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Abstract. We study a new method for improving the classification ac-
curacy of a model composed of classification association rules (CAR).
The method consists in reordering the original set of rules according to
the error rates obtained on a set of training examples. This is done iter-
atively, starting from the original set of rules. After obtaining N models
these are used as an ensemble for classifying new cases. The net effect
of this approach is that the original rule model is clearly improved. This
improvement is due to the ensembling of the obtained models, which are
slightly better than the original one. This ensembling approach has the
advantage of running a single learning process, since the models in the
ensemble are obtained by self replicating the original one.

1 Introduction

The use of association rules for classification has proved to be a promising path
in terms of improving predictive performance by enabling a wider search in the
set of patterns supported by the data [12, 13, 15]. Given a set of association rules,
using them in the best possible way to perform classification is a challenge pro-
portional to the enormous number of rules that can be produced with reasonable
computational resources. Recent work has exploited the use of low-cost ensemble
learning (with a single learning process) to further improve the results of asso-
ciation rule classifiers [9]. The idea is to generate a first set of rules and then to
obtain replications of this set by sampling it in a manner similar to bootstrap.
The replications are then used as an ensemble.

In this paper we study another approach for generating ensembles using a
single rule generation step. The main idea is to obtain the models by iteratively
reweighting/reordering the rules of the original rule set. The initial rule model
M0 is obtained using a learning algorithm. In this initial model, each rule has an
associated predictive value, which can be used to sort the rules for classification.
Model M1 is obtained by reweighting the rules on the training set. This reweight-
ing can lead to a different rule ordering, if a decision list approach is used for
model evaluation. Each model in the sequence Mi is obtained from the previous
one in the same way, until we obtain N models. The ensemble {Mi, i = 1..N}
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is used to classify new cases. The intended effect is that rule ordering is recom-
puted taking into account global effects on accuracy, instead of local ones. We
call this approach Iterative Reordering Ensembling (IRE).

As referred above, one particular feature of this ensemble approach is that
the learning process that generates the rules runs only once. The sequence of
models is obtained by finding close alternatives to the initial rule ordering. This
process has some similarities to boosting [7, 19], where a sequence of models is
generated from iteratively reweighted sets of examples. In boosting, the weights
of the examples are changed, so that misclassified examples get higher weights.

In Iterative Reordering Ensembling, a new model is generated by changing
the order of the rules, where rules with more errors go down. Thus, misclassified
examples improve their chance of being well classified. The main advantage w.r.t.
boosting is the fact that one single learning step is used, whereas in boosting
there as many learning steps as models in the ensemble.

In the remaining of the paper we revisit the research done on classification
with association rules and also on ensemble learning. We describe in detail this
new approach and present an empirical evaluation. The results obtained indicate
that IRE improves the predictive accuracy of classification with association rules
mainly by reducing the bias component of the classification error.

2 Classification with AR

Association rules have been proposed for the first time as complete and com-
petitive classification models by Liu et al. in 1998 [13]. In simple terms, the
produced classifier was a decision list, and each new case was classified by the
best rule that applied to it, i.e., the rule with highest confidence. Later, Li et al.
[12] proposed the use of multiple rules, instead of just one, to classify each new
case. The subset of rules that apply to the new case are grouped by anwered
class, and each of these groups is assessed with a weighted χ2 heuristic that
tried to identify the strongest group. Meretakis and Wüthrich [15] suggested a
well founded procedure to combine multiple rules by using the confidence of the
rules to determine the most likely class for each case, in a kind of näıve Bayes
approach with less independence assumptions. Jovanoski and Lavrac [10] have
studied the effect of simple voting and other simple strategies to improve the
prediction ability of a set of association rules. Jorge and Azevedo [9] have pro-
posed an ensemble strategy based on multiple sets of association rules. The work
presented here is a follow-up of that general approach.

2.1 Obtaining classifiers from Association Rules

We can regard classification from association rules as a particular case of the
general problem of model combination. Either because we see each rule as a
separate model or because we consider subsets of the rules for combination. We
first build a set of rules R. Then we select a subset M of rules that will be used
in classification, and finally we choose a prediction strategy π that obtains a



decision for a given unknown case x. To optimize predictive performance we can
fine tune one or more of these three steps.

Strategy for the generation of rules: A standard approach is to employ a
sort of coverage strategy [13]. All association rules are derived. Then, one chooses
the best rule, removes the covered cases and repeat the selection of rules until all
cases are covered. In [12] this standard coverage strategy is generalised to allow
more redundancy between rules. A case is only removed from the training data
when it is covered by a pre-defined number of rules. In our work, we build the set
of rules separately using the Carenclass system [9]. Carenclass is specialized in
generating association rules for classification and employs a bitwise depth-first
frequent patterns mining algorithm.

Choice of the rule subset:We can use the whole set of rules for prediction,
and count on the predictive strategy to dynamically select the most relevant
ones. Selection of rules is based on some measure of quality, or combination of
measures. The structure of rules can also be used, for example for discarding
rules that are generalizations of others. Discarding rules that are potentially
irrelevant or harmful for prediction is called pruning [12, 13].

Strategy for prediction: Most of the previous work on using association
rules for classification has been done on this topic. The simplest approach is
to go for the rule with the highest quality, typically measured as confidence,
sometimes combined with support [13]. Other approaches combine the rules by
some kind of committee method, such as voting [10], or weighted voting [12].

Rule selection, or pruning, can be done right after rule generation. However,
most of the rule selection techniques can be used before, when the rules are
being generated. Pruning techniques rely on the elimination of rules that do not
improve more general versions. For example, rule {a, b, c} → g, may be pruned
away if rule {a, c} → g has similar or better predictive accuracy. CBA [13] uses
pessimistic error pruning. Another possibility is to simply use some measure of
improvement [3] on a chosen rule quality measure. At modeling time we can still
reduce the set of rules by choosing only the N -best ones overall, or the N -best
ones for each class [10], where N is a user provided parameter. This technique
may reduce the number of rules in the model dramatically, but the choice of the
best value for N is not clear.

2.2 Combining the decisions of rules

In this section we describe the two simplest strategies for using association rule
sets as classification models. In the discussion we assume we have a static set R
of classification association rules, and a predefined set of classes G and that we
want to classify cases with description x, where the description of a case is a set
of statements involving independent attributes. The set of rules that apply to
the case, or that fire upon the case with description x will be F (x) defined as
{(x′ → class = g) ∈ R | x′ ⊆ x, g ∈ G}.

Best rule This strategy classifies using one single rule bestrulex:



bestrulex = arg max
r∈F (x)

measure(r) (1)

The measure used is a function that assigns to each rule a value of its
predictive power. Confidence is the natural choice when it comes to predic-
tion. It estimates the posterior probability of C given A, and is defined as
confidence(A → C) = sup(A ∪ C)/sup(A).

Conviction is another interest measure [5] somewhat inspired in the logical
definition of implication and attempts to measure the degree of implication of
a rule. Conviction is infinite for logical implications (confidence 1), and is 1 if
A and C are independent, and it sometimes outperforms confidence in terms
of prediction [9]. It is defined as conviction(A → C) = (1 − sup(C))/(1 −
confidence(A → C)).

The prediction given by the best rule is the best guess we can have with one
single rule. When the best rule is not unique we can break ties maximizing sup-
port [13]. A kind of best rule strategy, combined with a coverage rule generation
method, provided encouraging empirical results when compared with state of
the art classifiers on some datasets from UCI [16].

Our implementation of Best Rule prediction follows closely the rules ordering
described in CMAR [12]. Thus, R1 is earlier than R2 is defined as:

R1≺R2 if

int(R1)>int(R2) or

int(R1)==int(R2)∧ sup(R1)>sup(R2) or

int(R1)==int(R2)∧sup(R1)==sup(R2)∧ ant(R1)<ant(R2).

where int is the used interest measure and ant is the length of the antecedent.

Weighted voting This strategy combines the rules F (x) that fire upon a case
x. The answer of each rule is a vote, and the final decision is obtained by assigning
a specific weight to each vote, according to its perceived quality. In the case of
association rules, this can be done using one of the above defined measure.

predictionwv = arg max
g∈G

∑
x′∈antecedents(F (x))

vote(x′, g).max measure(x′ → g)

(2)

3 Iterative reordering

One possible way for increasing the accuracy of a CAR set is to re-evaluate the
interest and support of a rule according to the its performance on a specific
dataset. This new evaluation works by running the rules on the training set.
Then, rule’s interest is redefined according to its accuracy on this set. Rule’s
support is also redefined but as a measure of rule’s usage in classification. The
redefinition yields a new ordering on the original set of rules. This process can
be applied iteratively, yielding a set of rule models that can be aggregated.



Input: training set=D, max iterations = MaxI
Generate rule set R from D;1

Trial generation Trial0 = R;2

foreach i in 1 to MaxI do3

foreach x in D do4

using bestrule measure approach see which rule r in Triali−1 fires;5

recomputes interest and support measures of winning rule in R based on6

usage and hits;

end7

Triali = rules used from Triali−1, with new interest and support + rules8

from Triali−2 not used in i− 1 + rules from Trial0 not used in either i− 1
or i− 2;
(interest and support measures of rules from trials i− 2, i− 1 and 0 are the9

ones calculated there);
accuracyi = accuracy of Triali on D;10

If accuracyi < 0.5 or accuracyi > 0.99 break for;11

end12

Output: Trials
Algorithm 1: Iterative reordering trial generation

3.1 Ensemble generation

BestRule prediction is applied to the training dataset using the original CARules.
From this application, rule’s measures (support and interest) are updated accord-
ing to usage and accuracy.

For instance, if confidence is used in BestRule prediction in Triali−1 then in
Triali, the confidence of rule A → C is:

conf(A → C, Triali, D) =
hits(A → C, Triali−1, D)

usage(A → C, Triali−1, D)

where

hits(A→C,Trial,D)=#{x∈D| (A→C)==BestRule(Trial,x) : xwA ∧ xwC}

usage(A→C,Trial,D)=#{x∈D| (A→C)==BestRule(Trial,x) : xwA}

and BestRule(Trial, x) represents the best rule in Trial that applies to x.
Other interest measures can be defined referring to conf and support. For

instance, conviction is defined as:

conv(A → C, Triali, D) =
1− sup(C,D)

1− conf(A → C, Triali−1, D)

Notice that the minimal required information to represent trials (rule models)
is the usage and hits associated with each rule. A matrix with 2×n (for n trials)
is enough to represent the ensemble.



Prediction on test cases using the ensemble is obtained using BestRule for
each case on each trial. The overal prediction is obtained by weighted trial voting.
Different ensemble predictions can be obtained using different weighing strate-
gies. For instance, the weight can be the global accuracy of the trial on the
training set. Alternatively, the vote can be the interest measure of the best rule
within the trial. In the sequel, the latter will be referred as IRE.BR.int and the
former as IRE.V.Acc.int, where int is either confidence or conviction.

On each trial, only rules with usage > 0 are considered. During ensemble
formation it may be the case that there is no rule with positive usage in a
given trial that covers a specific case. In that situation the BestRule prediction
consults previous trials looking for rules that may cover the case. Line 8 includes
this contingency mechanism.

Similarly to AdaBoost [7] trial construction, in line 11 the algorithm stops
earlier either if a very good or very bad trial accuracy is achieved. Algoritm 1
summarizes the IRE ensemble construction process. Given n (number of trials)
and a training set, the algorithm derives Trial0 as the set of CAR rules through
an association rule engine. Then, it iteratively derives Triali applying BestRule
to the training set using the rules from Triali−1. After n iterations, the ensemble
construction is complete. A test set is evaluated by weight voting using best rule
prediction on each trial.

4 Experimental validation

We have conducted experiments comparing the predictive performance of the
ensemble approach with bestrule with AR, using different prediction measures
(for assessing the net effect of this kind of ensembling) and state-of-the-art al-
gorithms (for controlling the results). We have used 17 UCI datasets [16]. The
datasets are described in Table 1. As a reference algorithm, we used the deci-
sion tree inducer c4.5 [17]. Due to its availability and ease of use we have also
compared the results with rpart from the statistical package R [18]. Rpart is a
CART-like decision tree inducer [4].

Table 1. Datasets used for the empirical evaluation

Dataset #examples #classes #attr #numerics
australian 690 2 14 6
breast 699 2 9 8
pima 768 2 8 8
yeast 1484 10 8 8
flare 1066 2 10 0
cleveland 303 5 13 5
heart 270 2 13 13
hepatitis 155 2 19 4
german 1000 2 20 7
house-votes 435 2 16 0
segment 2310 7 19 19
vehicle 846 4 18 18
adult 32561 2 14 6
lymphography 148 4 18 0
sat 6435 6 36 36
shuttle 58000 7 9 9
waveform 5000 3 21 21



For the single model association rule classifiers, we used four carenclass vari-
ants, by combining two strategies: “Best rule” and “Weighted Voting” with two
measures (confidence and conviction). Minimal support was set to 0.01 or 10
training cases. The only exception was the sat dataset, where we used 0.02 for
computational reasons. Minimal improvement was 0.01 and minimal confidence
0.5. We have also used the χ2 filter to eliminate potentially trivial rules. For
each combination we ran carenclass with and without IRE-ensembles. Numeri-
cal attributes have been previously discretized using CAREN’s implementation
of Fayyad and Irani’s supervised discretization method [6].

An estimation of the error of each algorithm (and carenclass variant) was
obtained on each dataset with stratified 10-fold cross-validation (Table 2). From
the estimated errors we ranked the algorithms separately for each dataset, and
used mean ranks as an indication of global rank (Table 3). Besides that, we have
tested the statistical significance of the results obtained.

Table 2. Average error rates obtained with the algorithms on the datasets (min.
sup.=(0.01 or 10 cases, except sat with 0.02), min. conf.=0.5, imp.=0.01). Key:
BR=best rule, V=Voting, IRE=Iterative Reordering, cf=confidence, cv=conviction,
Acc=trial accuracy voting

rpart c4.5 BR.cf BR.cv V.cf V.cv IRE.BR.cf3 IRE.BR.cv IRE.V.Acc.cf4 IRE.V.Acc.cv
aus 0.1623 0.1392 0.1378 0.1378 0.1871 0.1552 0.1318 0.1392 0.1333 0.1348
bre 0.0615 0.0500 0.0457 0.0428 0.0386 0.0386 0.0386 0.0500 0.0386 0.0357
pim 0.2472 0.2436 0.2278 0.2212 0.2277 0.2264 0.2329 0.2355 0.2316 0.2316
yea 0.4327 0.4427 0.4214 0.4194 0.4301 0.4240 0.4294 0.4435 0.4327 0.4395
fla 0.1773 0.1744 0.1914 0.2025 0.1810 0.1894 0.1932 0.1950 0.1932 0.2026
cle 0.4616 0.5004 0.4570 0.4570 0.4570 0.4570 0.4570 0.4587 0.4570 0.5021
hea 0.2000 0.2109 0.1778 0.1815 0.1741 0.1815 0.1778 0.1963 0.1741 0.1778
hep 0.2600 0.2132 0.1999 0.1870 0.1420 0.1878 0.1682 0.1823 0.1682 0.1761
ger 0.2520 0.3020 0.2820 0.2620 0.2570 0.2630 0.2710 0.2650 0.2730 0.2540
hou 0.0487 0.0325 0.0786 0.0786 0.1266 0.1334 0.0646 0.0668 0.0622 0.0622
seg 0.0831 0.0321 0.1190 0.1190 0.2030 0.1242 0.0779 0.0978 0.0801 0.0801
veh 0.3176 0.2596 0.3673 0.3662 0.3331 0.3342 0.3176 0.3272 0.3222 0.3234
adu 0.1555 0.1361 0.1873 0.1549 0.1735 0.1617 0.1599 0.2113 0.1592 0.1605
lym 0.2527 0.2307 0.1729 0.1800 0.2666 0.1989 0.1595 0.1729 0.1667 0.1667
sat 0.1904 0.1397 0.1975 0.1939 0.3514 0.2309 0.1523 0.1848 0.1510 0.1563
shu 0.0053 0.0005 0.0251 0.0075 0.0569 0.0083 0.0304 0.0168 0.0310 0.0048
wav 0.2664 0.2273 0.1774 0.1770 0.1990 0.1822 0.1654 0.2336 0.1650 0.1654

Table 3. Ranks for each algorithm on each dataset (1 is best, x.5 is a draw). Table
lines are sorted by the mean rank, which can be found in the first column.

mean aus bre pim yea fla cle hea hep ger hou seg veh adu lym sat shu wav
IRE.Br.conf 4 1 3.5 7 4 6.5 3.5 4 2.5 7 5 2 2.5 5 1 3 8 2.5
IRE.Vote.Acc.conf 4.06 2 3.5 5.5 6.5 6.5 3.5 1.5 2.5 8 3.5 3.5 4 4 2.5 2 9 1
IRE.Vote.Acc.conv 4.5 3 1 5.5 8 10 10 4 4 2 3.5 3.5 5 6 2.5 4 2 2.5
Best.rule.conv 5.21 4.5 6 1 1 9 3.5 6.5 6 4 7.5 7.5 9 2 6 7 4 4
c4.5 5.53 6.5 8.5 9 9 1 9 10 9 10 1 1 1 1 8 1 1 8
Voting.conv 6.09 8 3.5 2 3 4 3.5 6.5 7 5 10 9 8 7 7 9 5 6
Voting.conf 6.15 10 3.5 3 5 3 3.5 1.5 1 3 9 10 7 8 10 10 10 7
Best.rule.conf 6.21 4.5 7 4 2 5 3.5 4 8 9 7.5 7.5 10 9 4.5 8 7 5
rpart 6.24 9 10 10 6.5 2 8 9 10 1 2 5 2.5 3 9 6 3 10
IRE.Br.conv 7.03 6.5 8.5 8 10 8 7 8 5 6 6 6 6 10 4.5 5 6 9



4.1 Analysis of results

The first strong observation is that the iterative reordering (IRE) approaches
rank high, when compared to the other approaches. Of the 10 algorithms tested,
the first three employ IRE. Separate experiments, not shown here, indicate that
the IRE gains advantage through the ensemble strategy, rather than the filtering
of rules. Of the two possibilities for combining the rules in the ensemble, the
bestmodel approach works well with confidence but poorly with conviction. Of
the two predictive measures used, confidence seems to be preferable for the top
strategies, but not in general.

In terms of statisticall significance, the IRE ensemble approaches are clearly
better than the single model AR classifiers. In a t-test with a significance of 0.01,
IRE.Br.conf has 4 significant wins against 0 of Best.rule.conf. When compared to
Best.rule.conv, the advantage is of 3 significant wins. Using the same statistical
test, we see that the single model AR classifiers tend to be worse than rpart
(Best.rule.conv looses 3/1), but the IRE ensemble best strategies beat rpart
(2/0). c4.5 beats the best IRE strategy, in terms of significant wins, by 3/2.

By using Friedman’s test on all the data on Table 2, we may reject the
hypothesis that all the approaches have equal performance with a confidence of
0.05 (p-value is 0.033).

4.2 Method behavior

To understand why IR-ensembling improves the results of a bestrule classifier
we have performed a bias-variance analysis as described in [11]. For each dataset
we proceed as follows. We divide the examples in two sets D and E. This last set
is used for evaluation and is a stratified sample, without replacement, with half
the size of the original dataset. From the set D we generate 50 simple random
samples, without replacement. Each one of these samples is used as training, and
the results of the obtained models on E are used to estimate the contribution of
the bias and of the variance to the global error. For each dataset we decompose
the error into bias and variance for both strategies: bestrule and IR-ensembling.
The parameters used were the same as in the experiments reported above, except
for the minimum support. In this case, since the training sets were smaller (25%
of the original set), we have lifted the admissible support of the rules to values
that guarantee that at least 5 cases are covered (instead of 10, as we used above).
In any case, support never goes below 0.01.

Figure 1 shows the results of the bias-variance analysis for 12 datasets. Each
dataset has two bars, the left for best rule and the right one for IRE. The grey
part of each bar corresponds to the bias component and the white part to the
variance. In terms of the bias-variance decomposition, we can see that for 10 of
the 12 datasets the bias component of the error visibly decreases. For the other
2 cases (flare and heart) there is at most a small increase in bias. The variance
component tends to increase although not in the same proportion as bias.

We can thus hypothesize that the error reduction caused by IRE is mostly
due to the reduction of the bias component. Since the variance component will
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Fig. 1. The decomposition of bias and variance for 12 of the datasets. For each dataset,
the bar on the left corresponds to the best rule approach and the bar on the right to
the IRE.

converge to zero with the size of the datasets, IRE seems advantageous for large
datasets. We should note that dealing with large datasets is not particularly
complicated since the generation of association rules grows linearly with the
number of examples [1]. The process of rule reweighting also grows linearly with
the number of examples.

In another set of experiments, we have observed how the answers of the
models in the ensemble compare with the answers given by the single model.
In Figure 2 we can see the result for the yeast dataset. The xx axis represents
the test examples and the yy axes the percentage of correct answers given by
the two strategies for each case. In the case of the best rule, this percentage is
either 0 (failure) or 1 (succes). In the case of the ensemble approach we have
the percentage of models in the ensemble that gave the correct answer. The
examples in the xx axis are sorted by the success of the best rule and than by
the percentage of successes of the ensemble.

With this analysis we can see that there is a good number of “easy cases”
and of “hard cases”. These are the ones at the right and left end of the plot,
respectively. The cases in the middle are in a grey area. These are the ones that
can be more easily recovered by IRE. To be successful, the IRE approach must
recover more examples (improve the answer of the best rule) than the ones it
loses (degrades the answer of the best rule). In the case of yeast, we can see that
many case are recovered (crosses above the 0.5 horizontal line, and to the left
of the vertical solid line), although some others are lost (below the horizontal
line and to the right of the vertical one). In the case of the heart dataset (figure
2), similar observations can be made. Notice the small number of test examples
that perform worst in the ensemble method than in the best rule prediction.
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Fig. 2. Left: percentage of correct answers per test case for the yeast dataset (crosses)
shown against the correct answers given by the best rule approach (solid crisp line).
Right: Similar analysis for the heart dataset.

5 Discussion

Iterative Reordering Ensembling is a technique that produces replications of an
original model without relearning. Each replication is a variant not very different
from the original one. The obtained ensemble is thus more than homogeneous.
Its elements are rather a result of jittering the original model in the version
space. Still, the combined effect of these very similar models reduces the error
consistently, when compared to using the single model, and in many datasets
the reduction is significant.

The study of the bias variance decomposition indicates that IRE tends to
reduce the bias component of the error, more than the variance. This is similar
to what happens in boosting and in contrast to the case of bagging, where the
reduction of the error is mainly due to the reduction in variance [2].

The intuitive explanation for the reduction of the bias component is that
the single model best rule approach is tied to a particular rule ordering, and
it is hard to find an ordering that maximizes the number of examples correctly
classified. This constraint seems to be softened by combining similar versions of
the rule set with different orderings.

6 Related Work

Ensemble learning has concentrated a large number of proposals in the liter-
ature. In [2] a study on the performance of several voting methods (including



Bagging and Boosting) was presented. A careful analysis of the bias/variance
error decomposition is described as means to explain the error reduction yielded
by the different voting methods variants.

A novel version of model aggregation obtained from bagging is described in
[14]. The main idea is to derive an ordering on the models and to consider the
top of the order. This is obtained by halting the bagging process earlier. Only a
small part of the models is selected (15% to 30% of the total). This fraction of
models are expected to perform best when aggregated.

A similar idea to ours is [8]. The author proposes an iterative version of
Naive Bayes. The aim is to boost accuracy by iteratively updating the distribu-
tion tables yield from Naive Bayes to improve the probability class distribution
associated with each training case. The end product is a single model rather
then an ensemble. Our iterative updating of each rule predictive measure within
each trial can be seen as a form of improving probability class distribution.

The work in [20] investigates the hypothesis that combining effective ensem-
ble learning strategies leads to the reduction of the test error is explained by
the increase of diversity. These authors argue that by trading a small increase
in individual test error, a reduction in overall ensemble test error is obtained.

The Post-bagging ensemble method proposed in [9] employs a similar gen-
eral strategy. Like IRE, Post-bagging derives replications that jitter around the
original model. However, the combined effect of the similar models minimizes
the test error but mostly due to a reduction on the variance component.

7 Conclusions

Classificaton using association rules can be improved through ensembling. We
have proposed Iterative Reordering Ensembling (IRE), which is a procedure
that generates multiple models with one single learning step. First, a rule set
is obtained from the data. Then, replications of this initial set are obtained by
iteratively recalculating the predictive measures of the rules in the set.

Experimental results with 17 datasets suggest that this ensembling technique
improves best rule prediction and is competitive when compared to rpart and
c4.5. The bias-variance decomposition indicates that most of the improvement
is explained by a reduction of the bias component. This is possibly explained
by the ability of the ensembling technique avoiding being tied to one particular
ordering of the rules.

This kind of ensemble approach obtains multiple models by perturbing an
original one. The resulting models are computationally unexpensive and atend
to be similar to each other. Despite that low variety, their combination results
in an effective improvement with respect to the single model.
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sets. In KDD, pages 165–174, 1999.

16. C. J. Merz and P. Murphy. Uci repository of machine learning database.
http://www.cs.uci.edu/∼mlearn, 1996.

17. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
18. R Development Core Team. R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2004. ISBN
3-900051-00-3.

19. R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,
1990.

20. G. I. Webb and Z. Zheng. Multistrategy ensemble learning: Reducing error by com-
bining ensemble learning techniques. IEEE Trans. Knowl. Data Eng., 16(8):980–
991, 2004.


