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Abstract. The problem of discovering previously unknown frequent
patterns in time series, also called motifs, has been recently introduced.
A motif is a subseries pattern that appears a significant number of times.
Results demonstrate that motifs may provide valuable insights about the
data and have a wide range of applications in data mining tasks. The
main motivation for this study was the need to mine time series data from
protein folding/unfolding simulations. We propose an algorithm that ex-
tracts approximate motifs, i.e. motifs that capture portions of time series
with a similar and eventually symmetric behavior. Preliminary results on
the analysis of protein unfolding data support this proposal as a valuable
tool. Additional experiments demonstrate that the application of utility
of our algorithm is not limited to this particular problem. Rather it can
be an interesting tool to be applied in many real world problems.

1 Introduction

The mining of time series data has gathered a great deal of attention from the re-
search community in the last 15 years. These studies have impact in many fields,
ranging from biology, physics, astronomy, medical, financial and stock market
analysis, among others. The research in mining time series has been mainly fo-
cused in four problems [9]: indexing or query by content, clustering, classification
and segmentation. Lately, the problem of mining unusual and surprising patterns
[10] has also been enthusiastically studied. Other challenging and recently pro-
posed problem in the context of time series is the mining of previously unknown
patterns. These patterns, here referred as episodes, consist of subsequences that
appear, in a unique and longer sequence [15, 7, 5] or are subsequences that occur
simultaneously in more than one sequence from a set of related sequences, in
this case called motifs or sequence patterns. These motifs have a wide range of
applications. They can be used in the clustering and classification of time series.
They can also be applied in the generation of sequence rules and in the detection
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of interesting behaviors, which can give the user/domain expert valuable insights
about the problem that is being studied.

In this work we are interested in the extraction of time series motifs. We
present an algorithm that given as input the symbolic representation of a set of
comparable time sequences, it finds all the patterns that occur a number of times
equal or greater than a threshold value. A sequence pattern or motif consists in
a set of subsequences that share among them a similarity greater than an user
defined value. The definitions adopted in this work and the development of the
algorithm were mainly motivated by the specificities of the mining of time series
data from protein folding/unfolding simulations, as we will discuss in section 4.
However, as we will see in the same section, these ideas can also be applied to
many different domains and application contexts.

2 Definitions and Notations
In this section we will present some definitions that will be used throughout this
paper.

Definition 1. (Time Sequence) A time sequence T is an ordered set of values
(t1, t2, . . . , tn), where ti ∈ R; (tp, tp+1, . . . , tq) is a subsequence of T starting at
position p and ending at position q, where 1 6 p and q 6 n. The length of
sequence, |T | is equal to n.

In this work we are interested in finding patterns over a set of temporal
sequences that for a certain period of time reflect a similar and/or a symmetric
tendency. This trend or tendency reflects a measure of interest of the motif and
is called here approximate similarity.

According to our notion of approximate similarity, several measures and coef-
ficients appear as candidates for similarity functions. The most popular measures
of distance appearing in literature are the Euclidean distance and the Dynamic
Time Warping (DTW) measure [6, 11]. For this particular problem, the drawback
of these two measures is that they are not sensitive to the association linearity
between the elements of the subsequences. We are interested in finding patterns
based on an approximate similarity, thus a more suitable measure is required.

The Pearson Correlation Coefficient [20], r, measures the magnitude and
the direction of the association between the values of the subsequences. The
correlation coefficient ranges from -1 to +1 and reflects the linear relation be-
tween the values of the subsequences. The Pearson correlation is a metric mea-
sure that satisfies the three following properties: positivity(r(x, y) ≥ 0 and
r(x, y) = 0, if x = y), symmetry (r(x, y) = r(y, x)) and triangle inequality
(r(x, z) ≤ r(x, y) + r(y, z))). This last property as we will see, will be particu-
larly useful to cluster pairs of similar subsequences to form the motifs. In fact,
Pearson correlation tends to be robust to small variations.

Definition 2. (Match) Given the similarity function between two subsequences
X and Y , sim(X,Y ), we say that subsequence X matches Y if |sim(X,Y )| > R,
where R is a user supplied positive real number.
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The absolute similarity value used in definition 2 handles the notion of ap-
proximate similarity, i.e. two subsequences may have an inverted behavior and
still be considered a match.

Definition 3. (Instance) A subsequence X is an instance of a subsequence Y ,
where |X| = |Y |, if |sim(X,Y )| > R.

Definition 4. (Overall Similarity) The overall similarity for a set of subse-
quences corresponds to the average value of similarity between all the pairs of
subsequences in the set.

Therefore, a motif can informally be defined as a set of interesting subse-
quences. The interestingness is defined by its overall similarity and by the fre-
quency of appearance, i.e. how much recurrent are the subsequences in the set
of the input time sequences. The frequency is provided by the cardinality of the
set and is usually called as support. Hence, formally a motif can be defined as
follows:

Definition 5. (Approximate Motif) Given a database D of time sequences,
a minimum support σ and a minimum value of similarity/correlation Rmin. We
consider that k subsequences consist of an approximate motif, if k ≥ σ and all
subsequences pairwisely match for a value of Rmin.

Definition 6. (K-Cluster) We denote a group of k (related) instances as k-
cluster.

Definition 7. (Cluster Containment) A cluster C1 is contained in a cluster
C2, if all instances of C1 are in C2.

Definition 8. (Overlap Degree) The degree of overlap between two sequences

X and Y is defined as Od = |X∩Y |
w

×100%, where ∩ is the intersection operation
and w the length of the sequences. |X ∩ Y | gives the overlap region between X

and Y .

3 Algorithm

In this section we start by formulating the described problem. Next, we give an
overview of the algorithm that we propose to tackle this problem.

Problem Formulation: Given a database D of time sequences, a minimum
support σ, a minimum similarity Rmin, a window length w and a window frame
length deltaW 3 find all the approximate motifs.

Typically, before the algorithm is applied, a pre-processing step is performed.
We adopted a two step approach called SAX [14]. In the first step, a complex-
ity/dimensionality reduction on the data may be necessary and desirable. This

3 Concept introduced in subsection 3.1.
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reduction can be achieved through means of a scaling operation, also called PAA
(Piecewise Aggregate Approximation) [16]. This operation basically consists in
a reduction on the number of intervals in the time axis. A group of successive
points is replaced by their average value. The second part of pre-processing step
is the symbolization. The amplitude axis is scaled and divided into a finite num-
ber of intervals of equal size. Each interval is represented by a symbol. Sequence
values are them mapped into the respective symbol of belonging interval. In our
particular case all the sequence values are mapped into integer values (called
alphabet, and denote it as Σ), therefore a symbolic representation of the time
sequences is used. This approach brings two benefits to the data analysis, which
are the robustness to small variations and to noise [14]. Both scaling and sym-
bolization are performed in linear time. We continue by outlining the proposed
algorithm.

3.1 Phase One: Motif Detection

This phase of the algorithm is divided into two steps. In step 1, all the sub-
sequences of length w in D are scanned and compared against each other, in
order to find similarities among them. If two subsequences match, they form a
2-cluster. In the second step of this phase, the pairs of subsequences are suc-
cessively clustered with the goal of finding longer clusters of subsequences. If
the overall similarity is above the minimum similarity threshold Rmin, i.e. all
instances pairwisely match, and its cardinality is greater than the minimum sup-
port σ, the cluster is then considered a motif. Our technique is a bottom-up or
agglomerative method and it resembles the hierarchical agglomerative clustering
technique. We start with all the clusters of size two and we keep merging the
most similar ones until we obtain one cluster that can no longer be extended. If
the cluster satisfies the motif definition 5, then it is considered a motif.

input : w, Rmin
output: ClusterInfo : List with the 2clusters

cnt = 0;1
foreach S in D do2

for i = 0 to |S| − w + 1 do3
ss = S(i, i + w);4

lstF SS = findF ollowSS(D, ss);5
foreach fss in lstFSS do6

if |sim(fss, ss)| ≥ Rmin then7
clusterInfo[cnt] = {ss, fss};8
cnt = cnt + 1;9

end10

end11

end12

end13

Algorithm 1: 2clustersEnumeration function.

Step 1: 2-Cluster Enumeration The pseudo-code in algorithm 1 shows the
application of the sliding window methodology. Each subsequence is defined by
the tuple < seq, start >, that represents the sequence identifier and the start
where the subsequence occurs in D. It scans all the sequences in the database
(line 2) and for each sequence it also scans all its subsequences of size w (line 3
and 4). For each subsequence (line 5) the respective following subsequences are
obtained. If any of these subsequences match ss, the information for this pair
of subsequences is saved (line 8) in the clusterInfo list. Function findFollowSS
retrieves all the subsequent subsequences of ss. It basically consists in two for
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loops that scan all the windows that occur after ss in D. At this point two
scenarios are possible. The algorithm may look for all the occurrences in D of
the motif (one sequence may contribute with more than one instance for the
counting) or only for the occurrences in different sequences. In the first case,
the function starts to scan D in the sequence ss.seq at position ss.start + 1. In
the second case, it starts in the sequence ss.seq + 1 at position 0. This last case
eliminates the existence of trivial matches, i.e. matches between subsequences
that are apart from each other only few points. In this work we are only interested
in the second case.

In the motif discovery process, we have decided for an agglomerative ap-
proach to cluster all the instances of a motif. Another possibility would be to
use a subsequence oriented approach, where for each scanned subsequence (ref-
erence) and respective matches, if the motif definition is verified it would be
immediately reported as a motif. Although simpler, this approach has two prob-
lems. First too many repeated motifs would be reported. For example, for a
motif with instances {A,B,C} the motifs {A,C,B}, {C,B,A} and so on would
be reported. The second problem is that when some instances match with the
reference subsequences but not with the other matches of this subsequence all
the possible combinations have to be tried. Consider the example in figure 1(a).
Instance A (reference) matches B,C,D but instance B does not match C and D.
Thus, we have at least two clusters {A,B} and {A,C,D}. When the number of
non-matching instances is greater, the number of possible clusters combinations
increases, which become more difficult to manage. The agglomerative approach
prevents these two problems by avoiding most of the motif redundancy and
making a clear separation of the clusters.

Concerning the enumeration of 2-clusters, its dispersion along the time line
arises as an interesting question. Suppose a motif that has an instance that occurs
in the initial part of a time sequence and other in the end of other sequence.
A significant distance between the instances may invalidate the meaning of the
motif. Therefore, we incorporate the option to enumerate motif instances that
occur only within a certain window frame.

A

B

C

D

deltaWdeltaW A

B

C

Fig. 1. (a) Example where a subsequence has several matches in more than one cluster;
(b) Example of the application of a window frame to the enumeration of motif instances.

Figure 1 (b) shows an example of the application of the window frame of size
deltaW . Although, instances A,B,C may have an overall similarity greater than
Rmin, instance B is not within the frame [A.start − deltaW ;A.end + deltaW ].
Thus, B should not be considered as a motif instance. Note, that we could
ignore this window frame option and still consider the sequences in all their
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extension. This feature can be easily handled by introducing in line 7 of algorithm
1, the condition |ss.start− fss.start| < deltaW and in line 8 of algorithm 3 the
condition ∀i, j |ssi.start − ssj .start| < deltaW .

One problem that typically arises in heuristic methods that find probabilistic
motifs in biological data like in [18, 2], is the “phase” problem. This means that
when looking for a pattern, the algorithm may get locked in a local optimum and
not in the global optimum of the pattern. For example, consider that the best
solution of a pattern starts at position 7, 19, 13, ... within the given sequences.
If after some iterations the algorithm chooses positions 9, 21 in the first two
sequences it probably will consider the position 15 in the third sequence and so
on. It means that the algorithm got trapped in a local optimum and the obtained
solution is shifted by a few positions from the correct solution. The sliding-
window based methods may also suffer from this problem, as is the case of our
algorithm. In order to solve it we analyze the 2-cluster list, where each cluster is
compared to all the other 2-clusters that are within a certain neighborhood range.
Only the 2-cluster which maximize the similarity value is kept. We consider that
two sequences can be considered different when they differ in more than 1/3
of its length. Thus, two 2-cluster are in the same neighborhood if the overlap
degree between the respective subsequences is greater than 2/3 of their length.

Step 2: Cluster Extension At the end of step 1 we obtain a list of 2-clusters
that will form the basis of the potential motifs. In an agglomerative way the
similar pairs of subsequences (2-clusters) can be merged, until one big cluster
is found. The criteria used to merge one 2-cluster into a N-cluster (N ≥ 2) is
based on the triangle inequality property of our similarity measure. The idea is
that if instance x is similar to y and, y is similar to z, then it is expected that
x is also similar to z. Thus, the cluster {y, z} is merged with the cluster {x, y}
when all the pairs of instances from {x, y, z} match for a value of Rmin. In fact,
the triangle inequality property allows us to define a linkage method to merge
the clusters. The extension of a cluster C stops when no more 2-clusters exist to
merge or when a in the result of a cluster extension a pair of instances does not
match. Function seedExtension summarizes the described ideas.

input : ClusterInfo, Rmin, σ

output: motifList : List with motifs

for i = 0 to clusterInfo.size − 1 do1
for j = i + 1 to clusterInfo.size do2

status = extendCluster(clusterInfo[i], clusterInfo[j], j, Rmin, σ);3
if (σ == 2)AND(status == NotExtended) then4

motifList.add(clusterInfo[i]);5
end6

end7

end8

Algorithm 2: seedExtension function

In algorithm 2 the list of 2-clusters (clusterInfo) is traversed in order to try
the extension of one 2-cluster with another 2-cluster. If the cluster can not be
extended and the minimum support is 2, then it can be considered as a motif
(line 5). In order to avoid redundant motifs (motifs contained in other motifs)
we only consider a cluster to be a motif when it can no longer be extended.
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input : ClusterInfo, clusterExt, clusterP air, index, Rmin, σ

output: motifList : List with motifs

if (index == clusterInfo.size) then1
return NotExtended;2

end3
/* Intersect the subsequences of the clusters */

IS = intersect(clusterExt, clusterP air);4

if (index == ∅) then return NotExtended;5
else clusterExt = join(clusterExt, clusterP air);6
/* Find the new similarity value */

newSimil = avgSimil(clusterExt);7
if |newSimil| ≥ Rmin then8

for j = index + 1 to clusterInfo.size do9

status = extendCluster(clusterExt, clusterInfo[j], i, Rmin, σ);10
if (clusterExt.size ≥ σ)AND(status == NotExtended) then motifList.add(clusterInfo[i]);11
return NotExtended;12
else return Extended;13

end14

end15

Algorithm 3: clusterExtension function.

In procedure clusterExtension, the input consists of a cluster to be extended,
clusterExt, and a cluster which is used to try an extension, clusterPair. If one
subsequence in clusterPair is present in clusterExt (verified with function in-
tersect in line 4), clusters are joined (line 6) and an extension is tried (lines 7
to 15). If all pairs of instances match, the new similarity value of the cluster is
above Rmin, the cluster can be extended. If its cardinality is equal or greater
than σ and it is the last possible extension then it is considered a motif (lines
11 to 12). Otherwise, no extension is performed and the status NotExtended

is returned. Note, that since this procedure is applied recursively, line 1 is used
to test if no more 2-clusters exists when trying a new extension. At the end
of this step the algorithm already retrieved the list of all possible motifs in D.
Eventually, due to the extension process, some of these motifs are non-maximal,
i.e. they are contained in other motifs. In order to eliminate this redundancy
we apply a procedure that removes non-maximal motifs from this list. This is a
time-consuming operation since each motif in the list has to verified whether it
contains or is contained in another motif.

3.2 Phase2: Length Extension

In phase 2, a length extension of all the motifs extracted in phase 1 is tried.
Since the subsequences of a motif are still a motif, we need to find its longest
length. Thus, for a given motif all its instances are extended until the overall
similarity drops below Rmin. When the length extension is performed, a previous
test has to be done since it is not know in advance the extension direction. For
each pair of instances in the motif, all the four possible direction combinations
are tried. The information, namely the extension direction and gainOfExtension
= newValue - oldValue of each instance, is saved when the tested extension
maximizes the gain. When all the pairs of subsequences are verified, a list with
the directions of the extension of each subsequence is obtained. Next, based on
these directions, an extension is performed one event at a time, until the overall
similarity of the motif drops below Rmin.
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3.3 Motif Features and Statistical Significance

Two types of patterns can be distinguished. Motifs that contain only positive
correlations and mixed motifs that contain both positive and negative correla-
tions. If a sequence Y regresses on X, the equation Y ' β0 + β1X + u, where u

is the model error, may model such regression. In order to provide the scale in
which all the instances of the motifs are related we calculate the average value
of β1 (refer to [20] for this calculation).

To assess the statistical significance of a motif, two measures are provided
for each motif: Information Gain [19] and Log-Odds significance [12]. The in-
formation content I of a pattern, measures how likely a pattern is to occur, or
equivalently, what is the amount of “surprise” when the pattern occurs. The
odds score of a sequence measures the degree of surprise of the motif by com-
paring its probability of occurrence with the expected probability of occurrence
according to the background distribution.

4 Experimental Evaluation

In our experiments we used a prototype developed in the C++ language. All
the tests were done in 3.0GHz Pentium4 machine with 1GB of main memory,
running windows XP Professional. Our algorithm works in “in-memory” way
since it first loads to main memory the entire dataset and then starts the mining.
Nevertheless, in all the experiments the maximum memory usage was 20MB.
Each motif graphic contain the correspondent Overall Similarity (S), average
β1(B) and the type correlation of the pattern (T): only positive (1) and both
(0).

4.1 Protein Unfolding

Protein folding is the process of acquisition of the native three-dimensional struc-
ture of a protein. The 3D structure, ultimately determined by its linear sequence
of amino-acids, is essential for protein function. In recent years, several human
and animal pathologies, such as cystic fibrosis, Alzheimer’s and mad cow dis-
ease, among others, have been identified as protein folding or protein unfolding
disorders. Over the years, many experimental and computational approaches
have been used to study protein folding and protein unfolding. Here we use
the proposed algorithm to assist in the study of the unfolding mechanisms of
Transthyretin (TTR), a human plasma protein involved in amyloid diseases such
as Familial Amyloid Polyneuropathy. Our goal is to find approximate motifs, i.e.
simultaneous events on variations of molecular properties characterizing the un-
folding process of TTR. The data analyzed is constituted by changes observed
in molecular properties calculated from Molecular Dynamics (MD) protein un-
folding simulations of TTR [1, 3]. In the present case, the dataset consists of 127
time series, each representing the variation over time of the Solvent Accessible
Surface Area (SASA) of each amino acid in the protein. Each time series is a
collection of 8000 data points, one data point per picosecond (ps) for a total of 8
nanoseconds (ns) of simulation. Before the algorithm is applied, pre-processing
of the data is performed. The 8000 data points were scaled to 160 intervals. Each



Mining Approximate Motifs in Time Series 9

5 10 15

0
10

20
30

40
50

S = 0.92; B = 0.81; T = 1; 

GLU_66, PRO_102, VAL_71

2 4 6 8 10

0
10

20
30

40
50

S = 0.92; B = 1.22; T = 1; 

ARG_21,HSD_88,VAL_93,VAL_94,ALA_97,ILE_84

ARG_21
HSD_88
VAL_93
VAL_94
ALA_97
ILE_84

Fig. 2. (a) Example of a motif with an increasing SASA; (b) Example of a motif with
a decreasing SASA and (c) respective cluster of Amino-Acids.

interval represents the average variation of SASA over 50ps. Symbolization was
performed by rounding each value to its closest integer.

In the unfolding process of a protein, it is expected that the SASA increases
for most amino-acids, i.e. they tend to become more exposed to the solvent upon
protein unfolding. However, identifying how and when the SASA increases, and
which amino-acids have similar (positive correlation) or opposite behavior (neg-
ative correlation), may reveal important details of the unfolding mechanism and
which amino-acids constitute structural intermediates essential in the unfolding
process. Figure 2 (a) depicts a motif that represents a synchronized increase of
the SASA values for three amino-acids. Around data point 5, an unidentified
event triggered the increase of solvent exposure. This is an example of a motif
that is worthwhile to be investigated. Figure 2 (b) shows a motif with an overall
tendency of SASA decreasing. Since this motif opposes to the expected behav-
ior, it is also interesting to be further investigated. The motifs in figure 2 were
obtained respectively with the parameters σ = 3, w = 15(750ps) and σ = 4,
w = 10(500ps), with deltaW = 5(250ps).

4.2 Stock Market Analysis and Synthetic Control Charts

The use of stock market datasets for the evaluation of time series algorithms is
almost classic. We analyzed the Standard and Poor (S&P) 500 index historical
stock data to demonstrate another possible application domain of our algorithm.
This dataset contains 515 stocks with daily quotes fluctuations recorded over the
course of the year 2005. It was obtained from http://kumo.swcp.com/stocks. We
have analyzed the volume data for each day. The data contained a variable length
(between 50 and 252) of points, since no scaling was done in this case. The size
of the symbols alphabet was 100. We have made several runs on data, and we
choose the results obtained with the following parameters: σ = 0.01%; Rmin =
0.95; w = 15 and deltaW = 5. It resulted in 9 motifs. From these we choose the
4 motifs with the highest statistical significance, according to the LogOdds and
Information Gain measures. For each motif in figure 3 (upper row) it is presented
the identifier of the company where the motif occurs and the respective statistical
scores. Note that motif (d) has a overall similarity below Rmin. This happen since
this is a motif with two types of correlation (T=0).
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In order to test our algorithm in a set of time series with well differentiated
characteristics we applied it to the SCC dataset. This dataset was obtained from
the UCI repository [8] and contain 600 examples of control charts synthetically
generated, divided in six different classes of control charts. We mined each class
individually and according to the parameters: σ = 0.05%, Rmin = 0.9, w=15,
deltaW = 15. The average runtime was 3.67 secs and average number of motifs:
12.8. Figure 3 (lower row) shows examples of motifs with the highest similarity
value for each of the four classes.
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Fig. 3. (Upper row) Example motifs from the SP500 dataset; (Lower row) Selected
motifs from the synthetic control dataset from class B, C, D, E.

4.3 Performance Evaluation

Due to the lack of larger datasets we used synthetic random walk sequences
to evaluate the performance of our algorithm in several dimensions. The for-
mula used to generate the points of the sequences was: S(j + 1) = S(j) +
RandNum(10).
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Fig. 4. Performance of the algorithm with different databases and parameter settings:
Runtime w.r.t: (a) window size;(b) deltaW size;(c) number of sequences.
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Due to its different phases and steps our algorithm has also different levels
of complexity. Step 1 of Phase 1 is quadratic with respect to the length of the
sequences. For N possible windows in database, this step requires approximately
N2 calls to the similarity function. Depending on the size of the window frame
the number of tested pairs of windows can be greatly reduced with a consequently
diminution in the runtime (see figure 4(b)). The complexity of Step 2 depends
on the output of Step 1, namely it is proportional to number of 2-Clusters. This
number directly depends on the Rmin and on w values (see figure 4(a)). The
initial value in the (see figure 4(a)) is explained by the significative difference in
the number of 2-clusters obtained with w = 10 and with w = 15. The Phase 2,
which corresponds to the length extension of the motifs is the less demanding. It
typically represents an insignificant part of the overall time. Finally, we give some
insights about the algorithm scalability. Figure 4(c) shows that our algorithm
scales nearly in quadratic time in relation to the database size, which in practice
is a is a reasonable performance for small or medium size datasets.

As it is expected in this type of mining applications, the interest of the results
is a direct outcome of parameters values. Therefore, an iterative and interactive
application of the algorithm is necessary. Heuristic or statistical methods, like
the MDL principle used in [17], may provide initial values for the parameter
setting.

5 Related Work

Our work can be viewed as a fusion of two research areas of data mining. The
sequence and motif mining area where we emphasize the motivation provided by
the algorithms in bioinformatics for mining overrepresented patters in a set of
related and comparable biological sequences (proteins/dna) [18, 2]. A second area
corresponds to all the research made in time series, where particular attention is
given to recent advances in the algorithms for pattern extraction. In the context
of time series, we start by emphasizing some earlier work that have been done
in the mining of recurrent subseries/patterns throughout a particular sequence
[4, 7]. Recently, Keogh et al. has introduced the issue of mining motifs in time
series [16] and proposed algorithms [16, 5] for this task. In [5] is described a
probabilistic algorithm inspired on another algorithm from bioinformatics, called
random projection. The difference from our work to the previous work starts with
the definition of a motif. We are interested in discovering groups of subsequences
that reveal the same trend, possibly in a symmetric way (approximate motifs).
Additionally, we search for motifs in a set of related time sequences, eventually
confined to a certain window frame, and not only in one time sequence. One
work that has also inspired us is [13]. Here, the Pearson’s correlation is used in
the context of linear regression analysis in order to cluster time series.

6 Conclusions

In this work we have formulated the problem of mining approximate motifs in
a set of related sequences. We also propose an algorithm that allows discovering
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all the motifs in the database, thus ensuring no false dismissals. The application
of the algorithm to the problem that first motivated its development has already
proved to be a valuable tool to assist biologists. However, the application of
this method is not limited to this case study. As we have demonstrated it is an
interesting method to be applied in other application domains.
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