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Abstract. In Nature, living beings improve their adaptation to surrounding envi-
ronments by means of two main orthogonal processes: evolution and lifetime learning.
Within the Artificial Intelligence arena, both mechanisms inspired the develop-
ment of non-orthodox problem solving tools, namely: Genetic and Evolutionary
Algorithms (GEAs) and Artificial Neural Networks (ANNs). In the past, several
gradient-based methods have been developed for ANN training, with considerable
success. However, in some situations, these may lead to local minima in the error
surface. Under this scenario, the combination of evolution and learning techniques
may induce better results, desirably reaching global optima. Comparative tests that
were carried out with classification and regression tasks, attest this claim.
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1. Introduction

The remarkable adaptation of some living creatures to their environ-
ments comes as a result of the interaction of two processes, working
at different time scales: evolution and lifetime learning. Fvolution is
a slow stochastic process that takes place at the population level and
determines the basic structures of an organism. Lifetime learning works
by tuning up the structures of an individual, by a process of a grad-
ual improvement of the individual’s capability of adaptation to its
surrounding environment.

Several breakthroughs in the Artificial Intelligence arena have oc-
curred, namely in terms of new optimization procedures, based on
analogies with the evolution of natural living systems. Problem solv-
ing techniques, such as the Artificial Neural Networks (ANNs) and
Genetic and Evolutionary Algorithms (GEAs), have already on their
shoulders interesting results on a broad set of scientific and engineer-
ing tasks, such as Combinatorial and Numerical Optimization, Pattern
Recognition, Computer Vision or Robotics. In terms of a computational
procedure, evolution seems suitable for global search, while learning
should be used to perform local search.

Feedforward Neural Networks (FNNs) are one of the most popular
ANN architectures, where neurons are grouped in layers and only for-
ward connections exist. This provides a powerful connectionist model
that can learn any kind of continuous nonlinear mapping, with success-
ful applications such as Time Series Forecasting, Medical Diagnostics or
Handwritten Recognition, just to name a few. The interest in supervised
learning to problem solving and FNNs was stimulated by the advent
of the Backpropagation algorithm [20]; since then several variants have
been proposed, such as the Quickprop and the RPROP [17]. However,
these procedures are not free from escaping to local minima when the
error surface is rugged. Moreover, most of these algorithms strongly
depend on problem specific parameter settings.

On the other hand, GEAs are suited for combinatorial tasks, where
the exhaustion of all possible solutions requires a huge computation.
GEAs perform a global multi-point search, quickly locating high quality
solutions, being able to escape from undesired local minima. GEAs and
ANNs have been combined in three major ways: to set the weights in
fixed architectures, to learn neural network topologies, and to select
training data for ANNs [24].

The use of evolutionary search as an ANN learning method may
overcome gradient-based handicaps, but convergence is in general much
slower, since these are general purpose methods. In the past, GEAs
have presented difficulties in fine tuning, being overtaken by other
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techniques, like the gradient descent methods (e.g., Quickprop) [22].
Nevertheless, GEAs have also shown advantages in training, under do-
mains where gradient information is difficult to obtain (e.g., Recurrent
Networks [3]).

Evolution and learning can be combined in two major ways, following
the Baldwin [8] and Lamarckian evolution [1] approaches. Both pro-
cesses use lifetime learning to accelerate evolution; their main difference
is that the latter allows the inheritance of the acquired information.

The aim of this work is to study the benefits of the combination of
evolution and lifetime learning, when applied to Machine Learning (e.g.,
classification and regression tasks). The combination of evolution and
learning will be materialized via a GEA, where each individual codes
for the weights of a FNN. The individuals are allowed to improve their
fitness during lifetime, by a gradient descent process. The Lamarckian
point of view will be adopted, since previous work favored this strategy
under static environments [19].

The paper is organized as follows: firstly, the basic concepts of the
GEAs and of the different learning models are defined; then, the bench-
marks of the learning tasks are presented; finally, the experiments and
the associated results are shown and discussed.

2. Genetic and Evolutionary Algorithms

The term Genetic and Evolutionary Algorithm (GEA) is used to name
a family of computational procedures where a number of potential
solutions to a problem makes the way to an evolving population. Each
individual codes a solution in a string (chromosome) of symbols (genes),
being assigned a numerical value (fitness), that stands for a solution’s
quality measure. New solutions are created through the application of
genetic operators (typically crossover or mutation). The whole process
evolves via a process of stochastic selection biased to favor individuals
with higher fitnesses.

The first GEAs [9], and most of the ones developed so far, make
use of a binary representation; i.e., the solutions to a given problem
are coded into a {0,1} alphabet. However, for larger problems, binary
encodings result in very large strings which can slow down the evolu-
tionary process. Some authors have argued that the best strategy is
to represent weights directly into the chromosome, thus using a Real-
Valued Representation (RVR), which opens the way for richer genetic
operators [25].

In this work, two genetic operators were adopted. Its picture is given
below:
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Two-point crossover - It works by selecting two random cutting
points on a chromosome. The offspring are created by taking inter-
mediate segments of one of the ancestors and inserting them into
the other one [9].

Gaussian Perturbation - This is a mutation operator that adds, to
a given gene, in a selected chromosome, a value taken from a
Gaussian distribution, with a zero mean (i.e., small perturbations
will be preferred over larger ones) [23].

3. Learning Models

Four different models will be defined to approach each learning task,
that is to say:

The Connectionist Model (CM) - The learning is achieved by a
single NN, with a fixed problem dependent topology. The training
is attained by the RPROP algorithm, chosen due to its faster con-
vergence and stability in terms of problem’s parameter adjustment.

The Darwinian Model (DM) - The learning process is accomplished
by a GEA as described in Section 2, where a population of n real-
valued chromosomes is evolving (in this case n was set to 20), each
coding the weights of an FNN. In each iteration, 50% of the individ-
uals are kept from the previous generation, being the remaining
bred through the application of genetic operators (crossover or
mutation). The crossover operation is responsible for breeding 75%
of the offspring and the mutation operation is accountable for the
remaining ones. The selection procedure is done by converting the
fitness value of each chromosome into its ranking in the population,
and then applying a roulette wheel scheme.

The Lamarckian Model (LM) - 1t combines both [lifetime learn-
ing and evolution, making use of GEAs, as the main engine, and
gradient-based FNN training methods, for local search (in this
case, 20 epochs of the RPROP algorithm). The ANN’s improved
weights are encoded back into the chromosome (Figure 1).

The Population of Connectionist Models (PM) - This approach
is added with the purpose of achieving a fair comparison among
the different models so far presented, in particular to measure the
weight of the genetic operators in the learning process. A popu-
lation of 20 ANN’s will improve only via the learning algorithm
(RPROP); i.e., no genetic or selection procedure is applied.
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Figure 1. An illustration of the Lamarckian strategy of inheritance.
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For all models, the initial weights are randomly assigned within the
range [—1;1]. The training accuracy of each FNN is measured in terms
of the Root Mean Squared Error (RMSE), according to the expression:

RMSE = \/E?_l E;n:1 (T3, —Fi;)?
p

m

where p denotes the number of the training patterns, m the number
of the FNN outputs, T; ; the target and F; ; the actual value, both for
the output j and the ¢ input pattern. This metric is used as the fitness
value for each individual in the DM and LM models. For the population
based models (DM, LM and PM), the overall accuracy is given by the
RMSE of the best individual.

4. Machine Learning Tasks

The experiments that will be considered in this work endorse two
main types of problems, which encompass the majority of ANNs’ ap-
plications: the classification and the regression ones. The former re-
quires a correct association between input patterns and output classes
(e.g., classifying cells for cancer diagnosis). The latter deals with a
functional approximation between n-dimensional input vectors and m-
dimensional output ones (e.g., bank creditworthiness prediction). The
main difference will be set in terms of the output representation. The
outputs in classification tasks will be given by one boolean value for
each possible class, while in regression problems, a real-valued output
will code each of the m variables.

The learning problems will also be classified in terms of their prove-
nience: artificial, whose data is generated by a computer; realistic,
although artificially generated, it is modeled with attributes found in
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real data (e.g., with added noise); and real, where the data available
is taken from a physical phenomena. Prechelt [15] argued that a mini-
mum of two realistic or real problems from different domains should be
adopted when comparing learning algorithms, since realistic tasks give
a better representation of real world applications, while real phenomena
may contain surprising or unknown features.

In terms of the classification problems, two synthetic and two real
cases were selected:

The N Bit Parity (NBP) - This is a famous benchmark [17], being
defined by 2V patterns of N inputs (N was set to 6 in the exper-
iments) and one output, which is set to the value 1, if the total
number of input bits set to 1 is odd, and 0 otherwise.

The Three Color Cube (TCC) - This is a simple artificial task that
consists in learning how to paint a large 3D cube, made up by a
3x3 grid of blocks (27 smaller cubes) (Figure 2) [19]. Each smaller
cube is represented by its coordinates on the X, Y and Z axis, that
can take values from the set {—1,0,1}, and can be painted with
three different colors: black, grey and white. The corners are black,
the cubes in the center are white, being the others grey (Figure 2).
In terms of the ANN training cases, 27 patterns are created, one
for each cube, consisting of 3 inputs and 3 outputs (one for each
color).

Figure 2. The Three Color Cube problem.

The Sonar: Mines vs Rocks (SMR) - The task is to discriminate
between sonar signals bounced off a metal cylinder and those
bounced of a roughly cylindrical rock [7]. The data has 104 training
cases with 60 real inputs and one boolean output.

The Diabetes tn Pima Indians (DPI) - This task consists in dia-
betes diagnosis (a boolean output) from seven input real variables
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(e.g., number of pregnancies). The data is defined by 200 samples,
taken from a population of women of a Pima Indian heritage [18].

Four regression tasks, ranging from different fields, were also con-
templated:

The Sin Times Sin (STS) - A nonlinear artificial function approx-
imation, where 80 points were generated from two cyclic curves:
y = sin(8z) x sin(6x) (Figure 3).

The Pumadyn Robo Arm (PRA) - A realistic simulation of the
dynamics of a Puma 560 robot arm, where the angular acceleration
of one robot arm is predicted from eight inputs (e.g., angular po-
sitions and velocities) [4]. The data consists in 128 training cases,
taken from a nonlinear simulation with moderate noise.

The Rise Time Servomechanism (RTS) - An extremely nonlin-
ear phenomenon, where the goal is to predict the rise time of a
servomechanism, based in 167 training instances, using two gain
settings (integers) and two discrete choices of mechanical linkages
[16].

The Prognostic Breast Cancer (PBC) - The aim is to predict the
cancer to recur or disease-free time (in months), using 32 features
extracted from a breast mass (e.g., texture or tumor size). The
data is defined by 198 training samples taken from a Wisconsin
database [12].
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Figure 8. The Sin Times Sin problem.
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5. Experiments and Results

A set of experiments were conducted, in order to evaluate the perfor-
mance of each of the given models in the learning tasks. The results
obtained are compared in terms of two orthogonal parameters: the
overall learning process accuracy and the process efficiency, measured
by the time elapsed. The termination criteria for the experiments was
defined by a bound on CPU time, adjusted to the complexity of each
task.

All experiments reported in this work were conducted using pro-
gramming environments developed in C++ [14], under the Linuz oper-
ating system running on a PC with a Pentium II 350 MHz processor.
For all case studies, at each time slot, it were considered the average
of the results obtained in thirty independent runs.

Table I. Neural network architectures
(number of nodes per layer).

Task Input Hidden Output

6BP 6 6 1
TCC 3 6 3
SMR 60 6 1
DPI 7 1
STS 8 1
PRA 8 8 1
RTS 4 4 1
PBC 32 4 1

Each problem was modeled with fully connected FNNs, with one
hidden layer and bias connections, being the number of neurons in each
layer given in Table I. The topologies were chosen in order to make the
learning of the task possible with a minimum complexity, following the
Occam’s Razor principle.

The standard logistic activation function was used in all classifica-
tion tasks. In the case of the regression problems, the logistic function,
adapted to a [—1, 1] codomain, was used on the STS task. For the other
ones, a different strategy was adopted, since outputs were unbounded.
In this case, the logistic activation function was applied on the hidden
nodes, while the output nodes used shortcut connections and linear
functions, to scale the range of the outputs. This solution avoids the
need of filtering procedures, which may give rise to loose information
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(e.g., rescaling). On the other hand, it has been applied successfully in
other situations, like Time Series Forecasting [5).

The results obtained are shown in Figures 4 and 5, where the evo-
lution of the RMSE is plotted, in terms of CPU time (in seconds).
More accurate information on the final results is presented in Table II.
An analysis of the results shows that the LM outperforms the other
models in both classification and regression tasks, being the most ac-
curate model in the long term. The CM shows a faster convergence,
presenting itself as the best choice when few computational time is
available. However, after the initial stages, it looks as being trapped in
local minima.

The results obtained by the PM make clear the importance of the
genetic recombination. In fact, it is not enough to introduce diversity
into the population to escape from local minima. The behavior of the
PM was even worse than that of the CM one, due to the sharing
of computational resources between the several ANNs. Therefore, the
combination of lifetime learning and evolution in ANN’s training may
exceed the contribution of the sum of its parts.

Table II. Best learning results.

Task CM DM LM PM

6BP  0.236 0.315 0.109 0.247
TCC 0.280 0.339 0.226 0.248
SMR 0.061 0.378 0.014 0.314
DPI  0.171 0.340 0.142 0.192
STS 0.299 0375 0.277 0.319
PRA 0946 2.23 0.784 1.08

RTS 0.359 0.582 0.261 0.418
PBC 222 29.4 17.9 23.2

The performances were reported only over training sets, apparently
disregarding overfitting. The two main approaches to tackle this issue
are regularization (e.g., early stopping) and model selection (e.g., BIC
criterion) [21]. This last alternative, avoids the need for validation
sets, and has shown better results in previous work [5]. In this case,
choosing the best topology and training are independent tasks, favoring
algorithms that provide lower errors.
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6. Conclusions and Future Work

Some work in this arena has already been put forward, where simi-
lar models have been compared and good results have been presented
for Lamarckian approaches. Belew et al. [2] reported success with the
Lamarckian evolution, although only one problem was considered for
the experiments. Furthermore, the evolution process was based on a
GEA with a binary encoding and the learning was performed by the
standard Backpropagation algorithm. Other ANN architectures have
also been considered. Ku et al. [11] have developed similar work in
the context of Recurrent Neural Networks, where it is believed that the
training is more prone to local minima. Radial Basis-Function Networks
have also been focused in [6].

However, some of these studies consider only the benefits of lifetime
learning, and the tradeoff between benefits and costs is rarely consid-
ered [13]. In the present work, the comparisons between the models is
made by considering the CPU time, so that they can be fair.

On the other hand, Kitano’s experiments [10] suggested that hy-
brid GEA/ANN approaches do not provide advantages over randomly
initialized multiple applications of a fast gradient descent algorithm
(e.g., Quickprop). However, experiments carried out in this study have
shown that a better accomplishment can be achieved by a Lamarckian
approach (the RPROP algorithm is considered to have an equal or
faster convergence than Quickprop [17]).

The results do support the idea that the Lamarckian evolution of
learning entities makes itself a very interesting method for Machine
Learning. It is also hard not to fall into the temptation of comparisons
with natural systems, where Lamarckian evolution is not the prevailing
rule. Yet, it may be referred that, due to the complexity of the natural
embryogenetic processes, a recoding of the genetic information after
lifetime learning had occurred would be a difficult and costly task.

In the future one intends to enlarge the experiments domain, by
looking at some real-world applications, such as those of system’s con-
trol, time-series forecasting or medical diagnosis. Some of these prob-
lems are typically embedded in dynamic environments, where the learn-
ing tasks evolve over time. To cope with such features, some degree of
adaptability is necessary, and it is believed that the GEAs can assume
a decisive role in this process, namely when counsidering Lamarckian
and Baldwinian learning models [19].
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