
A Genetic and Evolutionary Programming

Environment with Spatially Structured

Populations and Built-In Parallelism

Miguel Rocha, Filipe Pereira, Sónia Afonso, and José Neves

Departamento de Informática
Universidade do Minho

Braga
PORTUGAL

mrocha@di.uminho.pt, jneves@di.uminho.pt

Abstract The recent development of the Genetic and Evolutionary Com-
putation field lead to a kaleidoscope of approaches to problem solving,
which are based on a common background. These shared principles are
used in order to develop a programming environment that enhances mod-
ularity, in terms of software design and implementation. The system’s
core encapsulates the main features of the Genetic and Evolutionary Al-
gorithms, by identifying the entities at stake and implementing them as
hierarchies of software modules. This architecture is enriched with the
parallelization of the algorithms, based on spatially structured popula-
tions, following coarse-grained (Island Model) and fine-grained (Neigh-
borhood Model) strategies. A distributed physical implementation, under
the PVM environment, running in a local network, is described.

Keywords: (Parallel) Genetic and Evolutionary Algorithms, Spatially
Structured Populations.

1 Introduction

The unfolding of the Genetic and Evolutionary Computation (GEC) arena has
been remarkable in the last few years. The success of the applications in scientific
and engineering domains is, in fact, an undeniable fact. However, in the processes
of software development and analysis, the success has not been of a similar
nature, being still common that the elaboration of a Genetic and Evolutionary
Algorithm (GEA) may imply the programming of an application from scratch.
The motivation for this work stems from these facts, leading one to foresee
programming environments that will enable programmers to adjust software
modules to be reused.

In order to achieve the proposed aim, the major features of the object-
oriented programming paradigm are used, namely its capabilities to divide and
conquer, reutilization or modularity. Indeed, under the present framework, the
entities that make the building blocks of the the different approaches to GEC
are identified, in terms of their common background. Each conceptual entity



is, on the other hand, viewed in terms of an hierarchy of abstraction spaces,
augmenting the programmer’s degree of freedom.

The programming environment allows for several kinds of users, depending
on the task’s complexity and on the user’s skills and knowledge. It provides both
a tool for the rapid development of an application, taking advantage on existent
knowledge, and for the possibility of redefining data structures or operators, at
different abstraction levels, thus making room to the advent of more complex
program’s features.

The earlier work in the development of the proposed system contemplated
panmictic GEAs; i.e., with a single evolving population [9]. The system has been
used, both for academic purposes, being the basis for several projects executed
by undergraduate students, and for practical applications, namely in the Com-
binatorial Optimization (CO) field, where it was applied to tasks such as the Job
Shop Scheduling Problem [11], the Traveling Salesman Problem, the 0/1 Knap-
sacking Problem or the Graph Coloring one [12]. It was also object of a process of
fusion with an implementation of Artificial Neural Networks, developed under a
similar methodology, giving rise to some interesting problem solving techniques,
namely in the Machine Learning arena [10].

More recently, new features have been added to the system, namely con-
sidering different computational models for its parallelization, in terms of the
population’s spatial structure. So, new hierarchy levels were added to the en-
vironment, following two basic models: the Neighborhood Model and the Island
Model [3]. In the former, a fine-grained strategy is followed, with a spatial struc-
ture being fed to the populations, by considering coordinates for each of its
individuals in a n dimensional space. In the latter, a coarse-grained approach is
considered, with different sub-populations evolving simultaneously and exchang-
ing individuals at regular intervals. Both models have been implemented, in a
sequential way, considering a single CPU.

Furthermore, a distributed implementation of the latter model is presented,
built under the Parallel Virtual Machine (PVM) [1] environment. This system
allows for the definition of several populations, evolving in different machines,
and exchanging information through a local network infrastructure.

The paper is organized as follows: firstly, an overview of the basic framework
developed for panmictic GEAs is presented; then, the two parallel GEAs models
are defined and their implementation is described; next, the parallel implemen-
tation of the Island Model is uncovered; finally, some conclusions are drawn and
prospective future work is presented.

2 Panmictic Genetic and Evolutionary Algorithms

The term Genetic and Evolutionary Algorithms (GEA) is used to name a family
of computational procedures where a number of potential solutions to a prob-
lem makes the way to an evolving population. Each individual codes a solution
into a string (chromosome) of symbols (genes), being assigned a numerical value
(fitness), that stands for a solution’s quality measure. New solutions are created



through the application of genetic operators (typically crossover or mutation).
The whole process evolves via a process of stochastic selection biased to favor
individuals with higher fitnesses. Under this scenario, panmictic GEAs are de-
fined as those that allow for any individual to reproduce with any other; i.e.,
there is no isolation by a spatial structure.

The architecture of the GEA’s model is built upon three conceptual levels,
that encapsulate the features and behaviors of the main entities involved: the
individuals, the populations and the GEA itself [9]. Each of these abstraction
levels is materialized by an hierarchy of classes, whose root defines the set of
common data structures and methods, as well as a set of default definitions.
Specific structures and methods are defined when one descends from the root
into the leafs of the hierarchy.

As an example, consider the individual’s hierarchy of classes depicted in Fig-
ure 1. The root class, Indiv, is an abstract one; its role is to define a set of
common procedures and interfaces, to be implemented in its sub-classes. This
class has a template field, that can be assigned, a posteriori, with the respective
type. This field is used to keep the genetic information of an individual, a se-
quence of genes of a given type. Thus, it is possible to consider different types
of representation alphabets. In Figure 1 some of the built-in representations are
shown, but this set can be augmented, when the need arises.

Indiv<float>

RVRIndiv

Indiv<int>

OBRIndiv

Indiv<TGene>

Integer genes

BRIndiv

Representation
Real-valued

Abstract class

Real-valued genes

for individuals

Template instantiation
Sub-class

Order-based
Representation Binary

Representation

Integer-based
Representation

IBRIndiv

Figure 1. The individuals hierarchy’s class

Similar strategies are used at the population’s and the GEA’s abstraction
levels. In the former, the selection and the re-insertion procedures are defined,
as well as the methods for creating the initial population. In the latter, the overall
structure of the algorithm is created, being provided a default one, namely those
depicted in Figure 2, to can be used by the programmer or redefined.

The last bit of the system’s architecture is the Evaluation Module, whose
function is to encapsulate the problem’s dependent decodification and evaluation



BEGIN
Initialize time (t = 0).
Generate and evaluate the individuals in the initial population (P0).
WHILE NOT (termination criteria) DO

Select from Pt a number of individuals for reproduction.
Apply to those individuals the genetic operators to breed the offspring.
Evaluate the offspring.
Select the offspring to insert into the next population (Pt+1).
Select the survivors from Pt to be reinserted into Pt+1.
Increase current time (t = t + 1).

END WHILE
END

Figure 2. Structure of a GEA

processes. This is achieved by an abstract class defining the syntax for the eval-
uation procedure. This class is instantiated whenever a different problem is to
solved by a GEA (the corresponding fitness function is defined at this stage).

One interesting feature of the system under consideration relies on the ge-
netic’s operator handling flexibility. In fact, the user can specify, for a particular
problem, the set of operators he/she may find more adequate, and also state
their frequency of application. The concept of genetic operator was generalized
to endorse both the traditional operators, such as crossover and mutation, and
any kind of operator that may be considered of interest (since it can be stated
as a function that takes n individuals and returns m different ones).

It is also provided a set of classes to configure the GEA, that can be used to
set the values for the parameters in the selection and the re-insertion procedures,
as well as the termination criteria, the population size or other parameters that
control the process of evolution and the system’s interfaces with the outside
world.

One of the major system’s requisites relies in its capability to define hybrid
approaches; i.e., those that take the information of a problem’s instance, and
use it in the design of the genetic operators. The generalization of the genetic
operator concept, and the hierarchy of classes at the individual’s level, that
allows the definition of specific operators and general purpose ones, not only
makes possible to bring such operators into life.

3 The Neighborhood Model

In the Neighborhood Model, each individual in a population is given an unique
location in a n-dimensional space, according to a predefined topology. The posi-
tion of a given individual is given, in this case, by a set of n coordinates, being
required that each possible location is inhabited by one individual [7]. Under
this scheme, the neighbors of a specific individual can be identified, in terms of
a distance function between each pair of individuals, and a threshold one that



defines the size of the neighborhood. This will be used in order to identify an
individual’s deme; i.e., its possibilities to find reproduction mates.

For instance, consider the case where the population’s topology is that of
a two-dimensional torus. The distance between two individuals can, therefore,
be set, i according to Von-Newmann, as the set of separate consecutive move-
ments in the progression towards a final location, from a predefined one; i.e.,
the d-neighborhood of an individual may be now understood as being the set of
individuals that are located at a distance smaller or equal to d (Figure 3).

Figure 3. An individual’s 1-neighborhood in a 2D-torus.

In terms of implementation, this model implies some major changes on the
abstraction levels described in the previous section, namely on the population’s
and on the GEAs levels, making use of the original individuals classes.

To achieve a spatial structure in the population two new classes have been
created, namely the Space and Position ones. The former enables the definition
of different topologies, while the latter handles the individual’s spatial distri-
bution within the given topology. The topologies of a ring and of a torus, 2
or 3-dimensional, are handled by the system; other geometries are possible, if
needed.

This approach differs from the one that makes use of panmictic GEAs, not
only on the spatial distribution of the individuals, but also on the execution flow
of the algorithms considered, which relies on a individual based engine; i.e., each
individual can be thought to control its own evolution process. Therefore, the
major structure of the algorithm is changed, being shown in Figure 4. In each
generation, every individual in the population collects its neighborhood, selects
from this pool its reproduction mates, applies the genetic operator and creates
offspring. At this stage, an individual must decide on its own replacing offspring,
and if such operation is or is not advantageous.

There are some considerations that must be taken into account when using
this model. The tasks of collecting and selecting among neighbors, as well as the
application of the genetic operators, repeated several times (per iteration) lead
to an increased computational demand on the part of the GEA. So, one is lead
to the necessity of simplifying the selection procedures in order to maintain an



BEGIN
Initialize time (t = 0).
Generate the individuals of the initial population (P0).
Assign a spatial position and evaluate each individual in P0.
WHILE NOT (termination criteria) DO

FOR EACH individual DO
Select the genetic operator to be applied.
IF (number of incoming individuals in the operator is more than one)

Collect neighbors.
Select individual(s) from the neighborhood for reproduction.

END IF
Apply the genetic operator, breeding the offspring.
Select individual from the offspring to replace current individual.
Decide if new individual replaces its parent.

END FOR
Increase current time (t = t + 1).

END WHILE
END

Figure 4. Structure of a Neighborhood Model GEA

acceptable computational behavior. A good alternative to this task may rely on
the use of the tournament based selection procedures [2].

Since this model has specific properties that differ from the ones observed
when using the panmictic GEA approach, there is an increase in complexity,
brought in by the use of additional parameters. These include the topology
used, the distance that defines the neighborhood, the method used to select the
offspring or the decision procedure that rules the parent’s replacement by its
offspring or its maintenance in the population. Two options were considered,
namely that of always replacing the old individual by the offspring, or proceed
with the replacement’s operation if it is the case that the offspring presents a
better fitness value.

Due to the use of the object-oriented paradigm, the implementation took
advantage of numerous features of the GEA’s implementation, namely the se-
lection procedures, the evaluation module, the genetic representations and the
genetic operators.

4 The Island Model

The Island Model considers several sub-populations, evolving independently and
exchanging individuals (migrants). The islands are connected by channels, through
which individuals may move from one island to another. The topology defines the
connection architecture of the system; i.e., which sub-populations can exchange
individuals. The topology is defined by the programmer, which has the option
of selecting an existing one, such as those of a ring or a fully connected scheme,
or to create a new one.



Each island is home to one panmictic GEA, although the setup of the dif-
ferent GEAs is independent, being possible to have heterogeneous populations
evolving simultaneously (e.g., GEAs with different genetic operators). The over-
all structure of the Island Model GEA is depicted in Figure 5.

A class, called server, was implemented in order not only to control the is-
lander’s evolution, but also to manage the migration, to collect the local statis-
tics, and finally to generate the global ones.

BEGIN
Initialize time (t = 0).
FOR (each island)

Generate and evaluate the individuals on the initial population.
END FOR
WHILE NOT (termination criteria) DO

FOR (each island)
Run GEA for mi generations.

END FOR
Exchange individuals between islands using channels.
Collect statistics from each island and generate global statistics.
Increase current time (t = t + mi).

END WHILE
END

Figure 5. Structure of an Island Model GEA

The exchange of individuals (migrations) occurs at fixed intervals, every mi

generations, when a certain number of individuals goes through the existing
channels in the topology. The migration interval and the exact number of indi-
viduals that migrates, through each channel are user defined parameter.

It is believed that exchanging individuals often and in large quantities accel-
erates the overall convergence of the GEA On the other hand, it contributes to
a greater risk of being stuck in a local optimum. The opposite limits the speed
of convergence and degrades the system’s performance. So, a tradeoff must be
achieved in order to find an equilibrium.

Two different ways of exchanging genetic material are allowed: migration and
pollination. In migration, the individuals are moved from one island to another,
while in pollination the information is simply copied and the individual is main-
tained in its original population. The user can decide what kind of exchange is
more suitable to a specific problem. The programmer may also define how to
select which individuals are the migrants, using one of the selection procedures
inherited from the panmictic GEAs (e.g. Roulette-Wheel, Tournament, etc.).



5 A Distributed Implementation of the Island Model

Each of the two models here presented of GEAs with a spatial structure can be
carried out either on a sequential or on a distributed architecture. In this work,
and apart from the sequential implementation of both models, a distributed view
of the Island Model was developed. It assumes different islands, that may reside
in different computers, that cooperate in the search of the best solution to a given
problem, by exchanging information (i.e., individuals) through the network. The
environment includes a number of workstations and personal computers, with
Linux or Windows-95/98 operating systems, connected through an Ethernet local
network with a bandwidth of 10 Mbit/s.

This implementation uses the Parallel Virtual Machine (PVM) [1] technol-
ogy, which reduces the difficulty of implementing a distributed processing sys-
tem, while having a reliable communication’s infrastructure. It simulates a single
virtual space in which several processes are executing, possibly in different ma-
chines (Figure 6), providing an ordered, asynchronous and reliable exchange of
messages among them, in a anycast way. It is possible to have processes in dif-
ferent machines with different operating systems exchanging messages.

ProcessProcess 1 n

Process 2

Communications

Virtual Space

Figure 6. A scheme of the PVM environment.

The distributed implementation comprises two new classes, namely the Server
and the Island ones. The former controls the whole process, by instructing the
islands to proceed with their evolution a given amount of time (or generations),
collecting local results, calculating global statistics and handling error situations.
The latter implements the clients, by providing the interface between the GEA,
that makes its core, and the virtual space, handling the communication with
other islands and with the server (Figure 7).

The physical location of the islands and server processes is transparent, al-
lowing the execution of the server in one computer, and of one or more islands
in each computer situated in the local network. Thus, the use of the available
resources can be maximized.



Virtual World

Island

GEA

Figure 7. A representation of an Island object.

The configuration of the system follows what was said for the Island Model
referred to above. The ultimate purpose is to achieve the same, or better, re-
sults when compared to those of the panmictic GEA, while greatly reducing the
computational time.

6 Conclusions and Future Work

The proposed genetic and evolutionary programming environment, in its first
release, shows itself as a powerful programming tool that makes easier the de-
velopment of GEAs based applications. Furthermore, the system provided high
connectivity, both with the problem’s data structures making possible the de-
velopment of hybrid approaches, and with other problem solving used in the
intelligent system’s design. An example of such endeavor is found in the com-
bination achieved between GEAs and ANNs, both for Machine Learning tasks
[10] and for Time Series Forecasting [5].

With the introduction of spatially structured populations, a new path to-
wards better performances was revealed, allowing both for the better handling
of the diversity in the populations and for the equation of models for the physical
parallelization of GEAs, thus increasing their computational efficiency.

The implementation of the whole system followed the same methodology,
giving a special attention to modularity, incremental development and reutiliza-
tion, but never forgetting computational efficiency. The user with few knowledge
in the area was remembered as well as the expert researcher, and the system fits
the needs of both equally well. Therefore, the environment makes a very powerful
tool for the programming of robust and efficient GEAs.

In the future one intends to extend the physical implementation in order to
consider ways of dynamic load balancing, i.e., by assigning more work to the
more powerful and more available computation nodes. Furthermore, one intends
to study in detail the migration parameters [4] and the configuration of the
GEAs in each islands, taking advantage on the flexibility of the implementation
to achieve a better performance. The idea of developing a system that makes the
migrations depend on each island’s diversity, measured by the fitness standard



deviation, is also a topic under study [8], as well as the behavior of heterogenous
islands, enhanced for exploration or for exploitation of the search space by using
different genetic operators [6]. Finally, the fact that the framework is highly
integrated makes easy to design hybrid parallel systems, that mix both models.
The idea would is to consider an Island Model at a top level, where each island
would be a Neighborhood Model GEA.

Acknowledgements

The work of José Neves was supported by the PRAXIS’ project PRAXIS/P/EEI/13096/98.

References

1. A.Geist, A.Beguelin, J.Dongarra, W.Jiang, R.Manchek, and V.Sunderam. PVM:
Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, 1994.

2. J.E. Baker. Reducing Bias and Inefficiency in the Selection Algorithm. In
J.Grenfenstette, editor, Proceedings of the Second International Conference on Ge-
netic Algorithms and their Applications. Lawrence Erlbaum Associates, 1987.

3. E. Cantu-Paz. A survey of parallel genetic algorithms. IlliGAL Report 97003,
University of Ilinois at Urbana-Champaign, Urbana, IL, may 1997.

4. E. Cantu-Paz. Migration policies, selection pressure, and parallel genetic algo-
rithms. IlliGAL Report 99015, University of Ilinois at Urbana-Champaign, Urbana,
IL, jun 1999.

5. P. Cortez, M. Rocha, J. Machado, and J. Neves. An evolutionary and connectionist
approach for time series forecasting. In Proceedings of Thirteenth International
Conference on i Systems Engineering - ICSE 99, Las Vegas, USA, aug 1999.

6. Francisco Herrera and Manuel Lozano. Gradual distributed real-coded genetic
algorithms. IEEE Transactions on Evolutionary Computation, 4(1):43–63, apr
2000.

7. H. Mühlenbein. Evolution in time and space - the parallel genetic algorithm. In
G. Rawlins, editor, Foundations of Genetic Algorithms, pages 316–337. Morgan-
Kaufman, 1991.

8. Masaharu Munetomo, Yoshiaki Takai, and Yoshiharu Sato. An efficient migra-
tion scheme for subpopulation-based asynchronously parallel genetic algorithms.
Technical Report HIER-IS-9301, Hokkaido University, 1993.

9. J. Neves, M. Rocha, H. Rodrigues, M. Biscaia, and J. Alves. Adaptive Strategies
and the Design of Evolutionary Applications. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO99), Orlando, Florida, USA, 1999.

10. M. Rocha, P. Cortez, and J. Neves. The relationship between learning and evolution
in static and in dynamic environments. In C. Fyfe, editor, Proceedings of the 2nd
ICSC Symposium on Engineering of Intelligent Systems (EIS’2000), pages 377–
383. ICSC Academic Press, 2000.

11. M. Rocha, C. Vilela, P. Cortez, and J. Neves. Viewing scheduling problems through
genetic and evolutionary algorithms. In Proceedings of the BioSP3 workshop, 2000.

12. M. Rocha, C. Vilela, and J. Neves. A study of order based genetic and evolutionary
algorithms in combinatorial optimization problems. In R. Loganantharaj, G. Palm,
and M. Ali, editors, Proceedings of the 13th IEA/AIE’2000. Springer, 2000.


