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Abstract. Time Series Forecasting (TSF) allows the modeling of complex sys-
tems as “black-boxes”, being a focus of attention in several research arenas such as
Operational Research, Statistics or Computer Science. Alternative TSF approaches
emerged from the Artificial Intelligence arena, where optimization algorithms in-
spired on natural selection processes, such as Evolutionary Algorithms (EAs), are
popular. The present work reports on a two-level architecture, where a (meta-level)
binary EA will search for the best ARMA model, being the parameters optimized
by a (low-level) EA, which encodes real values. The handicap of this approach is
compared with conventional forecasting methods, being competitive.
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2 P. Cortez, M. Rocha and J. Neves

Introduction

Time Series Forecasting (TSF), the forecast of a chronologically or-
dered variable, corporals an important tool to model complex systems,
where the goal is to predict the system’s behavior and not how it
works. Indeed, contributions from the arenas of Operational Research
led to quantitative TSF methods that replaced the old fashioned ones,
which were primarily based on intuition. More recently, in the last two
decades, alternative nonlinear TSF approaches loomed, being Artifi-
cial Neural Networks the most popular ones. Yet, conventional TSF
methods are still popular, existing several applications where linear es-
timations are sufficient (Makridakis et al., 1998). However, these models
were developed decades ago, where higher computational restrictions
prevailed, being the parameters optimized using numerical methods
(e.g., least squares) which may be trapped in local minima.

On the other hand, Evolutionary Algorithms (EAs) are innate can-
didates for parameter estimation, since they implement a global multi-
point search, quickly locating areas of high quality. The use of EAs in
TSF is expected to increase in importance, motivated by advantages
such as explicit model representation and adaptive evolutionary search,
which prevents them to fall on undesired local minima. In the past,
EAs have been used with binary encodings for parameter optimization
of traditional TSF methods such as Holt-Winters (Agapie and Agapie,
1997) or ARMA models (Huang and Yang, 1995). However, an increas-
ing focus has been set over the use of real value genes (Michalewicz,
1996; Rolf et al., 1997; Cortez et al., 2001), since this direct repre-
sentation is more scalable and allows the definition of richer genetic
operators.

Following this trend, a two-level architecture is presented, where a
low-level EA with real encodings will be used to estimate the ARMA co-
efficients. Furthermore, the model selection stage will be automatized,
by means of a meta-level binary EA, which will search through the
space of all possible ARMA models. The whole evolutionary process
will be guided by the Bayesian Information Criterion (BIC), a sim-
ple Information Theory statistic, that prevents overfitting by adding a
model complexity penalty.

The paper is organized as follows: first, the basic concepts for TS
analysis are defined; then, a description of experiments performed on
EAs is given; next, the meta-evolutionary approach is presented and
explored; finally, the results are discussed and compared with conven-
tional TSF methods (e.g., Holt-Winters or Box-Jenkins methodology).
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1. Time Series Analysis

A Time Series (TS) is a collection of time ordered observations xt, each
one being recorded at a specific time t (period), appearing in a wide
set of domains such as Finance, Production or Control. A TS model
(x̂t) assumes that past patterns will re-occur in the future. The overall
performance of a model is evaluated by a forecasting accuracy measure,
namely the Sum of Squared Errors (SSE), Root Mean Squared Error
(RMSE) and the Theil’s U statistic, given in the form:

et = xt − x̂t

SSE =
∑t+L

i=t+1 e2
i

RMSE =
√

SSE
L

Theil′s U = RMSE√∑t+L

i=t+1
(xt−xt−1)2

L

(1)

where et denotes the forecasting error and L the number of forecasts.
A common statistical instrument for TS analysis is the autocor-

relation coefficient (within [-1.0;1.0]), which gives a measure of the
statistical correlation between a series and itself, lagged of k periods,
being computed as (Box and Jenkins, 1976):

rk =

∑s−k
t=1 (xt − x)(xt+k − x)∑s

t=1(xt − x)
(2)

where s denotes the TS size. Autocorrelations can be useful for de-
composition of the TS main features (e.g., trend and seasonal effects)
(Figure 1). A trend stands for a constant grow (or decline) in the data,
being due to factors like inflation or technological improvements. The
seasonal factor is found in series with a periodic behavior and it is very
common in monthly series (e.g., umbrella sales).

*** insert Figure 1 around here ***

A quite successful TSF method is Holt-Winters (HW), which is
based on some underlying patterns (e.g., trended and seasonable) that
are distinguished from random noise by averaging the historical val-
ues. Its popularity is due to advantages such as the simplicity of use,
the reduced computational demand and the accuracy of the forecasts,
specially with seasonal TSs. The general model is defined by the basic
equations (Makridakis et al., 1998):

Ft = α xt

St−K
+ (1 − α)(Ft−1 + Tt−1)

Tt = β(Ft − Ft−1) + (1 − β)Tt−1

St = γ xt

Ft
+ (1 − γ)St−K

x̂t = (Fxt−1 + Tt−1)St−K

(3)
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4 P. Cortez, M. Rocha and J. Neves

where Ft, Tt and St stand for the smoothing, trend and seasonal es-
timates, K for the seasonal period, and α, β and γ for the model
parameters.

The Box-Jenkins (1976) methodology is another important TSF
approach, going over model identification, parameter estimation, and
model validation. The main advantage of this method relies on the
accuracy over a wider domain of TSs, despite being more complex, in
terms of usability and computational effort, than Holt-Winters. The
global model is based on a linear combination of past values (AR com-
ponents) and errors (MA components), being named AutoRegressive
Integrated Moving-Average (ARIMA) (the seasonal version is called
SARIMA). Both ARIMA and SARIMA models can be postulated as
an ARMA(P,Q) one, given in the form:

x̂t = µ +
P∑

i=1

Aixt−i +
Q∑

j=1

Mjet−j (4)

where P and Q denote the AR and MA orders, Ai and Mj the AR

and MA coefficients, being µ a constant value. The constant and the
coefficients of the model are estimated using statistical approaches
(e.g., least squares methods). Trended TSs require a differencing of
the original values. The methodology also contemplates the possibility
of some kind of transformation in the original data (e.g., logarithmic
variation).

*** insert Table 1 around here ***

*** insert Figure 2 around here ***

To the experiments carried out in this work, a set of eight series
were selected (Table 1 and Figure 2), ranging from financial markets to
natural processes (Box and Jenkins, 1976; Makridakis et al., 1998; Hyn-
dman, 2003). All series were classified into four main categories, that
encompass the majority of the TS types, namely Seasonal and Trended,
Seasonal, Trended and Nonlinear. Each TS will be divided into a train-
ing set, containing the first 90% values and a test set, with the last
10%. Only the training set is used for model selection and parameter
optimization, being the test set used to compare the proposed approach
with other methods.
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2. Evolutionary Forecasting Models

The term Evolutionary Algorithm (EA) (Bäck, 1996) names a family of
procedures (e.g.,Genetic Algorithms or Evolutionary Strategies), where
an evolving population composed of a set of individuals, seeks for a
good solution to a given problem. Each individual encodes a solution
in a string (chromosome) of symbols (genes), to each a numerical value
(fitness) is assigned, that stands for the solution’s quality.

New solutions are created through the application of genetic opera-
tors (typically crossover and mutation) and the whole process is driven
by a stochastic process, inspired in natural selection, which favors in-
dividuals with higher fitnesses. The EA used in this work is given by
following pseudo-code:

BEGIN

Population initialization and evaluation

WHILE (termination criteria is not met)

Select ancestors to reproduction

Create new individuals using genetic operators

Evaluate the new individuals (offspring)

Select the survivors and add to the next generation

END

Two approaches to forecasting, both based on EAs with real valued
genes, were followed. In the former one, the forecasting model is a
linear combination of previous values. Under this scenario, the genes
in the chromosome code for the weights by which previous values are
multiplied. With the latter, both previous values and errors are taken
into account, following a strategy inspired on the ARMA models, where
the genes code for the coefficients. Both models make use of a sliding
time window that defines the set of time lags used to build a forecast,
also defining the number of the model inputs. A time window will be
denoted by the sequence < k1, k2, ..., kn >, for a model with n inputs
and ki time lags.

The two models considered are given, in terms of a predefined time
window, by:

AR : x̂t = g0 +
∑

i∈{1,...,n} gixt−ki

ARMA : x̂t = g0 +
∑

i∈{1,...,n} (gixt−ki
+ gi+net−ki

)
(5)

where gi stands for the i-th gene of the individuals’ chromosome.
In this work, two genetic operators were adopted:

Arithmetical Crossover - each gene in the offspring will be a linear
combination of the values in the ancestors’ chromosomes, in the
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same positions (Michalewicz, 1996). If ai and bi are the offspring’s
genes, and zi and wi the ancestors’ ones, at the position i, then
ai = λ · zi + (1 − λ) · wi and bi = λ · wi + (1 − λ) · zi, where λ is a
random number in the range [0; 1].

Gaussian Perturbation - a mutation operator that adds, to a given
gene, a value taken from a gaussian distribution, with zero mean;
i.e., small perturbations will be preferred over larger ones (Fogel,
1999).

In terms of the EA’s setup, the initial populations’ genes were ran-
domly assigned values within the range [−1.0, 1.0]. The population size
was set to 50. The fitness of each chromosome was measured by decod-
ing the individual into the forecasting model and measuring the error
over all the training patterns (RMSEt).

The selection procedure is done by converting the fitness value into
its ranking in the population and then applying a roulette wheel scheme.
In this work, the following evolutionary engine was applied: in each gen-
eration, 40% of the individuals are kept from the previous generation,
being 60% generated by the application of the genetic operators; the
crossover operator is responsible for breeding 2

3
of the offspring and the

mutation one is accountable for the remaining ones; finally, the EA is
stopped after 1000 generations.

3. Heuristic Approach to Model Selection

The EA presented above can be used for parameter estimation. How-
ever, the issue of model selection, i.e. choosing the best model for a given
TS, remains. This is strongly related with the choice of the adequate
time window (e.g., SARIMA models often use the <1, 12, 13> lags for
monthly seasonal trended series).

A good model should be able to learn from training data while gen-
eralizing to new observations, avoiding overfitting. The usual statistical
approach is to consider different candidate models, which are evaluated
according to a generalization estimate. Several complex estimators have
been developed (e.g., K-fold validation or Bootstrapping), which are
computationally burdensome (Sarle, 1995). A reasonable alternative is
the use of simple statistics that add a penalty, that is a function of
model complexity, such as the Bayesian Information Criterion (BIC)
(Schwarz, 1978):

BIC = N · ln(SSE
N

) + p · ln(N) (6)
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where N denotes the number of training examples and p the number
of parameters (in this case pAR = 1 + n and pARMA = 1 + 2n). Al-
though originally proposed for linear models, this criterion has also
been advised for nonlinear estimation (Faraday and Chatfield, 1998).

An Heuristic approach (HEA) to model selection will be used to
draw some preliminary conclusions. Four rules will be used for generat-
ing a number of possible models, through time window selection based
on the autocorrelation values (Cortez et al., 2001):

A - with all time lags from 1 to a given maximum m: < 1, 2, ...,m > (m
was set to 13, a value that was considered sufficient to encompass
monthly seasonal and trended effects);

B - with all lags containing autocorrelation values above a given thresh-
old (set to 0.2);

C - with the four lags with highest autocorrelations (in the case of the
seasonal trended series, these were taken after differencing, since
trend effects may prevail over seasonal ones); and

D - the use of decomposition information; i.e.,

− < 1,K,K + 1 > if the series is seasonal (period K) and
trended;

− < 1,K > if the series is seasonal; and

− < 1 > and < 1, 2 > if the series is trended.

The HEA procedure is given by the pseudo-code:

BEGIN

Generate models according to rules A, B, C and D

Estimate parameters of each model, by running the EA

Compute the BIC for each model

Select the model with the lowest BIC

END

*** insert Table 2 around here ***

As an example, the methodology will be explained in detail for the
prices TS (Table 2). All tests reported in this work were conducted us-
ing programming environments developed in C++ (Neves et al., 1999).
The above heuristics were tested in all series of Table 1 using both
EAs (AR and ARMA). The results of the last three columns are given
in terms of the mean of the thirty runs, being the 95% confidence
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8 P. Cortez, M. Rocha and J. Neves

intervals (Flexer, 1996) also shown for the forecasting error in the test
set (column RMSEf ).

The lowest training error (column RMSEt) is achieved for the time
lags < 1, 2 > and model ARMA. The BIC criterion works better, by
selecting a model with less parameters which provides the best forecast.
This behavior occurred consistently in all series, validating the use of
this statistic for model selection (Table 3).

*** insert Table 3 around here ***

4. Meta-Evolutionary Algorithm Approach

The HEA approach (section 3) only explores a small subset of all possi-
ble AR and ARMA models. Moreover, the time window selection rules
are ultimately based on autocorrelation values, which only measure
linear interactions that are not adequate for nonlinear series.

An alternative is to use an EA optimization procedure to model
selection, which is attractive due to its unbiased global search. Typi-
cally, Meta-EAs (Grenfenstette, 1986), also known as hierarchical EAs,
are used for the optimization of EA parameters (e.g., population size
or mutation rate). In this work, a two-level architecture is proposed,
consisting of a meta-level EA, used for model selection, and a low-level
EA (presented in section 2), with parameter estimation purposes.

A binary Meta-EA is adopted, where each individual encodes an
ARMA model, each gene representing a possible coefficient, such that
if its value is 1 it exists in the model, otherwise it is not considered
(Figure 3). The fitness of each individual in the Meta-EA is obtained
by decoding its chromosome into the ARMA model, running the low-
level EA to optimize its parameters, and finally calculating the BIC
value over the training set (Figure 4).

*** insert Figure 3 around here ***

*** insert Figure 4 around here ***

*** insert Table 4 around here ***

The Meta-EA works as an optimization procedure of second order,
so the tuning of its parameters is not considered crucial. Thus, it was
decided to adopt a population size of 50 individuals, with genetic re-
combination provided by a two point crossover and binary mutation.
The maximum AR and MA orders (P and Q) were set to 13, which sets
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Evolving Time Series Forecasting ARMA Models 9

the binary chromosome size to 27 genes (1 for the constant and 13 for
the AR and MA coefficients). Table 4 shows a synopsis of the relevant
parameter values.

The proposed Meta-EA was tested on the set of TS from Table 1.
The best ARMA models, obtained by the Meta-EA are shown in Table
5. For each TS, it is shown the set of AR and MA coefficients used by
the best model, as well as its total number of parameters (column p).
The selected models present some differences when compared with the
ones given by the HEA approach. In general, fewer time lags are used
by the AR component and the MA portion tends to be more considered
(it appears in 7 out of 8 series). As expected, the BIC values are lower
than those provided by the HEA strategy, which supports the use of
the Meta-EA.

*** insert Table 5 around here ***

As an example, the kobe forecasts are detailed in Figure 5. In the
left side, the mean forecasts of the thirty simulations is plotted against
their real values. A scatterplot is also shown (in the right), displaying
the sorted observations (horizontal x axis) versus the corresponding
forecasts (vertical y axis), for each run. Both plots reveal a good fit: in
the first case, the two curves are close, while in the second the dots are
near the main diagonal (perfect forecast).

*** insert Figure 5 around here ***

5. Overall Comparison

In this section, the obtained results are compared with conventional
TSF approaches. The Holt-Winters (HW) parameters were optimized
using a 0.01 grid search for the best RMSE, which is a common practice
within the forecasting field (Table 6). A different strategy was adopted
for the Box-Jenkins (BJ) methodology, since the model selection stage
is non-trivial, requiring the use of experts. Therefore, it was decided
to use a forecasting package (Forecast Pro), which includes automatic
model selection (Table 7). Although there are known models in the
literature (Box and Jenkins, 1976), these were discarded since they
only cover four of the tested series. Furthermore, the literature models
presented higher forecasting errors.

*** insert Table 6 around here ***
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10 P. Cortez, M. Rocha and J. Neves

*** insert Table 7 around here ***

Table 8 presents the comparison throughout bio-inspired and con-
ventional methods. The error values in the table are given in terms
of the Theil’s U statistic (Equation 1). This measure takes positive
values (the minimum of zero corresponds to a perfect forecast, while
the unity equals to a naive no change prediction) and makes easier the
comparison among the different series and methods.

*** insert Table 8 around here ***

When comparing the evolutionary approaches, the best results are
obtained by the Meta-EA (the exception is series deaths), endorsing
the use of the high level EA for model selection. Although very simple,
HW gives a better overall forecasting accuracy on the seasonal series.
This is not surprising, since HW was developed specifically for these
kind of series. However, this scenario differs when considering other
series, namely the trended and nonlinear ones, where the Meta-EA
shows its strength, outperforming both conventional TSF methods.

Despite using the same underlying family of ARMA models, the
Meta-EA outperformed the Box-Jenkins methodology in the considered
TSs. The differences can be explained by the global search provided by
the EAs, which works at two levels: a better parameter estimation
may be achieved in comparison with least squares; and a more efficient
model selection based on a reliable estimator (BIC) in conjunction with
a wider search space. This is considered the main contribution of this
work, since the Box-Jenkins methodology is widely used.

Yet, this effect is achieved with an increase of the computational
complexity. For instance, the execution times for generating a passen-

ger model on a Intel Pentium IV 1.60 GHz computer were: 20s for
a HW 0.01 grid search; 2.83s for a single low-level EA run with a full
< 1, 2, . . . , 13 > ARMA optimization; 1h29m18s for the best Meta-EA
solution (obtained in generation 38). However, acceptable solutions can
be obtained in earlier stages of the process, as shown in Figure 6, where
the BIC of the best solution (left) and forecasting error in the test set
(right) are plotted against the number of generations elapsed.

6. Conclusions

The surge of new bio-inspired optimization techniques such as EAs, has
created new exciting possibilities to the field of forecasting. Following
such a trend, it is presented in this work a constructive approach to
build TSF models, assuming no prior knowledge about the behavior of
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the series (e.g., the use of specific series transformations). Furthermore,
the systems that are generated work autonomously and do not require
any kind of statistical data analysis.

The main handicap is the computational complexity of the proposed
approach. Nevertheless, time complexity could be reduced if a subset of
promising models were incorporated into the EA’s initial population,
although this would require the use of a priori information. Since most
of the real-world TS use daily or monthly data, this is not considered
a major concern.

In future work it is intended to enrich the GA forecasting models
with the integration of nonlinear functions (e.g., logarithmic or trigono-
metric). Another area of interest may rely on the application of similar
techniques to long term and multivariate forecasting. Once the EAs
revealed good results in parameter optimization and model selection,
other optimization meta-heuristics (e.g., simulated annealing, particle
swarm optimization or ant colony optimization) can be used in any of
the tasks, including hybrid combinations.
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Table 1. The Time Series used in the experiments.

Series T? Size Range Description

passengers ST 144 [104;622] Monthly airline passengers

paper ST 120 [215;1006] Monthly sales of paper (France)

deaths S 169 [1309;2654] Monthly deaths/injuries in UK roads

maxtemp S 240 [12.8;29.5] Maximum temperature in Melbourne

chemical T 198 [16.1;18.2] Chemical concentration readings

prices T 369 [306;603] Daily IBM stock closing prices

sunspots N 289 [0.0;190.2] Annual Wolf’s Sunspot Numbers

kobe N 200 [-10045;11252] Seismograph of the Kobe earthquake

? Type: ST = Seasonal & Trended, S = Seasonal, T = Trended and N = Nonlinear.
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14 P. Cortez, M. Rocha and J. Neves

Table 2. Results of the Heuristic Evolutionary Algorithm approach applied to

the prices TS.

Model Time Lags p Training Forecasting

RMSEt BIC RMSEf

AR

A=B=< 1, 2, . . . , 13 > 14 12.10 1672 11.75±0.84

C=< 1, 2, 3, 4 > 5 9.43 1461 8.87±0.40

D1,2=< 1, 2 > 3 8.03 1346 7.57±0.09

D1=< 1 > 2 7.21 1273 7.49±0.01

ARMA

A = B < 1, 2, . . . , 13 > 27 9.57 1495 9.65±0.55

C=< 1, 2, 3, 4 > 9 7.23 1314 7.83±0.10

D1,2=< 1, 2 > 5 7.16 1285 7.77±0.02

D1=< 1 > 3 7.18 1275 7.70±0.02
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Evolving Time Series Forecasting ARMA Models 15

Table 3. Best forecasting models obtained by the Heuristic Evolutionary

Algorithm approach to model selection.

Series Model Time Lags p BIC RMSEf

passengers AR D=< 1, 12, 13 > 4 641 21.9±1.2

paper AR D=< 1, 12, 13 > 4 777 60.2±2.2

deaths AR C=< 1, 11, 12, 13 > 5 1440 135.9±1.7

maxtemp AR C=< 1, 11, 12, 13 > 5 162 0.95±0.02

chemical ARMA D=< 1 > 3 -374 0.36±0.00

prices AR D=< 1 > 2 1273 7.49±0.00

sunspots AR C=< 1, 2, 9, 10 > 5 1377 17.9±0.0

kobe ARMA A=< 1, 2, . . . , 13 > 27 2422 604±36
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Table 4. Meta-Evolutionary Algorithm and low-level EA parameter setup.

Meta-Level EA Low-Level EA

Encoding binary real

Fitness BIC RMSE

Population size 50 50

Initialization random {0,1} random [−1.0, 1.0]

Crossover two-point (80%) arithmetic (67%)

Mutation binary (20%) gaussian perturbation (33%)

Maximum generation 200 1000
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Table 5. Best models obtained by the Meta-Evolutionary Algorithm.

Series AR MA p BIC RMSEf

passengers <12> <1,2,3,9,12> 7 563 17.2±0.2

paper <12> <> 2 754 52.5±0.1

deaths <1,11,12> <13> 4 1420 137±2

maxtemp <1,7,11,12> <> 4 161 0.93±0.04

chemical <1,2> <1,2,3,4,7,11> 8 -378 0.34±0.00

prices <1> <> 1 1273 7.48±0.00

sunspots <1,2,3,9,10> <1,9> 8 1362 17.6±0.2

kobe <1,2,3,7,8,9,13> <1,3,5,6,12> 12 2219 493±10
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Table 6. The Holt-Winters forecasting models,

given by the parameters α, β and γ from Eq. 3

(obtained by a 0.01 grid search) ; and its forecasting

errors.

Series α β γ K RMSEf

passengers 0.29 0.03 0.95 12 16.5

paper 0.25 0.01 0.03 12 49.2

deaths 0.36 0.00 0.01 12 135

maxtemp 0.24 0.00 0.11 12 0.72

chemical 0.30 0.00 - 0 0.35

prices 1.00 0.02 - 0 7.54

sunspots 1.00 0.95 - 0 28.3

kobe 0.05 0.00 - 0 3199
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Table 7. The forecasting models obtained using the Box-Jenkins methodology,

given by the parameters µ, Ai and Mj of Eq. 4 (obtained by the Forecast Pro

software package); and its forecasting errors.

Series µ A?
i M?

j RMSEf

pass.†♦ 0.0 < 11, 112,−113 > < −0.351,−0.6212, 0.2213 > 17.8

paper† 0.0 < 11, 112,−113 > < −0.871,−0.8012, 0.7013 > 61.0

deaths† 0.0 < 11, 112,−113 > < −0.661,−0.9012, 0.5913 > 144

maxt.† 0.0 < 11, 112,−113 > < −0.881,−0.8912, 0.7813 > 1.07

chem.♦ 0.3 < 0.901 > < −0.561 > 0.36

prices 0.0 < 11 > < 0.121 > 7.72

suns. 14.2 < 1.391,−0.702 > 21.4

kobe 3038 < 0.711,−0.812 > < 0.771,−0.212,−0.063 > 582

? The values denotes the coeficients (Ai and Mj) and the subscripts denote the time

lags (i and j).

† SARIMA models were used for the seasonal series.

♦ The data was preprocessed with a natural logarithm transform.
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Table 8. Comparison between the different forecast-

ing approaches (based on the Theil′s U values).

Series HW BJ HEA Meta-EA

passengers 0.104 0.118 0.181 0.109

paper 0.035 0.076 0.075 0.057

deaths 0.501 0.496 0.443 0.448

maxtemp 0.137 0.186 0.148 0.143

chemical 0.830 0.861 0.834 0.777

prices 1.000 1.006 0.995 0.994

sunspots 0.762 0.434 0.305 0.295

kobe 0.823 0.027 0.030 0.020
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List of figure legends:

Figure 1. Autocorrelation coefficients (rk) of typical Seasonal & Trended,
Seasonal, Trended and Non-Trended series (x-axis denotes the k time
lags).
Figure 2. The eight TSs of Table 1 (passengers, paper, deaths, maxtemp,
chemical, prices, sunspots and kobe) in a temporal perspective.

Figure 3. Example of the Meta-Evolutionary Algorithm decoding pro-
cess.

Figure 4. The schematic representation of the Meta-Evolutionary Al-
gorithm and the low-level EA.

Figure 5. Plots of the Meta-EA one-step head kobe forecasts and the
desired value (left); and the correspondent scatterplot (right).

Figure 6. Plots of the fitness value (left) and forecasting error in the
test set (right) of the best solution obtained by the Meta-EA in the
first 50 generations.
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Figure 2.
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