| Particle Swarms for
Feedforward Neural Network Training

Rui Mendes
Dep. de Informética
Universidade do Minho
Braga - PORTUGAL
azuki@di.uminho.pt

Paulo Cortez
Dep. de Sist. de Informagio
Universidade do Minho
Guimardes - PORTUGAL
pcortez@dsi.uminho.pt

Abstract - Particle Swarm is a novel optimization
paradigm for real-valued functions, based on the so-
cial dynamics of group interaction. In this work, it
is proposed its application to the training of Neural
Networks. Comparative tests were carried out, for
classification and regression tasks, being the results
compared with other approaches.

Keywords: Evolutionary Programming, Feedforward
Neural Networks, Gradient-Based Algorithms, Particle
Swarm Optimization.

I. INTRODUCTION

Since the early ages of Artificial Intelligence (AI), in
general, and the Machine Learning (ML) arena in par-
ticular, one has observed a trend to look at Nature for
inspiration, when building problem solving models. In
particular, the study of phenomena of natural selection,
‘the central nervous system or social behavior has lead to
the arise of the FEvolutionary, Neural and Swarm compu-
tation fields. v

Feedforward Neural Networks (FNNs) are one of the
most popular Artificial Neural Network architectures, whe-
re neurons are grouped in layers and only forward connec-
tions exist. This provides a powerful connectionist model
-that can learn any kind of continuous nonlinear mapping,
with successful applications such as Time Series Fore-
casting, Medical Diagnostics or Handwritten Recognition,
just to name a few [8].

The interest in supervised learning to problem solving
and FNNs was stimulated by the advent of the BackProp-
agation algorithm [17]; since then, several variants have
been proposed, such as the QuickProp and the RProp
[14]. However, these procedures are not free of escap-
ing from local minima when the error surface is rugged.
Moreover, most of these algorithms strongly depend on
problem specific parameter settings.

The use of evolutionary search as an ANN learning
method may overcome gradient-based handicaps, but con-
vergence is in general much slower, since these are general
purpose methods [2].

More recently, Kennedy and Eberhart [10] proposed a

0-7803-7278-6/02/$10.00 ©2002 IEEE

José Neves
Dep. de Informética
Universidade do Minho
Braga - PORTUGAL
jneves@di.uminho.pt

Miguel Rocha
Dep. de Informética
Universidade do Minho
Braga - PORTUGAL
mrocha@di.uminho.pt

new technique for nonlinear optimization, called Particle
Swarm Optimization (PSO), which presents the advan-
tages of being a very simple concept, requiring few com-
putational costs. The authors argued that PSO could
train FNNs with a performance similar to the BackProp-
agation method, for the Xor and Iris benchmarks. Since
then, several researchers have adopted PSO for FNN
learning [6], [1].

However, the comparison between PSO and other ap-
proaches seems scarce. Moreover, recent research in PSO
[9], [11] suggests that the uniqueness of the algorithm lies
in the dynamic interactions among the particles. Under
this scenario, it seems natural to explore the use of dif-
ferent PSO topologies for FNN training.

The aim of this work is to study the benefits of PSO
for the training of FNNs, when applied to classification
and regression tasks. Furthermore, the results will be
compared with the ones obtained by gradient-based al-
gorithms (e.g., BackPropagation, QuickProp and RProp)
and evolutionary approaches (e.g., Evolutionary Program-
ming).

The paper is organized as follows: firstly, the basic con-
cepts of the PSO paradigm and of the remaining learning
models are defined; then, the learning benchmarks are
presented; finally, the experiments and results are shown
and discussed.

II. LEARNING MODELS

Three different models to approach FNN training will
be considered, that is to say:

A. Particle Swarm Model

A Particle Swarm Optimization (PSO) algorithm is de-
fined by the evolution of a population of particles, repre-
sented as vectors in a n-dimensional space. The particles’
trajectories oscillate around a region, which is influenced
by the individual’s previous performance and by the suc-
cess of his group of acquaintances.

Several methods have been proposed to describe each
individual’s group, (i.e., the topology or social network),

1895

being the Gbest and Lbest, the most common ones. In
Gbest, all particles know each other, while in Lbest, each
individual has only two neighbors, in a ring lattice (Fig-
ure 1).

Fig. 1. Gbest and Lbest topologies.

In this work, three new hand-tuned topologies are pro-
posed (Figure 2):

» Square : a graph where all nodes have a degree of
four;

o Pyramid : a three-dimensional wire-frame triangle;
and

o 4Clusters : four cliques' of cardinality five, loosely
connected, with two edges between neighboring clus-
ters and one edge between opposite clusters.

Fig. 2. The Pyramid, Square and 4Clusters topologies.

Particle Swarms with 20 individuals and Type 1” con-

1A cliqueis a subgraph where there is an edge between any two
vertices.

0-7803-7278-6/02/$10.00 ©2002 IEEE

striction (recommended by [4]) were used:

7 = x@® +o 00,1 @E - 20)

' +000,1) (5 - 2))) ¢
2D = g

t t+1

where p = 2.01, x = 0.729844, 0’,(‘) is the i particle’s ve-
locity at instant ¢, p"t(") is the position, Z; 9 is the particle’s
current position corresponding to the particle’s best ex-
perience, 5\ is the group’s best experience and U0, 1]
is a vector, whose coordinates are random uniform vari-
ables within the range [0, 1]. :

When applied to FNN training, each particle repre-
sents a possible FNN configuration, i.e., its weights. There-
fore, each vector has a dimension equal to the number of
weights in the FNN, whose topology is kept fixed during
the evolution.

B. Gradient-Based Models

Under this model, the learning is achieved by a sin-
gle FNN, with a fixed problem dependent topology. The
training is attained by a gradient-based algorithm. In
this work, three different algorithms were considered,
namely the standard BackPropagation (BP), and two
variants, the QuickProp (QP) and the RProp (RP), be-
ing their parameters fixed to standard values (e = 0.1 for
BP;e=0.1,v = 1.75 for QP; and Ag = 0.1, A ez = 50.0
for RP) [14].

C. Evolutionary Programming Model

In the past, evolutionary approaches to FNN train-
ing have been attempted. However, these have presented
difficulties in fine tuning, being overtaken by other tech-
niques, like the gradient descent methods (e.g., Quick-
prop [19]). Nevertheless, they have also shown some ad-
vantages, under domains where gradient information is
difficult to obtain (e.g., Recurrent Networks [3]).

In this work, an evolutionary process is considered,
being accomplished by Evolutionary Programming (EP)
[7], where a population of ps real-valued chromosomes is
evolving (in this case ps was set to 30), each coding the
weights of an FNN.

In each iteration, 50% of the individuals are kept from
the previous generation, being the remaining bred through
the application of a mutation operator. The operator
works by adding, to a given gene in a selected chromo-
some, a value taken from a narrow Gaussian distribution,
with a zero mean (i.e., small perturbations will be pre-
ferred over larger ones).

The selection procedure is done by converting the fit-
ness value of each chromosome into its ranking in the

1896

population, and then applying a roulette wheel scheme.
Other evolutionary approaches to FNN training have been
attempted, considering the use of crossover operators.
However, there is no clear advantage in using any of the
proposed approaches, which although being more com-
plex than the proposed one, do not appear to improve
significantly on the results [2].

III. MACHINE LEARNING TASKS

The experiments that will be considered in this work
endorse two types of problems, which encompass the ma-
jority of ANNs’ applications: the classification and the
regression ones.

The learning problems will also be classified in terms of
their provenience: artificial, whose data is generated by
a computer; and real, where the data available is taken
from a physical phenomena, [12].

In terms of the Machine Learning problems, three clas-
sification and two regression tasks were selected:

The N Bit Parity (NBP) - This is a famous nonlinear
benchmark [14], being defined by 2V patterns of N
inputs and one output, which is set to the value 1,
if the total number of input bits set to 1 is odd, and
0 otherwise. In the experiments, N will be set to 2
(also know as the Xor problem) and 4.

The Three Color Cube (TCC) - This is a simple arti-
ficial task that consists in learning how to paint a
large 3D cube, made up by a 3x3 grid of blocks (27
smaller cubes) (Figure 3) [16]. Each smaller cube
is represented by its coordinates on the X, Y and
Z axis, that can take values from the set {—1,0,1},
and can be painted with three different colors: black,
grey and white. The corners are black, the cubes in
the center are white, being the others grey (Figure
3). In terms of the ANN training cases, 27 patterns
are created, one for each cube, consisting of 3 inputs
and 3 outputs (one for each color).

The Diabetes in Pima Indians (DPI) - This task con-
sists in diabetes diagnosis (a boolean output) from
seven input real variables (e.g., number of pregnan-
cies). The data is defined by 200 samples, taken
from a population of women of a Pima Indian her-
itage [15].

The Sin Times Sin (STS) - A nonlinear artificial func-
tion approximation, where 80 points were generated
from two cyclic curves: y = sin(8z) x sin(6z) (Fig-
ure 4).

The Rise Time Servomechanism (RTS) - An extremely
nonlinear phenomenon, where the goal is to pre-
dict the rise time of a servomechanism, based in 167
training instances, using two gain settings (integers)
and two discrete choices of mechanical linkages [13].

0-7803-7278-6/02/$10.00 ©2002 IEEE

Fig. 3. The Three Color Cube problem.

0.8

. . L
-1 0.5 0 05 1

Fig. 4. The Sin Times Sin problem.

IV. EXPERIMENTS AND RESULTS

All experiments reported in this work were conducted
using programming environments developed in C/C++,
under the Linuz operating system.

For all models, the initial weights were randomly as-
signed within the range [—1;1]. The training accuracy of
each FNN is measured in terms of the Root Mean Squared
Error (RMSE), according to the expression:

RMSE = \/ Lo

where p denotes the number of the training patterns, m
the number of the FNN outputs, T ; the target and F; ;
the actual value, both for the output j and the 7 input
pattern.

This metric is used as the fitness value for each in-
dividual in the population based models (EP and PSO),
being the overall accuracy given by the RMSE of the best
individual.

Each problem was modeled with fully connected FNNs,
with one hidden layer and bias, being the number of neu-
rons in each layer given in Table I. The topologies were
chosen in order to make the learning task difficult, by

ey (Tii—Fi3)?

pm

2

1897

TABLE I
NEURAL NETWORK ARCHITECTURES.

Task Input Hidden OQOutput

2BP
4BP
TCC
DPI
5TS
RTS

W W s N
W00 = 00 N
P e = QO P

adopting a minimum complexity, following an Occam’s
Razor principle.

The standard logistic activation function was used in
all classification tasks. In the case of the regression prob-
lems, a different strategy was adopted, since outputs were
unbounded. In this case, the logistic activation function
was applied on the hidden nodes, while the output nodes
used shortcut connections and linear functions, to scale
the range of the outputs. This solution avoids the need
of filtering procedures, which may lead to information
loss (e.g., rescaling). On the other hand, it has been
applied successfully in other situations, like Time Series
Forecasting [5).

The results obtained are shown in Tables II and III,
in terms of the mean and the respective 95% confidence
intervals of thirty independent runs. All methods were
stopped after 2000 iterations. The first five rows stand
for PSO approaches, while the last four show the results
for the remaining methods.

Concerning the comparison among the different PSO
topologies, the Lbest presents the worst behavior, which
is probably due to the low degree of connectivity, imply-
ing a slower convergence. The Gbest performs well on
some benchmarks, although it finds difficulties in prob-
lems with several local minima (e.g., NBP). In such sit-
uations, the Pyramid seems to be a good alternative.

The relative ranks of each learning method are shown
in Table IV, where the PSO results are taken from the
best overall topology (Pyramid).

A closer look at the table reveals that the QuickProp
yields good results in the classification tasks; but surpris-
ingly shows poor performances on the regression ones.
On the other hand, the RProp algorithm presents the
best overall performance, although it fails' in the NBP
benchmarks, which can be taken as a sign of some weak-
ness in problems with local minima. This fact is indeed
quite normal since it is a gradient-based procedure. It is
on these problems that the PSO shows its strength.

Furthermore, when compared to EP, PSO seems to be

0-7803-7278-6/02/$10.00 ©2002 IEEE

in a slight advantage, the same being true for a similar
comparison with the standard BackPropagation method.

TABLE II
RESULTS FOR THE CLASSIFICATION TASKS.

2BP 4BP TCC DPI
Gbest 0.04+0.00 0.141+0.01 0.26+0.02 0.25+0.02
Lbest 0.001+0.00 0.1840.01 0.34+0.02 0.3140.02
Pyramid 0.01+0.00 0.11:+0.01 0.291+0.02 0.27+0.02
Square 0.00+0.00 0.134+0.01 0.29+0.02 0.28+0.02
4Clusters 0.0010.00 0.14:+0.01 0.30%£0.02 0.28+0.02
EP 0.1740.01 0.20£0.01 0.2940.02 0.261+0.02
BP 0.48+0.03 0.50+£0.03 0.32+0.02 0.184+0.01
QP 0.1840.01 0.17+£0.01 0.191+0.01 0.16+0.01
RP 0.06+0.00 0.2240.01 0.21+0.01 0.18+0.01
TABLE II1

RESULTS FOR THE REGRESSION TASKS.

STS RTS
Gbest 0.291+0.02 0.50-+0.03
Lbest 0.3240.02 0.54+0.04
Pyramid 0.311+0.02 0.48+0.03
Square 0.3040.02 0.5130.03
4Clusters 0.30+0.02 0.51£0.03
EP 0.32+0.02 0.54210.04
BP 0.3410.02 0.574:0.04
QP 0.3440.02 1.73+0.11
RP 0.234+0.02 0.451+0.03

The performances were reported only over training sets,
apparently disregarding overfitting. The two main ap-
proaches to tackle this issue are regularization (e.g., early
stopping) and model selection (e.g., BIC criterion) [18].
This last alternative, avoids the need for validation sets,
and has shown better results in previous work [5]. In
this case, choosing the best topology and training are in-
dependent tasks, favoring algorithms that provide lower
errors.

V. CONCLUSIONS AND FUTURE WORK

The surge of new optimization methods that handle
real-valued functions is commonly followed by its applica-
tion to Artificial Neural Network training. In such stud-
ies, it is usual to present comparisons of the newcomer
only with the standard BackPropagation, although it is
common knowledge in the field, that better algorithms

1898

TABLE 1V
TRAINING RANKS.

2BP 4BP TCC DPI STS RTS
Pyramid 1 1 4 5 2 2
EP 3 3 3 4 3 3
BP 5 5 5 2 5 4
QP 4 2 1 1 4 5
RP 2 4 2 3 1 1

exist [14]. This work confirms this assumption, being
clear that the Rprop is more robust.

It is obvious that using a more demanding comparison,
makes it difficult to present outstanding results. Never-
theless, in some kinds of problems, the PSO showed to be
valuable, namely in cases where a high number of local
minima is known to exist.

This work is only meant as a starting point in this field
and the results are encouraging, considering that PSO
is a general purpose method, where no problem specific
knowledge is used. Indeed, when compared to a similar
method, the EP, its performance is promising.

In the future, a number of paths is to be followed:

¢ to enlarge the experiments domain, by looking at
more real-world applications, such as those of sys-
tem’s control, time-series forecasting or medical di-
agnosis;

» to explore different ANN topologies, namely those
where the gradient information is difficult to obtain
(e.g. Recurrent Neural Networks); and

¢ to adopt PSO in the training of ANNs for reinforce-
ment learning tasks, where the gradient-based algo-
rithms are not applicable.

ACKNOWLEDGEMENTS

This work was supported by the PRAXIS project
PRAXIS/P/EEI/13096/98.

REFERENCES

[1] F. Bergh and A. Engelbrecht. Cooperative Learning in Neu-
ral Networks using Particle Swarm Optimizers. SACJ/SART,
(26):84-90, 2000.

[2] J. Branke. Genetic algorithms for neural network design and
training. In Proceedings of the First Nordic Workshop on
Genetic Algorithms, pages 145-163, University of Vaasa, Fin-
land, January 1995.

[3] T.Chin and D. Mital. An Evolutionary Approach to Training
Feed-Forward and Recurrent Neural Networks. In L. C. Jain
and R. K. Jain, editors, Proceedings of the Second Interna-
tional Conference on Knowledge-Based Intelligent Electronic
Systems, pages 596-602, Adelaide, Australia, 1998.

0-7803-7278-6/02/$10.00 ©2002 IEEE

5]

(7]

(8]
&

(10]

(11)

(12]

[13]

(4]

[15]

(16]

(17]

(18]

19]

M. Clerc and J. Kennedy. The particle swarm: Explosion, sta-
bility, and convergence in a multi-dimensional complex space.
To appear in IEEE Transactions on Evolutionary Computa-
tion, 2002.

P. Cortez, M. Rocha, and J. Neves. Evolving Time Series Fore-
casting Neural Network Models. In Proceedings of Interna-
tional Symposium on Adaptive Systems: Evolutionary Com-
putation and Probabilistic Graphical Models (ISAS 2001), Ha-
vana, Cuba, March 2001.

R. Eberhart, P. Simpson, and R. Dobbins. Computational
Intelligence PC Tools. Academic Press, Boston, USA, 1996.
L. J. Fogel. Intelligence Through Simulated Evolution: Fortly
Years of Evolutionary Programming. John Wiley, New York,
1999.

S. Haykin. Neural Networks - A Compreensive Foundation.
Prentice-Hall, New Jersey, 2nd edition, 1999.

J. Kennedy. Small worlds and mega-minds: Effects of neigh-
borhood topology on particle swarm performance. In Proceed-
ings of the 1999 Conference on Evolutionary Computation,
pages 1931-1938. IEEE Computer Society, 1999.

J. Kennedy and R. Eberhart. Particle Swarm Optimization. In
Proceedings of ICNN’95 - International Conference on Neural
Networks, volume 4, pages 1942-1948, Perth, Western Aus-
tralia, November 1995.

J. Kennedy and R. Mendes. Topological Structure and Par-
ticle Swarm Performance. In Proceedings of the Conference
on Evolutionary Computatiton - CEC2002. IEEE Computer
Society, 2002.

L. Prechelt. A Quantitative Study of Experimental Evalua-
tions of Neural Network Learning Algorithms: Current Re-
search Practice. Neural Networks, 9, 1995.

J. Quinlan. Combining instance-based and model-based learn-
ing. In P. E. Utgoff, editor, Machine Learning - ML’93. San
Mateo: Morgan Kaufmann, 1993.

M. Riedmiller. Supervised Learning in Multilayer Perceptrons
- from Backpropagation to Adaptive Learning Techniques .
Computer Standards and Interfaces, 16, 1994.

B. D. Ripley. Pattern Recognition and Neural Networks. Cam-
bridge University Press, 1996.

M. Rocha, P. Cortez, and J. Neves. The Relationship be-
tween Learning and Evolution in Static and in Dynamic En-
vironments. In C. Fyfe, editor, Proceedings of the 2nd ICSC
Symposium on Engineering of Intelligent Systems (EIS’2000),
pages 377-383. ICSC Academic Press, July 2000.

D. Rumelhart, G. Hinton, and R. Williams. Learning Inter-
nal Representations by Error Propagation. In D. Rulmelhart
and J. McClelland, editors, Parallel Distributed Processing:
Ezplorations in the Microstructures of Cognition, volume 1,
pages 318-362, MIT Press, Cambridge MA, 1986.

W. Sarle. Stopped Training and Other Remedies for Overfit-
ting. In Proceedings of the 27th Symposium on the Interface
of Computer Science and Statistics, pages 352-360, 1995.

J. Schaffer, D. Whitley, and L. Eshelman. Combinations of
genetic algorithms and neural networks: A survey of the state
of the art. In Whitley and Schaffer, editors, Proceedings of
the International Workshop on Combinations of Genetic Al-
gorithms and Neural Networks, pages 1-37, June 1992.

1899

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

