then, one can measure
how (A∧¬C) deviates from independence and take care of the outside negation.
To cope with this negation, the ratio between sup(A∪¬C) and sup(A)×sup(¬C)
is inverted. Unlike confidence, the support of both antecedent and consequent
are considered in conviction.

Within the association rules framework, the Leverage measure was recovered
by Webb for the Magnus Opus system [18]. It had been previously proposed
by Piatetsky-Schapiro [14]. In [10] is called novelty. The idea is to measure
how much more counting is obtained from the co-occurrence of the antecedent
and consequent from the expected, i.e., from independence. It ranges within
[−0.25, 0.25] and is defined as:

leve(A → C) = sup(A ∪ C)− sup(A)× sup(C) (5)

The definite way for measuring the statistical independence between an-
tecedent and consequent is the χ2 test. The test’s statistic can be used as a
rule measure.



χ2(A → C) = N ×
∑

X∈{A,¬A},Y ∈{C,¬C}

(sup(X ∪ Y )− sup(X).sup(Y ))2

sup(X)× sup(Y )
(6)

where N is the database size.
As stated in [3], χ2 does not assess the strength of correlation between an-

tecedent and consequent. It only assists in deciding about the independence of
these items which suggests that the measure is not feasible for ranking purposes.
Our results will corroborate these claims.

The following measures, rather then indicating the absence of statistical in-
dependence between A and C, measure the degree of overlap between the cases
covered by each of them. The Jaccard coefficient takes values in [0, 1] and as-
sesses the distance between antecedent and consequent as the fraction of cases
covered by both with respect to the fraction of cases covered by one of them.
High values indicate that A and C tend to cover the same cases.

jacc(A → C) =
sup(A ∪ C)

sup(A) + sup(C)− sup(A ∪ C)
(7)

Cosine is another way of measuring the distance between antecedent and con-
sequent when these are viewed as two binary vectors. The value of one indicates
that the vectors coincide. The value of zero only happens when the antecedent
and the consequent have no overlap. It ranges along [0, 1] and is defined as:

cos(A → C) =
sup(A ∪ C)√

sup(A)× sup(C)
(8)

Also the φ-coefficient can be used to measure the association between A and
C. It is analogous to the discrete case of the Pearson correlation coeficient [17].

φ(A → C) =
leve(A → C)√

(sup(A)× sup(C))× (1− sup(A))× (1− sup(C))
(9)

φ ranges within [−1, 1]. It is one when the antecedent and the consequent cover
the same cases and -1 when they cover opposite cases. In [16] it is shown the
relation between φ and the χ2 statistics. i.e. that φ2 = χ2

N being N the database
size.

The last measure considered is information-based. Many classification algo-
rithms use similar measures to assess rule predictiveness. This is the case of
CN2 [5] which uses Entropy. In this paper we make use of the Mutual Informa-
tion. Mutual information measures the amount of reduction in uncertainty of
the consequent when the antecedent is known [16].

MI(A → C) =

∑
i

∑
j sup(Ai ∪ Cj)× log( sup(Ai∪Cj)

sup(Ai)×sup(Cj)
)

min(
∑

i−sup(Ai)× log(sup(Ai)),
∑

j −sup(Cj)× log(sup(Cj)))
(10)



where Ai ∈ {A,¬A} and Cj ∈ {C,¬C}. MI ranges over [0, 1].
Notice that measures lift, leverage, χ2, Jaccard, cosine, φ and MI are symmet-

ric, whereas confidence, Laplace and conviction are asymmetric. We will see that
this makes all the difference in terms of predictive performance. Other measures
could have been considered, but this study focuses mainly on the ones mostly
used in association rule mining.

2.1 Ordering Rules

The prediction given by the best rule is the best guess we can have with one single
rule. When the best rule is not unique we can break ties maximizing support
[12]. A kind of best rule strategy, combined with a coverage rule generation
method, provided encouraging empirical results when compared with state of
the art classifiers on some datasets from UCI [13]. Our implementation of Best
Rule prediction follows closely the rules ordering described in CMAR [11]. Thus,
having R1 earlier than R2 is defined as:

R1≺R2 if

metric(R1) > metric(R2) or

metric(R1)==metric(R2)∧ sup(R1)>sup(R2) or

metric(R1)==metric(R2)∧sup(R1)==sup(R2)∧ ant(R1)<ant(R2).

where metric is the used interest measure and ant is the length of the antecedent.

2.2 Voting

Apart from Best Rule strategies that select the prediction of the rule from the
top of the rules rank, one can make use of a different strategy that allows all
firing rules to contribute to the final prediction. These strategies combine the
rules F (x) that fire upon a case x. A simple voting strategy takes all the rules
in F (x), groups the rules by antecedent, and for each antecedent x′ obtains the
class corresponding to the rule with highest confidence. We will denote the class
voted by an antecedent x′ with a binary function vote(x′, g) which takes the
value 1 when x′ votes for g, and 0 for the other classes.

predictionsv = arg max
g∈G

∑
x′∈antecedents(F (x))

vote(x′, g) (11)

2.3 Weighted voting

This strategy is similar to voting, but each vote is multiplied by a factor that
quantifies the quality of the vote [9]. In the case of association rules, this can be
done using one of the above defined measures.

predictionwv = arg max
g∈G

∑
x′

vote(x′, g).max metric(x′ → g) (12)

Caren implements these and other prediction strategies efficiently by keeping
in an appropriate data structure [2].



3 Experiments

In our experiments, we have tested the effects of each measure on a number
of benchmark datasets. For that, we ran CAREN using the “Best Rule” and
“Weighted Voting” approaches. For each of these approaches we used a different
variant for each rule measure. For reference we show the results of the rpart and
the c4.5 TDIDT algorithms. Evaluation was performed by running stratified 10
fold cross-validation and measuring the error rate of each variant on each dataset
(Table 2). From these results we derive the algorithm ranking for each dataset
(Table 3): the smallest error rate gets rank 1, the second rank 2 and so on. In
the case of a draw in rank n, the algorithms get rank n.5. From these partial
rankings we calculate the mean rank of each algorithm or variant.

In table 1 we describe the datasets used for evaluation. These sets have varied
sizes, number of total and numerical attributes and number of classes and were
obtained from the UCI repository [13].

Since the existence of minority classes may be important to explain the re-
sults of the approaches, we have also measured, for each dataset, class balanc-
ing using two measures ranging in (0, 1]. One is normalized Gini, defined as∑

i pi
2/(1− nclasses−1), where pi is the proportion of class i. The other is nor-

malized entropy, −
∑

i pilog2(pi)/log2(nclasses). Both measures have the value
of 1 when the classes are balanced and tend to 0 if the weight of a dominant
class increases. Both measures are undefined when there is only one class. In
general, high values mean balanced classes and low values mean unbalanced
classes. The two measures are not very different in value. For these 17 datasets,
the correlation between normalized Gini and normalized entropy is above 0.95.

Table 1. Datasets used for the empirical evaluation

Dataset nick #examples #classes #attr #numerics norm. Gini norm. entropy
australian aus 690 2 14 6 0.99 0.99
breast bre 699 2 9 8 0.90 0.93
pima pim 768 2 8 8 0.91 0.93
yeast yea 1484 10 8 8 0.86 0.75
flare fla 1066 2 10 0 0.61 0.70
cleveland cle 303 5 13 5 0.81 0.80
heart hea 270 2 13 13 0.99 0.99
hepatitis hep 155 2 19 4 0.66 0.73
german ger 1000 2 20 7 0.84 0.88
house-votes hou 435 2 16 0 0.95 0.96
segment seg 2310 7 19 19 1.00 1.00
vehicle veh 846 4 18 18 1.00 1.00
adult adu 32561 2 14 6 0.73 0.80
lymphography lym 148 4 18 0 0.71 0.61
sat sat 6435 6 36 36 0.97 0.96
shuttle shu 58000 7 9 9 0.41 0.34
waveform wav 5000 3 21 21 1.00 1.00

Since CAREN does not directly process numerical attributes, we have prepro-
cessed these using CAREN’s implementation of Fayyad and Irani’s supervised
discretization method [6]. For association rule construction, Minimal support
was set to 0.01 or 10 training cases. The only exception was the sat dataset,
where we used 0.02 for computational reasons. Minimal improvement was 0.01



and minimal confidence 0.5. We have also used the χ2 filter to eliminate poten-
tially trivial rules. C4.5 and rpart were ran using the original raw data.

Table 2. Error rates (in percent) for rpart, c4.5 and the different CAREN variants.

aus bre pim yea fla cle hea hep ger hou seg veh adu lym sat shu wav
rpart 16.23 6.15 24.72 43.27 17.73 46.16 20.00 26.00 25.20 4.87 8.31 31.76 15.55 25.27 19.04 0.53 26.64
c4.5 13.92 5.00 24.36 44.27 17.44 50.04 21.09 21.32 30.20 3.25 3.21 25.96 13.61 23.07 13.97 0.05 22.73
BR.conf 14.21 4.57 22.78 41.27 19.14 45.70 18.52 19.99 28.50 8.11 9.91 38.74 14.81 17.29 19.75 0.47 17.40
BR.lift 36.09 18.88 41.66 44.57 21.66 44.09 31.48 47.51 63.80 46.67 9.91 43.92 36.49 47.75 34.51 21.74 29.82
BR.conv 14.35 4.28 22.38 42.07 19.78 44.09 18.89 16.78 26.70 8.11 9.91 38.63 14.27 18.00 19.39 0.45 17.42
BR.chi 32.89 14.02 33.71 45.10 21.66 44.09 27.04 47.51 63.30 40.95 31.77 46.21 36.49 47.08 32.43 20.59 21.04
BR.lapl 14.22 5.86 25.25 44.29 18.86 45.70 17.04 20.58 28.90 6.48 10.61 39.22 15.70 18.00 19.86 0.47 17.34
BR.lev 14.51 11.58 30.71 48.13 18.85 44.09 21.85 21.68 29.30 5.55 36.58 48.82 20.10 27.40 47.64 1.64 26.82
BR.jacc 14.51 19.45 34.89 44.81 18.86 45.70 38.15 20.58 30.00 5.55 34.03 48.81 24.08 34.32 42.14 15.58 26.74
BR.cos 14.51 23.17 34.89 55.80 18.86 45.70 44.44 20.58 30.00 5.55 33.94 49.75 24.08 43.62 42.75 15.58 32.16
BR.phi 14.51 6.85 27.85 44.55 19.22 44.09 18.89 30.27 30.70 5.55 33.12 49.06 17.91 28.69 36.25 6.45 26.46
BR.MI 25.81 5.85 24.20 46.14 17.90 44.09 27.04 19.99 29.90 15.88 14.50 37.90 17.41 45.76 35.29 6.04 28.52
Voting.conf 16.24 3.57 22.64 42.61 18.47 45.70 17.41 16.27 24.10 13.35 15.11 35.43 16.35 27.37 35.17 2.85 17.28
Voting.lift 15.37 3.29 25.63 42.01 19.50 45.70 16.67 17.14 27.50 14.73 15.11 35.55 20.02 32.19 33.43 9.20 17.24
Voting.conv 18.40 4.72 22.77 41.87 18.56 45.70 19.63 17.45 26.50 13.80 20.22 36.04 15.07 22.50 23.17 0.60 28.42
Voting.chi 16.10 3.43 25.63 42.88 18.94 45.70 17.04 15.22 25.70 13.81 15.89 36.03 18.42 32.19 35.79 3.60 17.12
Voting.lapl 16.39 3.57 22.77 42.41 18.38 45.70 17.41 16.27 23.90 13.35 15.15 35.55 16.41 27.37 35.17 2.84 17.22
Voting.Lev 15.82 4.58 24.72 46.04 18.56 45.70 17.78 14.12 24.40 14.50 22.34 39.00 17.04 32.72 36.60 2.69 19.72
Voting.Jacc 17.41 4.87 24.07 43.34 18.19 45.70 17.78 15.53 24.40 14.26 21.52 38.89 18.14 32.10 35.04 2.55 19.96
Voting.Cos 16.98 4.29 23.29 43.41 17.91 45.70 17.04 14.86 24.40 13.57 18.40 38.30 16.50 30.72 35.21 2.14 18.30
Voting.Phi 15.52 3.43 24.59 42.68 18.93 45.70 17.41 15.88 26.00 14.50 18.31 38.17 18.03 30.72 34.50 5.54 17.98
Voting.MI 77.84 49.08 34.36 45.03 18.66 45.70 73.33 80.09 66.00 80.63 97.71 74.69 34.88 93.25 84.38 40.84 90.90

Table 3. Ranks

mean aus bre pim yea fla cle hea hep ger hou seg veh adu lym sat shu wav
BR.conv 6.35 4 6 1 4 20 3.5 11.5 8 10 8.5 4 11 2 2.5 3 2 7
BR.conf 7.18 2 8 5 1 17 13.5 10 11.5 12 8.5 4 12 3 1 4 3.5 6
Voting.conf 7.44 14 4.5 2 6 7 13.5 6 6.5 2 10.5 8.5 3 7 7.5 12.5 12 4
Voting.lapl 7.47 15 4.5 3.5 5 6 13.5 6 6.5 1 10.5 10 4.5 8 7.5 12.5 11 2
c4.5 7.65 1 12 9 12 1 22 15 16 18 1 1 1 1 5 1 1 13
rpart 8.74 13 15 11.5 9 2 21 14 18 6 2 2 2 5 6 2 5 15
BR.lapl 8.79 3 14 13 13 13 13.5 3 14 13 7 6 15 6 2.5 5 3.5 5
Voting.Cos 9 16 7 6 11 4 13.5 3 2 4 12 13 10 9 11.5 14 8 9
Voting.conv 9.38 18 10 3.5 2 8.5 13.5 13 10 9 13 14 7 4 4 6 6 18
Voting.chi 10 12 2.5 14.5 8 16 13.5 3 3 7 14 11 6 15 14.5 16 13 1
Voting.Phi 10 10 2.5 10 7 15 13.5 6 5 8 16.5 12 9 13 11.5 9 14 8
Voting.lift 10.03 9 1 14.5 3 19 13.5 1 9 11 18 8.5 4.5 16 14.5 8 17 3
Voting.Jacc 10.65 17 11 7 10 5 13.5 8.5 4 4 15 15 13 14 13 11 9 11
Voting.Lev 11.56 11 9 11.5 19 8.5 13.5 8.5 1 4 16.5 16 14 10 16 18 10 10
BR.MI 13.15 19 13 8 20 3 3.5 17.5 11.5 15 19 7 8 11 19 15 15 19
BR.phi 13.82 6.5 16 16 14 18 3.5 11.5 19 19 4.5 18 20 12 10 17 16 14
BR.lev 14.03 6.5 17 17 21 11 3.5 16 17 14 4.5 21 19 17 9 21 7 17
BR.jacc 15.97 6.5 20 20.5 16 13 13.5 20 14 16.5 4.5 20 18 18.5 17 19 18.5 16
BR.cos 16.97 6.5 21 20.5 22 13 13.5 21 14 16.5 4.5 19 21 18.5 18 20 18.5 21
BR.chi 17.15 20 18 18 18 21.5 3.5 17.5 20.5 20 20 17 17 21.5 20 7 20 12
BR.lift 17.47 21 19 22 15 21.5 3.5 19 20.5 21 21 4 16 21.5 21 10 21 20
Voting.MI 20.21 22 22 19 17 10 13.5 22 22 22 22 22 22 20 22 22 22 22

4 Discussion

The first observation is that conviction gets the best mean rank. This confirms
the experiments in [8] which motivated the present study of this measure. We
observe that, using a t-test with 5% significance, conviction has 2 out of 17
significant wins over confidence and 3 over Laplace (and loses none). This seems



to be a marginal but consistent advantage. The advantage of conviction is not
observed for the Voting strategy.

The second observation is that the other 7 measures do not produce compet-
itive classifiers. Notice that these are the symmetric rule interest measures.
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Fig. 1. Clustering measures and strategies using complete linkage and Euclidean dis-
tance

Using the error rate arrays, we can group the pairs strategy-measure using hi-
erarchical clustering. The distance between strategies was measured using plain
Euclidean distance and the clusters were aggregated using complete linkage. The
obtained clustering (Fig. 1) indicates the predictive proximity of confidence, con-
viction and Laplace (the three symmetric measures employed), when used with
best rule. Almost all Voting strategies are clustered together, except for Vot-
ing.conv (which is clustered with the top performing best rule approaches) and
Voting.MI which performs particularly poorly. Other expected pairs of measures
also cluster together. These are Jaccard and cosine (for best rule), lift and χ2,
leverage and φ and also rpart and C4.5.

4.1 Discriminating meta features

We now try to study if some features of the data set (meta features) may indi-
cate whether to use either conviction, confidence or laplace. As meta features we
have selected nclasses, the number of classes, n.entropy, normalized class en-
tropy, which measures the balance of class distribution, and the nexamples, the
number of examples. Given the relatively small number of datasets, we will per-
form a graphical exploration using 2-dimensional xy-plots. The first exploration
investigates the importance of the number of classes and class distribution. Since
both class distribution measures are very similar, we have used only normalized
class entropy.

In Fig. 2 we can see which of the three measures performed better with a
best rule approach. The chart represents the datasets in the “number of classes”
× “class distribution” space. Each dataset is represented by the measure that



performed better within the considered pool. Conviction is represented by “V”,
confidence by “F” and Laplace by “L”. When there is a tie between the two best
ones the dataset point is signaled by an “X”.
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Fig. 2. Meta exploration of the results. The chart plots the datasets in a two dimen-
sional space. Each dataset is represented by the symbol corresponding to the best
performing measure. Ties are represented by “X”.

As we observe, there is no clear pattern explaining the success of each mea-
sure. Conviction dominates in general. Confidence is successful with the yeast
dataset (10 classes, relatively unbalanced), and with two other. Laplace has a
visible but not dominating presence in datasets with 2 or 3 classes. Regarding
class balancing, there is no visible tendency. We observe, however, that the most
unbalanced dataset is won by conviction.

4.2 Comparing Rule Ranking

Confidence and conviction differ in the rule ranking they produce when rules
of different classes are involved. For rules of the same class, or of classes with
the same support, conviction preserves the ordering given by confidence. This is
because the expression of conviction (Eq. 4) has the same numerator for rules
with classes with the same support. The denominator increases when confidence
of the rule decreases and vice-versa.

The datasets considered are never exactly balanced (The values of normalized
entropy and Gini shown in table 1 are 1.00 only because of rounding). In Fig.
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Fig. 3. Visualization of the comparison of the rule rankings produced by conviction
and confidence. Each point represents one rule generated for the respective dataset.
Different rule classes are represented with different characters.

3 we can compare the rule rankings provided by confidence and conviction for
some datasets. These charts were built by generating a single rule set for each
dataset with 80% of the examples, and plotting each rule on a 2 dimensional
space defined by confidence and conviction.

For the almost balanced datasets (segment, vehicle and waveform), the rank-
ing is practically preserved. This explains the almost equal error values of BR.conf
and BR.conv (Table 2). For datasets with normalized entropy above 0.9 and two
classes (australian, pima, heart and house-votes) we can observe two different
curves, one for each class (each class is represented with a different marker).
Despite the small difference between class supports, the different effects of con-
viction and confidence are quite visible in Fig. 3. However, in these cases, the
difference in error is still very small (p-value is around 0.5). The sat dataset has
a high entropy but has 6 classes. This makes the p-value of the error comparison
drop to 0.14 with advantage to conviction.

The two significant wins of BR.conv over BR.conf are in datasets adult and
hepatitis. These are datasets with mid-range entropy and 2 classes. In the case
of hepatitis we can see that confidence tends to rank first the rules of one of
the classes, whereas conviction tends to interleave rules of the two classes. The
dataset with lowest entropy (highly unbalanced) is shuttle. It has 7 classes, but
only rules for 3 of the classes were derived. For this dataset, conviction has
advantage over confidence with a p-value of 0.067.



In summary, what we observe in Fig 3 is that conviction favours rules with less
frequent classes, and ranks the rules differently from confidence. This is relatively
innocuous for most of the datasets, although more frequently advantageous to
conviction. When there is a significant difference it is in favour of BR.conv.

5 Conclusion

Despite having been introduced as a measure of interestingness for descriptive
data mining, mainly to overcome some limitations of lift (a.k.a. interest) and
confidence, conviction proves to be effective for predictive tasks. We have com-
pared conviction with a few different measures on 17 datasets and concluded
that it shows a systematic advantage over them when used with a best rule
association based classifier. Compared to confidence, conviction favours low fre-
quency classes and produces different rule orderings. This is mainly visible with
unbalanced datasets. Besides conviction, confidence and Laplace, all the other
yielded uninteresting results for best rule.

In the case of Voting, different results were obtained. Confidence and Laplace
ranked relatively high, whereas conviction ranked amid the other measures. How-
ever Voting.conviction clustered close to the top performing best rule approaches.
The negative results of conviction with the voting strategy may be due to the
fact that rule ordering is diluted by the combined effect of voting rules. An-
other difficulty in using conviction with a voting strategy may be related with
its overly stretched value range.

The symmetry of measures with respect to antecedent and consequent seems
to make all the difference. Confidence, conviction and Laplace (asymmetric)
obtained superior results, whereas symmetric measures had poor predictive per-
formance.

For future work it would be worthwhile to study the effect of combining
different measures to produce ensembles of classifiers. This way we could use a
single set of learned rules to build an ensemble of models, each corresponding to
the ordering yielded by a different measure.
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