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Abstract

In recent years, bio-inspired methods for problem
solving, such as Artificial Neural Networks (ANNs)
or Genetic and Evolutionary Algorithms (GEAs),
have gained an increasing acceptance as alternative
approaches for forecasting, due to advantages such as
nonlinear learning and adaptive search. The present
work reports the use of these techniques for Real-Time
Forecasting (RTF), where there is a need for an au-
tonomous system capable of fast replies. Comparisons
among bio-inspired and conventional approaches (e.g.,
Exponential Smoothing), revealed better forecasting
performances for the evolutionary and connectionist
models.

Keywords: Artificial Neural Networks, Exponen-
tial Smoothing, Genetic and Evolutionary Algorithms,
Real-Time Forecasting, Time Series.

1. Introduction

In many industrial systems, the use of reliable forecasts,
based solely on previous data, leads to strategic advan-
tages, which may be the key to success in management
and control. Time Series Forecasting (TSF), the forecast
of a chronological ordered variable, allows the model-
ing of complex systems, where the aim is to predict the
system’s behavior and not how the system works. Contri-
butions from the arenas of Operational Research, Statis-
tics, and Computer Science have lead to solid TSF meth-
ods. Yet, although these methods give accurate forecasts
on linear Time Series (TS), they carry an handicap with
noisy or nonlinear components, which are common in
real world situations (e.g., in financial daily data) [13].

Alternative approaches for TSF arise from the Arti-
ficial Intelligence field, where there has been a trend to
look at Nature for inspiration. In particular, studies on
the nervous system and biological evolution influenced
the loom of powerful tools, such as Artificial Neural Net-
works (ANNs) and Genetic and Evolutionary Algorithms
(GEAs), widely used in scientific and engineering prob-
lems, such as the ones of Combinatorial and Numerical

Optimization, Pattern Recognition or Computer Vision.
ANNs are connectionist models that mimic the cen-

tral nervous system, being innate candidates for TSF due
to capabilities such as nonlinear learning, input-output
mapping and noise tolerance [9]. On the other hand,
GEAs are suited for optimization problems, where the ex-
haustion of all possible solutions requires huge computa-
tion [11]. GEAs perform a global multi-point search, be-
ing able to escape from undesired local minima. Indeed,
comparative studies have shown that both bio-inspired
techniques can forecast as well or even better than con-
ventional methods [14, 6]. However, these approaches
also present the handicap of requiring more computation,
due to the difficulty of optimal model parameters’ esti-
mation (e.g., ANN topology selection and training).

Real-Time Forecasting (RTF) is a special case of
forecasting, where short sampling periods are adopted
(e.g., in minutes or seconds), being widely used in con-
trol and management of critical systems. Therefore,
when designing bio-inspired models for RTF, one has
to deal with two crucial aspects: the forecasting sys-
tem needs to work autonomously, without human inter-
vention; and the model parameters need to be estimated
within the sampling period.

The present work aims at presenting a RTF archi-
tecture that is capable of using bio-inspired approaches.
The paper is organized as follows: firstly, the basic con-
cepts for RTF analysis are defined; then, the forecasting
models are presented, Next, a description of the different
experiments performed is given, being the results ana-
lyzed.

2. Time Series Forecasting

A Time Series (TS) is a collection of time ordered obser-
vations xt, each one recorded at a specific time t (period).
A TS model (x̂t) assumes that past patterns will occur in
the future. The error of a forecast is given by the dif-
ference between actual values and those predicted by the
model:

et = xt − x̂t (1)

The overall performance of a model is evaluated by a
forecasting accuracy measure, namely the Root Mean
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Figure 1. The RTF architecture.

Squared (RMSE) and Normalized Mean Square Error
(NMSE), given in the form:
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where L denotes the number of forecasts and x the mean
of the TS.

One popular TSF method is Exponential Smoothing
(ES), which is based on some underlying patterns (e.g.,
trend and seasonal ones) that are distinguished from ran-
dom noise by averaging the historical values. This popu-
larity is due to advantages such as the simplicity of use,
the reduced computational demand, and the accuracy on
short-term forecasts, specially with seasonal series. The
general model, also known as Holt-Winters, is defined by
a set of equations [8], as stated below:

Ft = α xt

St−K

+ (1 − α)(Ft−1 + Tt−1)

Tt = β(Ft − Ft−1) + (1 − β)Tt−1

St = γ xt

Ft
+ (1 − γ)St−K

x̂t = (Ft−1 + Tt−1) × St−K

(3)

where Ft, Tt and St stand for the smoothing, trend and
seasonal estimates, K for the seasonal period, and α, β

and γ for the model parameters.
Another important TSF model is the AutoRegres-

sive Moving Average (ARMA) one, which is based on a
linear combination of past values (AR components) and
errors (MA components), given in the form [2]:

x̂t = µ +

P∑

i=1

Aixt−i +

Q∑

j=1

Mjet−j (4)

where P and Q denote the AR and MA orders, Ai and
Mj the AR and MA coefficients, being µ a constant
value. Both the constant and the coefficients of the model
are usually estimated using statistical approaches (e.g.,
least squares methods).

3. Real-Time Forecasting

Real-Time Forecasting (RTF) is a special case of fore-
casting, where forecasts need to be automatically issued,
with a fast timing (e.g., every minute or second), being
a crucial element in many control systems, such as the
ones of urban water pollution [7] or the power load fore-
casting [4].

Since forecasting techniques operate on data gener-
ated by past events, an automated system will need to go
through four operations [8]: data collection, data vali-
dation, model building and model extrapolation. Based
in this cycle, a RTF architecture is presented (Figure 1),
which envelopes two main components: the preprocess-
ing and forecasting modules.

The first module transforms the raw data given by
the problem, through the use of a data acquisition sys-
tem (e.g., analogic digital converter). Then, the vali-
dation block (e.g., data filter) condensates the resulting
information into a time series with a regular sampling
period. In this work, this module will not be consid-
ered, since it is problem dependent (e.g., requiring the
use hardware components such as temperature sensors),
being assumed that the data is correctly sampled and val-
idated.

The latter module, builds the forecasts that will be
sent to a decision agent (e.g., control system). In princi-
ple, any forecasting method can be adopted for RTF, if
the temporal requirement is fulfilled. On the other hand,
real-time series can have hundreds or even thousands of
observations, forming patterns that can change dynami-
cally in time. To overcome these hurdles, two strategies
will be adopted:

• the forecasting models will have fixed structures
(i.e., with a predefined number of parameters) and;

• only recent events will be considered, when estimat-
ing a forecasting model.

The first approach simplifies the forecasting pro-
cess, reducing the computational requirement to the op-
timization of the model’s parameters. The second ap-
proach makes use of a sliding time window, which de-



fines the available forecasting data, at present time t. The
sliding window has the advantage of reducing the num-
ber of learning examples, while keeping a medium-term
memory.

The whole dynamic forecasting process will be de-
fined in terms of the Sampling Period (SP), the number
of Ahead Forecasts (AF), the sliding time Window Dis-
placement (WD) (applied each period) and the Window
Length (WL) (Figure 2).
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Figure 2. The RTF dynamic process.

Since the first three factors are defined by the prob-
lem, the tunning of the process will depend on the WL
value. A large value will difficult the model’s estimation
step, while a small one will provide insufficient informa-
tion.

4. Artificial Neural Networks

An Artificial Neural Network (ANN) is made up by sim-
ple processing units, the neurons, which are connected
in a network by synaptic strengths, where the acquired
knowledge is stored. One can find a kaleidoscope of dif-
ferent ANNs, that diverge on several features, such as
the learning paradigm or the internal architecture [9].
In a Feedforward Neural Network (FNN), neurons are
grouped in layers and only forward connections exist.
This provides a powerful architecture, capable of learn-
ing any kind of continuous nonlinear mapping, with suc-
cessful applications ranging from Computer Vision, Data
Analysis or Expert Systems, just to name a few. FFNs
are usually trained by gradient descent algorithms, such
as the popular Backpropagation, or fast variants like
RPROP [12].

The use of ANNs for TSF began in the late eighties,
with encouraging results, namely when applied to finan-
cial markets, and the field has been consistently growing
since [13].

FFNs can perform one step ahead forecasts by feed-
ing its inputs with n past values. In previous work [5],
FFNs have been successfully applied to forecast regu-
lar time series, using topologies with one hidden layer,
one output node, bias and shortcut connections (Figure
3). To enhance nonlinearity, the logistic activation func-
tion was applied on the hidden nodes, while in the output
node, the linear function was used instead, to scale the
range of the outputs (the logistic function has a [0,1] co-
domain). This solution avoids the need of filtering pro-
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Figure 3. The FNN structure.

cedures, which may give rise to loose information (e.g.,
rescaling). The general model provided by the FNN is
given in the form:

x̂t = wo,0+

n∑

i=1

xt−iwo,i+

o−1∑

i=n+1

f(

n∑

j=1

xt−jwi,j+wi,0)wo,i

(5)
where wi,j denotes the weight of the connection from
node j to i (if j = 0 then it is a bias connection), o the
output node, f the logistic function (f(x) = 1

1+e−x ), and
n the number of input nodes.

5. Genetic and Evolutionary Algorithms

The term Genetic and Evolutionary Algorithms (GEAs)
is used to name a family of computational procedures
where a number of potential solutions to a problem
makes the way to an evolving population. Each individ-
ual codes a solution in a string (chromosome) of sym-
bols (genes), being assigned a numerical value (fitness),
that stands for a solution’s quality measure. New solu-
tions are created through the application of genetic oper-
ators (typically crossover or mutation). The whole pro-
cess evolves via a process of stochastic selection biased
to favor individuals with higher fitnesses.

When one is faced with problems where the param-
eters are given by real values, the best strategy is to rep-
resent them directly into the chromosome, using a Real-
Valued Representation (RVR), which allows the defini-
tion of richer genetic operators [11].

It is surprising to realize that the work in applying
GEAs to forecasting is so scarce. In fact, although there
are some publications in this area, these are not numer-
ous nor noticeable. The existent work focuses mainly in
some kind of parameter optimization, under conventional
models such as Holt-Winters [1] or ARIMA [3].

In past work [6], the authors used GEAs with RVRs
to optimize the coefficients of ARMA models, where
the genes in the chromosome code for the weights by
which previous values and errors are multiplied, being
the model given by the equation:

x̂t = g0 +
∑

i∈{1,...,P}

gix(t−i) +
∑

i∈{1,...,Q}

g(i+P )e(t−i)

(6)



where gi stands for the i-th gene of the individuals’ chro-
mosome.

6. Some Experimental Results

To the experiments carried out in this work, two real-
time series, from the geology and health sciences, were
selected (Figure 4):

kobe a non-linear series, with a total of 1200 observa-
tions, taken each second from a seismograph of the
Kobe earthquake [10]; and

heart a trended series, referring to 2400 recordings
(with a 0.5 second sampling), of the heart rate of
a Boston hospital patient [15].

Both these series present important feature variations
through time, due to the effects of an earthquake (kobe)
and sleeping apnea states (heart).

The RTF system values were set to SP = 1s,
AF = 1 and WD = 1, for the kobe series, and
SP = 0.5s, AF = 2 and WD = 2, for the heart one.

The two bio-inspired models (based on ANNs and
GEAs) were compared to the Holt-Winters (HW) one.
A fixed ANN topology with ten input and three hidden
nodes was used, being the training performed by the
RPROP algorithm. In the case of the GEA, n was also set
to ten, being used an ARMA(10, 10) model. The popu-
lation size was set to 50, being the arithmetical crossover
[11] responsible for breeding 2

3 of the offspring and a
gaussian mutation operator accountable for the remain-
ing ones. For the HW method, non-seasonal models were
considered, being the smoothing and trend coefficients
set by a grid search. The WL was set to 100, a configu-
ration that allows a fast learning with a sufficient number
of training samples (e.g., in a 450MHz Pentium III ma-
chine, 90 iterations of the FNN training and 35 of the
GEA can be executed in one second). Finally, the fore-
casting values were only accounted after 200 seconds,
a start-up time set to permit the tunning of each model.
Thus, the evaluation will occur throughout the rest 1000
seconds, in a total of 1000 (2000) forecasts for the kobe
(heart) series.

All experiments reported in this work were con-
ducted using programming environments developed in
C++, under the Linux operating system. For the bio-
inspired models, thirty independent runs were performed
in every case to insure statistical significance. Since re-
sults may depend on the computational power available,
all simulations were tested in three different machines
(Table 1). For the HW method, a grid search with a 0.1
step in machine A, 0.05 in machine B and 0.01 in ma-
chine C was applied, to estimate the α and β coefficients.

The overall results are condensed in Table 2, in
terms of the RMSE and MNQE (in brackets) forecast-
ing errors, being the bio-inspired results (columns GEA
and FNN) presented as the mean of the thirty runs.

The results show that for the HW method, there is
no significative improvement when enlarging the search
space (defined by the grid search). In contrast, the
computational power affects the bio-inspired techniques.

Table 1. The computer machines.

Machine Processor Frequency Cache
A Pentium II 350MHz 512kB
B Pentium III 450MHz 512kB
C Pentium III 933MHz 256kB

However, for the FNNs, the forecasting performance im-
provement does not follow the computational growth.

For instance, for the kobe series, there is a 0.2%
decrease in the forecasting error, when moving from ma-
chine A to B, and from machine B to C. Yet, in the
first case there is an 30% increment in the computa-
tional power, while in the second case the magnification
is about 100%. This fact can be explained by the nature
of the FNN learning; i.e., as time goes by, convergence is
much slower. This behavior does not occur in the same
manner with the GEAs, which present higher error vari-
ations (1.3% and 2.1%), which can be explained by a
slower learning (one GEA iteration takes approximately
the double computation time, when compared to a FNN).

As an example, Figure 5 plots the last 50 real-time
forecasting errors for the kobe series, as computed by
machine B. For the bio-inspired models, it was decided
to use the average of the thirty runs. The errors obtained
by the HW method present a high amplitude, far away
from the zero axis (which denotes a perfect forecast). In
contrast, the bio-inspired techniques present better per-
formances.

The example is consistent with the results of Table
2, where the HW presents an excessive forecasting er-
ror, failing to predict the nonlinear behavior of the kobe
series. Although the HW performance improves for the
second series (heart), it is still outperformed by the bio-
inspired outcomes. The FNNs lay out even better fore-
casts than the GEAs, albeit the difference shrinks when
the computational power increases (machine C).

7. Conclusions and Future Work

The surge of new bio-inspired optimization techniques,
such as ANNs and GEAs, has created new exciting pos-
sibilities for the field of forecasting. In this work, a au-
tonomous real-time forecasting system for bio-inspired
models is applied, assuming no prior knowledge over
each series.

Comparative experiments, among conventional and
bio-inspired approaches, have shown better perfor-
mances for the latter ones, specially when considering
the connectionist models.

In future research it is intend to explore different
ANNs topologies, such as Recurrent Neural Networks or
Radial Basis Functions. Another area of interest my rely
in the enrichment of the GEA forecasting models with
the integration of nonlinear functions (e.g., logarithmic
or trigonometric). Finally, one promising field is the ap-
plication of similar approaches to real-world applications
(e.g., bioengineering or intensive care unit control sys-
tems).
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Figure 4. The kobe and heart series.
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