
Simultaneous Evolution of
Neural Network Topologies and Weights

for Classification and Regression�

Miguel Rocha1, Paulo Cortez2, and José Neves1

1 Dep. Informática, Universidade do Minho, 4710-057 Braga, Portugal
{mrocha, jneves}@di.uminho.pt

2 Dep. Sistemas de Informação, Univ. do Minho, 4800-058 Guimarães, Portugal
pcortez@dsi.uminho.pt

http://www.dsi.uminho.pt/~pcortez

Abstract. Artificial Neural Networks (ANNs) are important Data Min-
ing (DM) techniques. Yet, the search for the optimal ANN is a challeng-
ing task: the architecture should learn the input-output mapping without
overfitting the data and training algorithms tend to get trapped into lo-
cal minima. Under this scenario, the use of Evolutionary Computation
(EC) is a promising alternative for ANN design and training. Moreover,
since EC methods keep a pool of solutions, an ensemble can be build
by combining the best ANNs. This work presents a novel algorithm for
the optimization of ANNs, using a direct representation, a structural
mutation operator and Lamarckian evolution. Sixteen real-world classi-
fication/regression tasks were used to test this strategy with single and
ensemble based versions. Competitive results were achieved when com-
pared with a heuristic model selection and other DM algorithms.

Keywords: Supervised Learning, Multilayer Perceptrons, Evolutionary
Algorithms, Ensembles.

1 Introduction

Artificial Neural Networks (ANNs) denote a set of connectionist models inspired
in the behavior of the human brain. In particular, the Multilayer Perceptron
(MLP) is the most popular ANN architecture, where neurons are grouped in
layers and only forward connections exist [3]. This provides a powerful base-
learner, with advantages such as nonlinear mapping and noise tolerance, in-
creasingly used in the Data Mining (DM) and Machine Learning (ML) fields
due to its good behavior in terms of predictive knowledge [8].

The interest in MLPs was stimulated by the advent of the Backpropagation
algorithm in 1986 and since then, several fast variants have been proposed (e.g.,
RPROP) [9]. Yet, these training algorithms minimize an error function by tun-
ing the modifiable parameters of a fixed architecture, which needs to be set a

� This work was supported by the ALGORITMI research center and the FCT project
POSI/EIA/59899/2004.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 59–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 M. Rocha, P. Cortez, and J. Neves

priori. The MLP performance will be sensitive to this choice: a small network
will provide limited learning capabilities, while a large one will induce general-
ization loss (i.e., overfitting). Thus, the correct design of the MLP topology is
a complex and crucial task, commonly addressed by trial-and-error procedures
(e.g. exploring different number of hidden nodes), in a blind search strategy,
which only goes through a small set of possible configurations. More elaborated
methods have also been proposed, such as pruning [14] and constructive [5] al-
gorithms, although these perform hill-climbing, being prone to local minima. In
addition, the gradient-based procedures used for the MLP training are not free
from getting trapped into local minima when the error surface is rugged, being
also sensitive to parameter settings and to the network initial weights.

An alternative is to optimize both the structure and weights by using Evo-
lutionary Computation (EC), which performs a global multi-point (or beam)
search, quickly locating areas of high quality, even when the search space is
very complex. The combination of EC and ANNs, called Evolutionary Neural
Networks (ENNs), is a suitable candidate for topology design, due to the er-
ror surface features [16]: the number of nodes/connections is unbounded; the
mapping from the structure to its performance is indirect; changes are discrete;
and similar topologies may present different performances. Moreover, since EC
performs a global search, it is expected to overcome local minima and reach
the optimal set of weights. Ensembles are another promising DM/ML research
field, where several models are combined to produce an answer [2]. Often, it is
possible to build ensembles that are better than individual learners. One interest-
ing way to build ANN ensembles is based on the use of heterogeneous topologies,
where a family of MLPs with distinct structures (and therefore complexities) are
combined [11]. Since ENNs use a population of different neural structures, this
strategy can be easily adapted to ENNs with no computational effort increase.

In this work, a novel ENN is presented for the simultaneous optimization
of MLPs, where a direct representation is used. New topologies are achieved by
applying a structural mutation, which adds or deletes connections or weights. On
the other hand, connection weights are optimized through Lamarckian evolution
that uses a random mutation and a local learning algorithm (RPROP). This
technique will be tested in classification and regression problems, using both
single ANN and ensemble based models. Then, the results will be compared
with a heuristic ANN selection procedure, as well with other DM/ML methods.

The paper is organized as follows. First, a description is given on the datasets
used (Section 2.1). Then, the neural and evolutionary models are presented (Sec-
tions 2.2 and 2.3). In Section 3 the experiments performed are described and the
results analyzed. Finally, closing conclusions are drawn in Section 4.

2 Materials and Methods

2.1 Classification and Regression Datasets

This work endorses two important DM/ML problems: classification and regres-
sion tasks. The former requires a correct association between input attributes

Simultaneous Evolution of Neural Network Topologies 61

Table 1. A summary of the data sets used

Task Inputs Examples Classes
Num. Bin. Nom.

Balance 4 0 0 625 3
Bupa 6 0 0 345 2
Car 0 0 6 1728 4
Cmc 5 3 1 1473 3
Dermatology 34 0 0 366 6
Ionosphere 34 0 0 351 2
Sonar 60 0 0 104 2
Yeast 7 1 0 1484 10

Abalone 7 0 1 4177 �
Auto-mpg 5 0 2 398 �
Autos 17 3 5 205 �
Breast-cancer 1 4 4 286 �
Heart-disease 6 3 4 303 �
Housing 12 1 0 506 �
Servo 2 0 2 167 �
WPBC 32 0 0 194 �

and a class label (e.g., classifying cells for cancer diagnosis). The latter deals
with a functional approximation between n-dimensional input vectors and m-
dimensional output ones (e.g., stock market prediction).

Eight classification and eight regression datasets were selected from the UCI
ML repository [13]. The main features are listed in Table 1, namely: the number
of numeric (Num.), binary (Bin.) and nominal (Nom., i.e. discrete with 3 or
more labels) input attributes, as well as the number of examples and classes.
The regression tasks are identified by the symbol � (last eight rows).

2.2 Neural Networks

The MLPs used in this study make use of biases, sigmoid activation functions
and one hidden layer with a variable number of nodes. A different approach was
followed for the regression tasks, since outputs may lie out of the logistic output
range ([0, 1]). Hence, shortcut connections and linear functions were applied on
the output neuron(s), to scale the range of the outputs (Fig. 1).

Before feeding the MLPs, the data was preprocessed with a 1-of-C encoding,
one binary variable per class, applied to the nominal attributes and all inputs
were rescaled within the range [−1, 1]. For example, the safety attribute from
the task car was encoded as: low → (1 -1 -1), med → (-1 1 -1) and high→ (-1
-1 1). Regarding the outputs, the discrete variables were normalized within the
range [0, 1] (using also a 1-of-C encoding for the nominal attributes). Therefore,
the predicted class is given by the nearest class value to the node’s output, if one
single node is used (binary variable), otherwise the node with the highest output
value is considered. On the other hand, regression problems will be modeled by
one real-valued output, which directly represents the dependent target variable.

62 M. Rocha, P. Cortez, and J. Neves

i,0w

i

i,jwj

Input Layer Hidden Layer Output Layer

connection
normal

shorcut

bias

x

x

1

2

+1

x
N

...

+1

+1

+1

Fig. 1. A fully connected Multilayer Perceptron with one output neuron, bias and

shortcuts

Two distinct accuracy measures were adopted: the Percentage of Correctly
Classified Examples (PCCE), used in classification tasks; and the Normalized
Root Mean Squared Error (NRMSE), applied in the regression ones. These mea-
sures are given by the equations:

PCCE =
∑E

i=1 1 , if(Ti = Pi)/E × 100 (%)

RMSE =
√∑E

i=1 (Ti − Pi)2/E

NRMSE = RMSE∑E

i=1
Ti/E

× 100 (%)
(1)

where E denotes the number of examples; Pi, Ti the predicted and target values
for the i-th example.

In order to provide a basis for comparison with the ENN, an Heuristic ap-
proach (HNN) to model selection was defined by a simple trial-and-error proce-
dure, where fully connected MLPs, with a number of hidden nodes ranging from
0 to 20, are trained. For each MLP, the initial weights were randomly set within
the range [−1, 1]. Next, the RPROP algorithm [9] was selected for training, due
to its faster convergence and stability, being stopped after a maximum of 500
epochs or when the error slope was approaching zero. Then, the topology with
the lowest validation error (computed over non training data) is selected. The
trained MLPs will also be used to build an Ensemble (HNNE), where the output
is given by the average over all 21 MLPs.

2.3 Evolutionary Neural Network

In the past, evolutionary approaches have been proposed for training connec-
tion weights, optimizing neural topologies and evolving both architectures and
weights [16]. Yet, in order to train an ANN, an a priori architecture needs to be
set. On the other hand, evolving neural structures without weight information
will make harder the fitness evaluation due to the noisy fitness evaluation prob-
lem: different random initial weights may produce distinct performances. Hence,

Simultaneous Evolution of Neural Network Topologies 63

it seems natural to use the global search advantages of the EC to simultaneous
evolve topologies and weights [17].

In the present work, a Simultaneous Evolutionary Neural Network (SENN)
algorithm with a direct representation is embraced, where the genotype is the
whole MLP. The population size contains P individuals and the initial popula-
tion is created by choosing structures with a random number of hidden nodes
(between 0 and H). Then, each possible connection is set with a probability
of 50%. Next, the connection weights are randomly initialized within the range
[−1.0; 1.0]. Regarding the genetic recombination, the crossover operator was dis-
carded since previous experiments [10] revealed no gain in its use, probably due
to the permutation problem; i.e., several genomes may encode the same ANN.
Thus, the evolutionary algorithm uses two different mutation operators (Fig.
2) with equal probabilities (50%): a structural mutation [12], which works by
adding/deleting a random number (from 1 to M) of nodes or connections; and
a macro mutation, which replaces a random number of weights (from 1 to M)
by a new randomly generated value within the range [−1.0, 1.0].

0.3

−0.7

1.0

−0.9

0.7

1.0

−1.0

0.6

0.4

−0.7

−0.9

0.7

1.0

−1.0

0.6

0.4

0.1

0.3

1.0

−0.8

0.3

−0.7

−0.9

0.7

1.0

0.6

0.4

0.3

1.0

0.7

1.0

−1.0

0.4

0.2

0.4

−0.2

a) Original MLP b) After macro
mutation deletion

d) After adding
connections

c) After node

Fig. 2. Example of the application of the mutation operators

This algorithm will also be combined with a local optimization procedure,
under a Lamarckian evolution setting [1]. In each generation, L epochs of the
RPROP learning algorithm are applied to each individual (MLP) in the popula-
tion, using the examples in the training set. In past work [10], this Lamarckian
approach (with macro mutation) to training outperformed eight evolutionary
algorithms (using different crossovers and mutations) and gradient-based algo-
rithms (e.g. Backpropagation and RPROP).

The fitness function is based in the RMSE (Eq. 1) computed over a valida-
tion set. The selection procedure is done by converting the fitness value into its
ranking. Then, a roulette wheel scheme is applied, being used a substitution rate
of 50%. Finally, the algorithm is stopped after G generations. The SENN En-
semble (SENNE) will be built using the best G individuals obtained during the
evolutionary process, being the output computed as the average of the MLPs.

64 M. Rocha, P. Cortez, and J. Neves

3 Results and Discussion

The ANN/EC experiments were conducted using a software package developed
in JAVA by the authors. The other DM/ML techniques were computed using
the WEKA software package with its default parameters [15]:

– J48 – a classification decision tree based on the C4.5 algorithm;
– M5P – a regression decision tree (M5 algorithm);
– IB5 – a 5-Nearest Neighbor;
– KStar – an instance based algorithm; and
– SVM – a Support Vector Machine.

For each model, 10 runs of a 5-fold cross-validation process [4] (stratified in
the classification tasks) were executed. This means that in each of these 50
experiments, 80% of the data is used for learning and 20% for testing.

With the pure ANN approaches, the learning data was divided into training
(50% of the original dataset) and validation sets (30%). A different strategy was
used for the SENN, since the simultaneous evolution of weights and topologies
is very sensitive to overfitting. Thus, the validation set is divided into: a fitness
set (15%), used for the fitness evaluation, and a model selection set (15%), used
to select the best individual (or individuals when building an ensemble). The
SENN parameters were set to P = 20, H = 10, L = 50, M = 5 and G = 20.
Tables 2 and 3 show the average errors of the 10 runs for each model and task.
The last row of each table averages the global performance of each learning
strategy.

When comparing the classification results, the ANN learning models (last
four columns) are competitive, outperforming the other ML algorithms. In effect,
the few exceptions are the dermatology and sonar tasks where the SVM and
KStar get the best results. Regarding the neural approaches, the SENN excels the
HNN with a 1.1% difference in the average performance. Moreover, the ensemble
approaches (HNNE and SENNE) obtain better results when compared with the
single based versions, with improvements of 1.4% and 1.2%. Overall, the SENNE
obtains the best predictive accuracy, being the best choice in 5 tasks.

Table 2. The classification results (PCCE values, in %)

Task J48 IB5 KStar SVM HNN SENN HNNE SENNE

Balance 78.1 87.6 88.3 87.7 94.8 96.1 95.7 96.7
Bupa 64.8 60.7 65.9 58.0 68.4 68.8 68.5 69.0
Car 91.3 92.3 87.1 93.5 97.4 98.5 98.3 98.8
Cmc 51.2 47.2 49.6 48.4 50.6 53.8 52.1 54.5
Dermatology 95.7 96.6 94.5 97.4 95.1 95.5 95.9 96.5
Ionosphere 89.4 84.6 84.0 87.9 88.9 89.9 92.3 91.9
Sonar 72.5 80.5 85.2 76.7 79.9 79.3 80.9 83.6
Yeast 56.0 57.1 53.1 56.6 58.2 59.9 59.9 60.0

Mean 74.9 75.8 76.0 75.8 79.1 80.2 80.5 81.4

Simultaneous Evolution of Neural Network Topologies 65

Table 3. The regression results (NRMSE values, in %)

Task M5P IB5 KStar SVM HNN SENN HNNE SENNE

Abalone 24.3 25.3 24.8 25.0 23.2 23.2 23.2 22.9
Auto-mpg 11.8 15.1 14.6 13.5 14.2 12.8 12.2 12.2
Autos 13.3 21.4 21.6 13.8 14.6 15.2 14.2 13.6
Breast-cancer 40.8 40.8 43.6 44.0 42.6 42.4 47.4 40.6
Heart-disease 21.2 21.0 25.5 21.5 21.9 23.3 22.2 21.7
Housing 18.4 22.2 18.0 22.6 18.4 17.1 16.6 15.8
Servo 50.4 60.4 67.6 70.5 60.8 43.4 49.6 38.3
Wpbc 73.2 73.6 98.2 71.7 75.4 75.7 80.3 71.7

Mean 33.0 35.0 39.2 35.3 33.9 31.6 33.2 29.6

For the regression tasks, the decision tree (M5P) is quite competitive, outper-
forming all non evolutionary approaches. As before, the SENN excels the HNN
(2.3% improvement) and the ensembles behave better, with enhancements of
0.7% and 2.0%. Thus, the best alternative is the evolutionary ensemble (SENNE),
followed by its single based version (SENN).

Similar work has been reported in the literature, namely the EPNet system
[6], which obtained interesting results. However, this approach was only applied
to five UCI datasets where the best results are obtained by low complexity MLPs
(in some cases linear models). It is not surprising that, since EPNet heavily
promotes simple models, good results were obtained for these cases. In this work,
the majority of the problems demanded MLPs with a much higher number of
hidden nodes, where is it believed that the EPNet system would not excel.

4 Conclusions

In this work, a Simultaneous Evolutionary Neural Network (SENN) algorithm
is proposed, aiming at the optimization of the neural structure and weights.
This approach was enhanced by considering ensembles, which combine the best
ANNs obtained by the SENN approach. The results obtained in several real-
world classification and regression tasks confirm the competitive SENN perfor-
mances, when compared with a heuristic trial-and-error design procedure (HNN)
and with other DM/ML algorithms.

Another advantage presented by the SENN is the reduced computational
effort, when compared to an evolutionary algorithm that performs only topol-
ogy optimization [12]. Indeed, with the current setup, the computational burden
is similar to the one required by the HNN. Overall, the hybrid EC/ANN en-
semble (SENNE) presents the best predictive accuracy while requiring no extra
computation, thus being the advised choice. In future work, it is intended to
test similar techniques with other ANNs (e.g., Recurrent Neural Networks). Fur-
thermore, more elaborated ensembles could be considered, by designing fitness
functions which reward specialization [7].

66 M. Rocha, P. Cortez, and J. Neves

References

1. P. Cortez, M. Rocha, and J. Neves. A Lamarckian Approach for Neural Network
Training. Neural Processing Letters, 15(2):105–116, April 2002.

2. T. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli,
editors, Multiple Classifier Systems, LNCS 1857, pages 1–15. Springer, 2001.

3. S. Haykin. Neural Networks - A Compreensive Foundation. Prentice-Hall, New
Jersey, 2nd edition, 1999.

4. R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), Montreal, Quebec, Canada, August 1995.

5. T. Kwok and D. Yeung. Constructive algorithms for structure learning in feedfor-
ward neural networks for regression problems problems: A survey. IEEE Transac-
tions on Neural Networks, 8(3):630–645, May 1999.

6. Y. Liu and X. Yao. Evolving Modular Neural Networks Which Generalize Well. In
Proc. of the 1997 IEEE Intern. Confer. on Evolutionary Computation, Indianapo-
lis, pages 670–675, New York, 1997. IEEE Press.

7. Y. Liu, X. Yao, and T. Higuchi. Evolutionary Ensembles with Negative Correlation
Learning. IEEE Transactions on Evolutionary Computation, 4(4):380–387, 2000.

8. J.R. Quinlan. Comparing Connectionist and Symbolic Learning Methods, pages
445–456. MIT Press, Cambridge, Massachustess, 1994.

9. M. Riedmiller. Supervised Learning in Multilayer Perceptrons - from Backpropa-
gation to Adaptive Learning Techniques. Computer Standards and Interfaces, 16,
1994.

10. M. Rocha, P. Cortez, and J. Neves. Evolutionary Neural Network Learning. In
F. Pires and S. Abreu, editors, Progress in Artificial Intelligence, EPIA 2003 Pro-
ceedings, LNAI 2902, pages 24–28, Beja, Portugal, December 2003. Springer.

11. M. Rocha, P. Cortez, and J. Neves. Ensembles of Artificial Neural Networks with
Heterogeneous Topologies. In Proceedings of the 4th Symposium on Engineering of
Intelligent Systems (EIS2004). ICSC Academic Press, March 2004.

12. M. Rocha, P. Cortez, and J. Neves. Evolutionary Design of Neural Networks
for Classification and Regression. In ICANNGA Proceedings, Coimbra, Portugal,
March, 2005. Springer.

13. C. Soares. Is the UCI Repository Useful for Data Mining? In F. Pires and S. Abreu,
editors, Progress in Artificial Intelligence, EPIA 2003 Proceedings, LNAI 2902,
pages 209–223, Beja, Portugal, 2003. Springer.

14. G. Thimm and E. Fiesler. Evaluating pruning methods. In Proc. of the Int. Symp.
on Artificial Neural Networks, pages 20–25, Taiwan, December 1995.

15. I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, USA, 2000.

16. X. Yao. Evolving Artificial Neural Networks. In Proc. of the IEEE, 87(9): 1423-
1447, September 1999.

17. X. Yao and Y. Liu. A New Evolutionary System for Evolving Artificial Neural
Networks. IEEE Transactions on Neural Networks, 8(3):694–713, 1997.

	Introduction
	Materials and Methods
	Classification and Regression Datasets
	Neural Networks
	Evolutionary Neural Network

	Results and Discussion
	Conclusions

