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Abstract. Alternative approaches for Time Series Forecasting (TSF)
emerged from the Artificial Intelligence arena, where optimization al-
gorithms inspired on natural selection processes, such as Genetic Al-
gorithms (GAs) are popular. The present work reports on a two-level
architecture, where a (meta-level) binary GA will search for the best
TSF model, being the parameters optimized by a (low-level) GA, which
encodes real values. The machine’s performance of this approach was
compared with conventional forecasting methods, exhibiting good re-
sults, specially when trended and nonlinear series are considered.
Keywords: ARMA Models, (Meta-)Genetic Algorithms, Model Selec-
tion, Time Series Forecasting.

1 Introduction

Time Series Forecasting (TSF), the forecast of a chronologically ordered vari-
able, corporeals an important problem solving tool to model complex systems,
where the goal is to predict the system’s behavior and not how it works. Indeed,
contributions from the arenas of Operational Research, Statistics, and Computer
Science led to solid TSF methods (e.g., Exponential Smoothing) that replaced
the old fashioned ones, which were primarily based on intuition [10].

An alternative approach for TSF arises from the Artificial Intelligence (AI)
field, where it is observed a trend to look at Nature for inspiration, when building
problem solving models. In particular, studies on the biological evolution (i.e.,
derived from living organisms) influenced the loom of powerful tools, such as
Genetic Algorithms (GAs), that enriched the potential use of AI in a broad
set of scientific and engineering arenas, such as the ones of Combinatorial and
Numerical Optimization [11].

GAs are innate candidates for parameter estimation, since they implement
a global multi-point search, then locating areas of high quality solutions, even
when the search space is very large and complex. The use of GAs in TSF is



motivated by the advantages inherent to the method, such as explicit model
representation and adaptive evolutionary search, which prevents them to be
locked under undesired local minima. Therefore, it is surprising to realize that
the work in applying these techniques to forecasting is so scarce. In fact, al-
though some work had been done in this area, it is not numerous nor noticeable,
and it focuses mainly in binary encoding for parameter optimization of conven-
tional methods such as Holt- Winters [1] or ARMA models [8][4]. However, recent
developments in Genetic Programming (GP) [2] and GAs with Real Value Rep-
resentations (RVRs) [11], are expected to improve the machine’s performance of
these techniques.

In previous work [5], GAs with RVRs were adopted with some success for
TSF, being the GA used to optimize a set of parameters in a predefined model.
The present work aims at the automation of the model selection stage, by means
of a meta-level binary GA, which will search a space of possible ARMA models,
which are then optimized by the low-level GA.

The paper is organized as follows: firstly, the basic concepts for TS analysis,
and G As forecasting models are defined; then, a description of the Meta-GA and
of the conducted experiments is given; finally, the results obtained are presented
and compared with other conventional T'SF methods.

2 Time Series Analysis

A Time Series (T'S) is a collection of time ordered observations z, each one being
recorded at a specific time ¢ (period). 7'S can uprise in a wide set of domains,
such as Finance, Production or Control, just to name a few. A TS model (Z;)
assumes that past patterns will occur in the future. The error of a forecast (e;) is
given by the difference between actual values and those predicted by the model:

€t = Tt — i'\t (1)

The overall machine’s performance of a model is evaluated by a forecasting
accuracy measure, namely the Sum Squared Error (SSE), Root Mean Squared
(RMSE) and Normalized Mean Square Error (NMSE), given in the form:

SSE = Zizl €2
— SSE
RMSE = ,/TSSE (2)
NMSE = 552
i (20—

where | denotes the number of forecasts and T the mean of the T'S. The other
symbols stand for themselves.

A quite successful TSF method is Ezponential Smoothing (ES), which is based
on some underlying patterns (e.g., trended and seasonable) that are distinguished
from random noise by averaging the historical values. Its popularity is due to
advantages such as the simplicity of use, the reduced computational demand and
the accuracy of the forecasts, specially with seasonal TSs [10].



The AutoRegressive Integrated Moving-Average (ARIMA) is another impor-
tant T'SF approach to problem solving, going over model identification, param-
eter estimation, and model validation [3]. The main advantage of this method
relies on the accuracy over a wider domain of T'Ss, despite being more complex,
in terms of usability and computational effort, than ES. The global model is
based on a linear combination of past values (AR components) and errors (M A
components) This model can be postulated as an ARM A(P, Q) one, given in
the form:

P Q
Te=p+ ZAi:ct_i + Z M;je—;
i=1 =1

where P and () denote the AR and M A orders, A; and M; the AR and M A
coefficients, being p a constant value that enhances the problem solving method’s
worthiness. Both the constant and the coefficients of the model are estimated
using statistical approaches (e.g., least squares methods). The methodology also
contemplates the possibility of some kind of transformation in the original data
(e.g., logarithmic variation).

Table 1. Time Series Data

Series Type Domain Description

passengers Seasonal Tourism Monthly international airline passengers
paper & Trended Sales Monthly sales of French paper

deaths Seasonal Traffic Monthly deaths & injuries in UK roads
maxtemp Meteorology Maximum temperature in Melbourne
chemical Trended Chemical  Chemical concentration readings

prices Economy  Daily IBM common stock closing prices
sunspots Nonlinear Physics Annual Wolf’s Sunspot Numbers

kobe Geology Seismograph of the Kobe earthquake

To the experiments carried out in this work, a set of eight series were selected
(Table 1), ranging from financial markets to natural processes [3][10][9] (Figure
1). All TSs were classified into four main categories, that encompass the majority
of the TS’s types, namely Seasonal and Trended, Seasonal, Trended, Nonlinear.

3 Genetic Algorithm Forecasting Models

The term Genetic Algorithm (GA) is used to name a family of computational
procedures where an evolving population makes the way to possible solutions
to the problem. Each individual codes a solution in a string (chromosome) of
symbols (genes), being assigned a numerical value (fitness), that stands for a
solution’s quality measure. New solutions are created through the application of
genetic operators (typically crossover and mutation). The whole process evolves
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via a process of stochastic selection biased to favor individuals with higher fit-
nesses.

The first GAs [7], and most of the ones developed so far, make use of a
binary representation; i.e., the solutions to a given problem are coded into a
{0,1} alphabet. However, some authors have argued that when one is faced
with problems where the parameters are given by real values, the best strategy
is to represent them directly into the chromosome, thus using a Real-Valued
Representation (RVR).

In previous work [5], GAs with RVRs were used to optimize the coefficients
of a set of predefined models, which were a sub-class of the general ARMA(P,Q)
model, given by the form:

Ty =go+ Z 9iT(t—k;) T Z 9(j+P)€(t—k;) 3)
ie{1,...,P} Je{1,....Q}

where g; stands for the i-th gene of the individuals’ chromosome and each compo-
nent makes use of a sliding time window, denoted by the sequence <ki, ks, ..., k>,
for a n order and k; time lags.

Under this approach, heuristic strategies, based on TS analysis, were used
to define the set of attempted models, each encompassing a sub-set of the given
coefficients. This strategy implied the comparison of models with different com-
plexities. In fact, complex models tend to correctly handle the training data but
fail to generalize, a phenomenon usually termed as overfitting.

The usual statistical approach to this situation is model selection, where
different candidate models are evaluated according to a generalization estimate.
Several complex estimators have been developed (e.g., Bootstrapping), which
are computationally burdensome [12].

A reasonable alternative is the use of simple statistics that add a penalty to
the model that is a function its complexity, such as the Bayesian Information
Criterion (BIC) [13]:

BIC = N -In(23E) + p-In(N) (4)

where N denotes the number of training examples and p the number of model
parameters.

With this criterion one was able to, consistently, choose good forecasting
models to different kinds of T'Ss (Table 1). In fact, the models with good training
errors but with high complexity were prone to overfit. This strategy lead to
interesting results, impaired however by the small number of models considered.

4 Meta-Genetic Algorithm Approach

Which is the best ARMA model for a given T'S? The selection of the relevant
time lags can improve forecasting (e.g., ARIMA models often use the 1,12 and 13
lags for monthly seasonal trended series). The use of large sliding time windows



can increase the system complexity, diminishing the learning capacity of the
model, while small ones may contain insufficient information.

This issue can be addressed by trial-and-error procedures, which tend to be
unsuitable due to the huge size of the search spaces involved. A better alternative
is to use a GA optimization procedure, which is attractive due to its unbiased
automated search.

Typically, Meta-GAs are used for the optimization of the GA parameters
(e.g., population size or mutation rate) [6]. In this work, a two-level architecture
is proposed, consisting of a meta-level GA, used for the model selection task,
and a low-level GA, with parameter estimation purposes.

A binary Meta-GA is adopted, where an individual codes a different ARMA
model, each gene representing a possible coefficient, such that if its value is
1, then the corresponding coefficient exists in the model, otherwise it is not
considered (Figure 2).

: P:
MetaLevel |1]0]1]0]1]/0]0|1]0]1]0]0]0]

P
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Low-Level | 1 [Ay|Ay| M| Mg

Fig. 2. Example of a Meta-GA Decoding.

This model is optimized by running a RVR low-level GA, with each gene en-
coding a coefficient of the A RMA model, as given by equation 3. Each individual,
is evaluated by the RMSE over the training set.

On the other hand, the fitness of each meta-individual is obtained by decoding
its chromosome into the low-level GA, running it and, finally, calculating the BIC
value of the optimized model. The overall system is depicted in Figure 3.

5 Some Experimental Results

All experiments reported in this work were conducted using programming envi-
ronments developed in C++, under the Linux operating system. The proposed
Meta-GA was tested on the set of T'Ss from Table 1.

The TSs were divided into a training set, containing the first 90% values and
a test set, with the last 10%. Only the training set is used for model selection and
parameter optimization. The test set is used to compare the proposed approach
with other problem solving methods.

The Meta-GA works as an optimization procedure of second order, so the
tuning of its parameters is not crucial. Therefore, it was decided to adopt a
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Fig. 3. The Meta-Evolutionary Approach

population size of 100 individuals, with genetic recombination provided by a
two point crossover and binary mutation.

The maximum AR and MA orders (P and @) were set to 13, a value that
was considered sufficient to encompass monthly seasonable and trended effects.
Thus, the binary chromosome size will be equal to 27 genes (1 for the constant
and 13 for the AR and MA coefficients).

In both GAs, the selection procedure is done by converting the fitness value
into its ranking on the population and then applying a roulette wheel scheme. In
terms of the low-level GA’s setup, the initial populations’ genes were randomly
assigned values within the range [—1,1]. The population size was set to 50 in-
dividuals. In each generation, 40% of the individuals are kept from the original
population, and 60% are generated by the application of genetic operators.

The arithmetic crossover [11] is responsible for breeding % of the offspring and
a gaussian perturbation is accountable for the remaining ones. Finally, the GA is
stopped after 1000 epochs. Table 2 shows a synopsis of the relevant parameter
values.

The best ARMA models, obtained by the Meta-GA are shown in Table 3.
For each TS, it is shown the set of AR and MA coefficients used by the best
model, as well as its total number of parameters (column p). Thirty independent
runs of the low-level GA were performed on the best model, to insure statistical
significance, being the forecasting error over the test set presented in terms of
the mean and 95% confidence intervals (column RM SEy).

As an example, Figure 4 plots the forecasts for the last 20 elements (10%)
of series kobe, considering the average of the thirty runs over the optimized
ARMA model. In this case, both curves are close, revealing a good fit by the
forecasting model.



Table 2. Meta-GA Parameter Value Setup.

Meta-Level GA Low-Level GA

Encoding binary real

Fitness BIC RMSE

Population size 100 50

Initialization random {0,1} random [—1,1]

Crossover two-point (80%) arithmetic (67%)
Mutation binary (20%) gaussian perturbation (33%)
Maximum generation 500 1000

Table 3. Best ARMA Models Obtained by the Meta-GA.

Series AR MA p RMSEy
passengers <12> <1,2,3,9,12> 7 17.240.2
paper <12> <> 2 52.5%0.1
deaths <1,11,12> <13> 4 1372
maxtemp <1,7,11,12> <> 4 0.93+0.04
chemical <1,2> <1,2,3,4,7,11> 8 0.344+0.00
prices <1> <> 1 7.48+0.00
sunspots <1,2,3,9,10> <1,9> 8 17.6%0.2
kobe <1,2,3,7,8,9,13> <1,3,5,6,12> 12 493+10

6 Overall Comparison

A comparison throughout bio-inspired and conventional models is given in Table
4. The error values in the table are given in terms of two measures, namely the
RMSE and the NMSE (in brackets). This last measure is included since it makes
easier the comparison among the different series and methods. Each model was
optimized using all known values from the TS, excluding the last 10% values,
which will be used for forecasting. The ES parameters were optimized using a
0.01 grid search for the best RMSE, while the ARIMA forecasts were achieved
using a forecasting package (FORECAST PRO).

ES gives a better overall machine’s performance on the seasonal series. This
is not surprising, since ES was developed specifically for these kind of series.
However, this scenario differs when considering other series, namely the trended
and nonlinear ones, where the Meta-GA outperforms both conventional TSF
methods. Despite using the same underlying general ARMA model, the higher
flexibility of the Meta-GA system allowed it to exceed the machine’s performance
of the ARIMA approach, for all series considered.
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Fig. 4. One-step Ahead Kobe Forecasts.

Table 4. Comparison between the Different T'SF' Approaches

Series ES ARIMA Meta-GA
passengers 16.5 (0.70%) 17.8 (0.81%) 17.2 (0.75%)
paper 49.2 (4.4%) 61.0 (6.8%) 52.5 (5.0%)
deaths 135 (37%) 144 (42%) 137 (38%)
maxtemp 0.72 (2.5%) 1.07 (5.6%) 0.93 (4.3%)
chemical 0.35 (51%) 0.36 (53%) 0.34 (48%)
prices 7.54 (0.39%) 7.72 (0.41%) 7.48 (0.38%)
sunspots 28.4 (35%) 21.4 (20%) 17.6 (14%)
kobe 3199 (105%) 582 (3.5%) 492 (2.5%)

7 Conclusions and Future Work

The surge of new bio-inspired optimization techniques such as GAs, has created
new exciting possibilities to the field of forecasting. Following such a trend, it is
presented in this work a constructive approach to build T'SF models, assuming
no prior knowledge about the behavior of the series (e.g., the use of specific
series transformations). Furthermore, the systems that are generated work au-
tonomously and do not require any kind of statistical data analysis. The unique
drawback is the increase in the computational effort required.

Comparative experiments among conventional and bio-inspired approaches,
with several real series from diverse domains, were held, showing that ES, al-
though very simple, presents a good overall machine’s performance on seasonal
TS, being also a method that requires few computational resources. However,
when the domain gets more complex, with nonlinear behavior, this kind of meth-
ods is clearly not appropriate. The Meta-GA approach shows its strength exactly
on these scenarios. The results so far obtained prevail both on nonlinear series
or on the linear ones, specially on those with trended components.



In future work it is intended to enrich the GA forecasting models with the
integration of nonlinear functions (e.g., logarithmic or trigonometric). Another
area of interest may rely on the application of similar techniques to long term
and multivariate forecasting.
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