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Centro de Engenharia Biológica

Universidade do Minho
Campus de Gualtar

4710-057 Braga
PORTUGAL

{irocha, ecferreira}@deb.uminho.pt

Abstract-
Evolutionary Algorithms (EAs) have been used to

achieve optimal feedforward control in a number of fed-
batch fermentation processes. Typically, the optimiza-
tion purpose is to set the optimal feeding trajectory, be-
ing the feeding profile over time given by a piecewise lin-
ear function, in order to reduce the number of parame-
ters to the optimization algorithm.

In this work, a novel representation scheme for the
encoding of the feeding trajectory over time is proposed.
Each gene in the variable sized chromosome has two
components: a time label and the real value of the vari-
able.

The new approach is compared with a traditional
real-valued EA, with chromosomes of constant size and
fixed discretization steps. Three distinct case studies are
presented, taken from previous work from the authors
and literature, all considering the optimization of fed-
batch fermentation processes. The experimental results
show that the proposed approach is capable of results
better or at the same level of quality of the best tradi-
tional EAs and is able to automatically evolve the best
discretization steps for each case, thus simplifying the
EA’s setup.

Keywords: Fed-batch fermentation optimization, Op-
timization of feeding trajectories, Real-valued representa-
tions, Variable size chromosomes.

1 Introduction

A number of valuable products such as recombinant pro-
teins, antibiotics and amino-acids are produced using fer-
mentation techniques and thus there is an enormous eco-
nomic incentive to optimize such processes.

However, these are typically very complex, involving
different transport phenomena, microbial components and
biochemical reactions. Furthermore, the nonlinear behav-
ior and time-varying properties make bioreactors difficult to
control with traditional techniques.

Under this context, there is the need to consider quanti-
tative mathematical models, capable of describing the pro-
cess dynamics and the interrelation among relevant vari-
ables. Additionally, robust global optimization techniques
must deal with the model’s complexity, the environment
constraints and the inherent noise of the experimental pro-

cess [2].
Several optimization methods have been applied in this

task. It has been shown that, for simple bioreactor systems,
the problem can be solved analytically [21]. Numerical
methods make a distinct approach to dynamic optimization.
The gradient algorithms are used to adjust the control trajec-
tories in order to iteratively improve the objective function
[3].

In contrast, dynamic programming methods discretize
both time and control variables to a predefined number of
values. A systematic backward search method in combi-
nation with the simulation of the system model equations
is used to find the optimal path through the defined grid.
However, in order to achieve a global minimum the compu-
tational burden is very high [20].

An alternative approach comes from the use ofEvolu-
tionary Algorithms (EAs), which have been used in the past
to optimize nonlinear problems with a large number of vari-
ables.

This technique has been applied with success to the opti-
mization of feeding or temperature trajectories [10][1]. and,
when compared with traditional methods,EAsusually per-
form better [18][5].

An important issue regarding the optimization of feed-
ing trajectories is how to deal with the discretization of the
variables. Typically, the number of time points considered
in the numerical simulation of the models involved is too
high to allow the optimization of the feeding values at ev-
ery point. Thus, there is the need to consider only its value
in some given points and to interpolate the value of the re-
maining, i.e. to consider piecewise linear approximations to
the control profile.

If the number of points (or intervals) considered by an
optimization algorithm, namely anEA is too high, the opti-
mization process will grow in complexity, slowing its con-
vergence and resulting in quite irregular final trajectories,
which make difficult its practical implementation.

On the other hand, if few points are considered the op-
timization process is simpler, the solution is smoother, but
it can be sub-optimal, since large spaces of the fitness land-
scape are ignored. One other disadvantage of the traditional
approaches is the fact that the spacing between the points
(the size of the sub-intervals) is usually fixed.

In this work, the aim is to develop a new representation
that can be used within anEA in order to allow the optimiza-



tion of a time trajectory. TheEA evolves a piecewise linear
function, simultaneously setting the values of the function
in a few points and its time labels. The number of points
considered is variable, which allows the profile to change
rapidly at certain areas, whereas in others it is more con-
stant.

In previous work from the authors, a real-valued rep-
resentation basedEA was successfully applied to the op-
timization of feeding trajectories in fed-batch recombinant
Escherichia colifermentation process [17].

In this work, the same process and two other case studies
drawn from literature were tackled. The original real-valued
EAwas compared with the new representation basedEAsin
these tasks.

The paper is organized as follows: firstly, the fed-batch
fermentation case studies are presented; next, traditional
EAsare described and the corresponding results are shown;
the description of the novelEAand its results follow; finally,
a discussion of the results, conclusions and further work are
presented.

2 Case studies: fed-batch fermentation pro-
cesses

In fed-batch fermentations there is an addition of certain nu-
trients along the process, in order to prevent the accumula-
tion of toxic products, allowing the achievement of higher
product concentrations.

During this process the system states change consider-
ably, from a low initial to a very high biomass and product
concentrations. This dynamic behavior motivates the devel-
opment of optimization methods to find the optimal input
feeding trajectories in order to improve the process. The
typical input in this process is the substrate inflow rate as a
function of time.

For the proper optimization of the process, a white box
mathematical model is typically developed, based on dif-
ferential equations that represent the mass balances of the
relevant state variables.

2.1 Case study I

In previous work by the authors, a fed-batch recombinant
Escherichia coli fermentation process was optimized by
EAs [14][17]. This was considered as the first case study
in this work and will be briefly described next.

During the aerobic growth of the bacterium, with glucose
as the only added substrate, the microorganism can follow
three main different metabolic pathways:

• Oxidative growth on glucose:

k1S + k5O
µ1−→ X + k8C (1)

• Fermentative growth on glucose:

k2S + k6O
µ2−→ X + k9C + k3A (2)

• Oxidative growth on acetic acid:

k4A + k7O
µ3−→ X + k10C (3)

whereS, O, X, C, A represent glucose, dissolved oxygen,
biomass, dissolved carbon dioxide and acetate components,
respectively. In the sequel, the same symbols are used to
represent the state variables concentrations (in g/kg);µ1 to
µ3 are time variant specific growth rates that nonlinearly
depend on the state variables, andki are constant yield co-
efficients.

The associated dynamical model can be described by the
following equations:

dX

dt
= (µ1 + µ2 + µ3)X −DX (4)

dS

dt
= (−k1µ1 − k2µ2)X +

Fin,SSin

W
−DS (5)

dA

dt
= (k3µ2 − k4µ3)X −DA (6)

dO

dt
= (−k5µ1 − k6µ2 − k7µ3)X + OTR−DO(7)

dC

dt
= (k8µ1 + k9µ2 + k10µ3)X − CTR−DC (8)

dW

dt
' Fin,S (9)

beingD the dilution rate,Fin,S the substrate feeding rate (in
kg/h),W the fermentation weight (in kg),OTR the oxygen
transfer rate andCTR the carbon dioxide transfer rate.

The kinetic behavior, expressed in the ratesµ1 toµ3, was
given by a specific algorithm based on the state variables,
that is out of the scope of the present work but can be found
in [13].

The purpose of the optimization is to determine the feed-
ing rate profile (Fin,S(t)) that maximizes the productivity
of the process, defined as the units of product (recombinant
protein) formed per unit of time. In this case, it is usually
related with the final biomass obtained, when the duration
of the process is pre-defined. Thus, aperformance index
(PI) is defined by the following expression:

PI =
X(Tf )W (Tf )−X(0)W (0)

Tf
(10)

The relevant state variables are initialized with the fol-
lowing values:X(0) = 5, S(0) = 0, A(0) = 0, W (0) = 3.
Due to limitations in the feeding pump capacity, the value
of Fin,S(t) must be in the range[0.0; 0.4]. Furthermore,
the following constraint is defined over the value ofW :
W (t) ≤ 5. The final time (Tf ) is set to25 hours.

2.2 Case study II

The system is a fed-batch bioreactor for the production
of ethanol bySaccharomyces cerevisiae, firstly studied by
Chen and Huang [4]. The aim is to find the substrate feed
rate profile that maximizes the yield of ethanol.

The model equations are the following:

dx1

dt
= g1x1 − u

x1

x4
(11)

dx2

dt
= −10g1x1 + u

150− x2

x4
(12)



dx3

dt
= g2x1 − u

x3

x4
(13)

dx4

dt
= u (14)

wherex1 is the cell mass,x2 the substrate concentration,
x3 the ethanol concentration,x4 the volume of the reactor,
u the feeding rate.

On the other hand, the kinetic parametersg1 andg2 are
given by the following algebraic equations:

g1 =
0.408
1 + x3
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x2

0.22 + x2
(15)

g2 =
1

1 + x3
71.5

x2

0.44 + x2
(16)

The aim of the optimization is to find the feeding profile
(u) that maximizes the followingperformance index:

PI = x3(Tf )x4(Tf ) (17)

The final time is set toTf = 54 (hours), and the initial
values for the state variables are the following:x1(0) = 1,
x2(0) = 150, x3(0) = 0 andx4(0) = 10. Additionally,
there are physical constraints over the variables, namely:
0 ≤ x4(t) ≤ 200 for all time points and the feeding rate
0 ≤ u(t) ≤ 12.

2.3 Case study III

This system is a model for the production of secreted for-
eign protein using baker’s yeast as the host organism in a
fed-batch bioreactor, developed by Park and Ramirez [12].
The substrate feed flow rate is the only control variable and
the system is governed by the following differential equa-
tions:

dx1

dt
=

4.75A(x2 − x1)
0.12 + A

− ux1

x5
(18)

dx2

dt
=

x3x4e
−5x4

0.1 + x4
− ux2

x5
(19)

dx3

dt
= (A− u

x5
)x3 (20)

dx4

dt
= −7.3Ax3 −

u(x4 − 20)
x5

(21)

dx5

dt
= u (22)

wherex1, x2, x3 andx4 are the concentrations of secreted
protein (units/L), total protein (units/l), cells (g/l) and sub-
strate (g/l) respectively;x5 is the fermenter’s volume (l) and
u the feed rate (l/h).

The specific growthA (h−1) follows substrate inhibition
kinetics and is given by:

A =
21.87x4

(x4 + 0.4)(x4 + 62.5)
(23)

The aim of the optimization is to find the feeding profile
(u) that maximizes the followingPI:

PI = x1(Tf )x5(Tf ) (24)

The final time is set toTf = 15 (hours) and the initial
values for relevant state variables are the following:x1(0) =
0, x2(0) = 0, x3(0) = 1, x4(0) = 5 andx5(0) = 1. The
feed rate is constrained to the rangeu(t) ∈ [0.0; 3.0].

3 Evolutionary Algorithms for Feeding Trajec-
tory Optimization

3.1 Description of the algorithm

The first approach was to develop a traditionalEA for opti-
mizing the feeding trajectory of the bioreactors, maximizing
the performance index defined for each task.

Real-valued representations were used in order to encode
the feeding amounts, since these have proven to be more
appropriate than the classical binary ones, in tasks where
the purpose is to optimize real valued parameters [7][9].

Thus, each gene will encode the amount of substrate to
be introduced into the bioreactor, in a given time unit, and
the genome will be given by the temporal sequence of such
values. In this case, the size of the genome would be deter-
mined based on the final time of the process (Tf ) and the
discretization step (d) considered in the numerical simula-
tion of the model, given by the expression:Tf

d .
However, as the resulting genome would be very large

(typically with 5000 genes, for case study I), feeding values
were defined only at certain equally spaced points, and the
remaining values are linearly interpolated. The size of the
genome (G) becomes:

G =
Tf

dp
+ 1 (25)

wherep stands for the number of points within each in-
terpolation interval. The value ofd used in the experiments
wasd = 0.005, for case studies I and III andd = 0.01 for
case study II. In the following section a number of experi-
ments is reported for distinct values forp.

The evaluation process, for each individual in the pop-
ulation, is achieved by running a numerical simulation of
the defined model, given as input the feeding values in the
genome. The fitness value is then calculated from the final
values of the state variables according to thePI defined for
each case.

Regarding the reproduction step, both mutation and
crossover operators were taken into account.

Two mutation operators were used, namely:
• Random Mutation, which replaces one gene by a

new randomly generated value, within the range
[mini,maxi] [9]; and

• Gaussian Mutation, which adds to a given gene a
value taken from a Gaussian distribution, with a zero
mean and a standard deviation given bymaxi−mini

4
(i.e., small perturbations will be preferred over larger
ones).



where[mini;maxi] is the range of values allowed for gene
i.

In both cases, an innovation is introduced: the mutation
operators are applied to a variable number of genes (a value
that is randomly set between1 and10 in each application).
The application of this strategy in the training ofArtificial
Neural Networks[16] has improved the results and a better
performance in the context of this work was verified empir-
ically.

On the other hand, the following crossover operators
were chosen:

• Two-Point crossover, a standardGenetic Algorithm
operator [9], applied in the traditional way;

• Arithmetical, where each gene in the offspring will be
a linear combination of the values in the ancestors’
chromosomes [9];

• Sum, inspired inDifferential Evolution[5], where the
offspring genes denote the sum or the subtraction of
the genes in the parents.

A set of experiments was conducted in order to find the
best set of genetic operators for this problem [17]. The best
result was obtained using an alternative that contemplates
the use of all genetic operators described above. In this case
the crossover operators are responsible for breeding 50% of
the offspring and the mutation operators the remaining 50%.

All operators were constrained to respect the limits of the
gene’s values, i.e., when an operator creates a gene value
outside of the allowed range, the value in the offspring is
equal to the one in the parents. Different ranges can be de-
fined to different genes at distinct locations.

In terms of theEAs setup, the population size was set
to 200. The selection procedure is done by converting the
fitness value into a linear ranking in the population, and then
applying a roulette wheel scheme. In each generation, 50%
of the individuals are kept from the previous generation, and
50% are bred by the application of the genetic operators.

The overall structure of theEA is presented in Figure 1.
The implementation of the proposedEAwas based on a gen-
eral purpose package, developed by the authors in theJava
programming language. All experiments reported were run
under theLinux operating system on aPC with a Pentium
IV 2.4 GHzprocessor.

BEGIN
Initialize time (t = 0).
Generate and evaluate the initial population (P0).
WHILE NOT (termination criteria) DO

Select fromPt individuals for reproduction.
Apply the genetic operators to breed the offspring.
Evaluate the offspring.
Insert the offspring into the next population (Pt+1).
Select the survivors fromPt to be kept inPt+1.
Increase current time (t = t + 1).

END

Figure 1: Structure of theEA

3.2 Experiments

The EA proposed in the previous section was applied to
the three case studies presented in section 2. Each alter-
native was tested by 30 independent runs, and each run was
stopped after 2000 (case studies I and III) or 1000 genera-
tions (in case study II).

The results are presented in Tables 1, 2 and 3. The first
column of the tables represents the interpolation valuep ex-
plained before (the corresponding value in terms of real time
- hours - is given in brackets). The second column gives the
number of genes in theEA’schromosome (G). The last two
columns show the results, in terms of thePIs defined be-
fore for each case study. These are presented in terms of the
mean of the 30 runs, the 95% confidence intervals and, in
the last column, the best result obtained over the runs.

Table 1: Results obtained by the traditional real codedEAs
- case study I.

p (dp) G Mean±conf.int. PI Best PI
50 (0.25h) 101 8.48± 0.06 8.62
100(0.5 h) 51 8.75± 0.04 8.87
200(1 h) 26 8.95± 0.03 9.13

500(2.5 h) 11 9.18± 0.05 9.34
1000(5 h) 6 9.08± 0.08 9.18

Table 2: Results obtained by the traditional real codedEAs
- case study II.

p G Mean±conf.int. PI Best PI
50 (0.5 h) 109 20163± 83 20355
100(1 h) 55 20295± 69 20403
200(2 h) 28 20332± 25 20376

540(5.4 h) 11 20017± 17 20061

Table 3: Results obtained by the traditional real codedEAs
- case study III.

p G Mean±conf.int. PI Best PI
20 (0.1 h) 151 32.596± 0.006 32.611
50 (0.25 h) 61 32.585± 0.007 32.594
100(0.5 h) 31 32.557± 0.001 32.559
200(1 h) 16 32.354± 0.001 32.356

500(2.5 h) 7 31.797± 0.000 31.798

An analysis of the results shows two clear conclusions:
• In all cases, there is a considerable difference in the

results obtained with distinct values forp, showing
that the correct choice of the interpolation parameters
is crucial step to the performance of theEA in the
optimization of feeding profiles.

• There is no clear way to choose the best value ofp and
G, since the results are quite different for each of the
three case studies. In fact, in one case (I) the best re-
sult is obtained for a small number of genes and large
interpolation intervals, while in another (III) the op-



posite is true (being the third a middle term between
the two).

These conclusions drawn from the previous results show
that it would be very interesting to be able to automatically
adapt the values ofp andG to a given task, thus replacing
a trial-and-error approach. This is the aim of the new repre-
sentation described in the following section.

4 A new representation for automatic interpo-
lation

4.1 Description of the algorithm

A novel representation is proposed to encode the values of
a variable over time. Each gene in the chromosome is made
of two distinct components: a time label (integer) and the
value of the variable for that point in time (a real value).

In the chromosomes, the genes are ordered by their time
labels. The first gene always has time label 0 and the last
gene always has a time label equal to the maximum time.

From the points represented in the genome it is possible
to calculate the remaining values of the variable using linear
interpolation. Iftg represents the time label of a geneg and
vg the value of the same gene, the value of the variable for
any given time pointt (V (t)) is given by:

V (t) = vk + (vk+1 − vk)
t− tk

tk+1 − tk
(26)

given thattk < t < tk+1.
Let’s assume that an individual is given by the following

values:
Time labels 0 234 1235 2345 3000
Values 2.3 1.2 0.1 1.8 2.9

In this case, the value of the variable for time point1000
would be:

V (1000) = 1.2 + (0.1− 1.2)
1000− 234
1235− 234

= 0.358 (27)

This new representation imposed the development of
new genetic operators, that were mostly inspired in the ones
presented in the previous section. The mutation operators
were kept unchanged, since they only apply to the values,
leaving the time labels intact.

Regarding the crossover operators, thesumand arith-
meticalwere changed in the following way: the time labels
from each parent are sent to each of the offspring, while the
values are calculated according to the rules of the crossover,
considering the interpolated value of the variable when it is
not in the genome.

Thetwo-pointcrossover was changed in a different way:
cutting points were achieved by randomly generating two
time values and finding the corresponding cut points in both
parents. The recombination follows the original operator,
being exchanged both time labels and values.

One of the major improvements that this new represen-
tation brings is the variable size of the chromosomes, thus
enabling the greater or smaller detail of the representation,
in global terms or even locally in some region of the domain.

To achieve this feature, the individuals in the popula-
tion are randomly generated and have chromosomes with
distinct sizes. So, when creating an individual, its size
is determined from an uniform distribution in the inter-
val [minS,maxS] (in the experimentsmaxS = 12 and
minS = 2).

Furthermore, two mutation operators were created in or-
der to allow dynamic changes in the size of the individuals:

• Grow: consists in the introduction of a new gene into
the genome, in a random position. The time label is
randomly selected between the time labels of the ad-
jacent genes. The value of the new gene is randomly
selected in the allowed domain.

• Shrink: a randomly selected gene is removed from the
genome.

Both operators are only applied when the maximum and
minimum size constraints are obeyed. With the introduc-
tion of the new genetic operators, the probabilities used in
the experiments are the following: the crossover operators
have a probability value of 40%, the random andGaussian
mutation have probabilities of 20% each and the new muta-
tion operators have a probability of 10% each.

4.2 Experiments

The EA proposed in the previous section was applied to
the three case studies presented in section 2. Each alter-
native was tested by 30 independent runs, and each run was
stopped after 2000 (case studies I and III) or 1000 genera-
tions (in case study II).

The results are presented in Table 4. The first column
of the table represents the case study. The second column
gives the mean of the number of genes in the chromosome
from the best solution in each run. As before, the last two
columns show the results, in terms of thePIs presented in
terms of the mean of the runs, the 95% confidence intervals
and the best result obtained.

Table 4: Results obtained by theEAswith a new represen-
tation.

CS Mean G Mean±conf.int. PI Best PI
I 11.7 9.20± 0.03 9.31
II 26.3 20378± 18 20412
III 87.3 32.650± 0.001 32.652

From the results it is clear that in terms of thePI of the
solutions found, the newEA was capable of finding solu-
tions at the level of the bestEApresented before, or slightly
better.

Therefore, theEA was clearly capable of automatically
finding the best setup for the discretization, discovering the
best points to perform linear interpolation. TheG column
also shows that the three case studies were indeed quite dif-
ferent once the number of genes in the best solutions shows
a wide variation.



5 Discussion

In a number of studies, the smoothness of the trajectory
has been considered an important feature of a good solu-
tion in the optimization of bioprocesses, and new filtering
or smoothing reproduction operators were proposed [18].

The proposedEA rewards smooth trajectories in the
sense that its populations start with individuals that in aver-
age have a small number of points (around 10). The number
only increases if the fitness function rewards a less smooth
trajectory. As an example, in Figure 2 the feeding profile
obtained (in the best run) for case study I by the newEA
shows a quite smooth trajectory.

Figure 2: Feeding trajectory obtained by theEAsbest run
(case study I).

Furthermore, this new representation easily allows the
control of the smoothness of the trajectory by limiting the
size of the individuals or favoring operators such as the
shrink mutation.

One important question to discuss is the capability of
each of the algorithms to provide a good solution within
limited CPU time constraints. The proposed approach does
not impose an increase in the computational burden, when
compared to the traditionalEA.

Furthermore, the proposedEA reaches good solutions
faster than the traditionalEAs. In Figure 3 it is shown a
graph of the convergence of the two best traditionalEAs
and of the automatic interpolationEA for case study II. It is
clear that the proposedEA achieves better solutions in less
generations. A similar behavior can be observed in the other
two case studies.

Another issue that is important to discuss is the global
quality of the results obtained by the differentEAs. In fact,
the values of thePIs obtained for case studies II and III are
quite competitive with the ones previously published for the
same problems. In case study II, the work reported in [8]
obtains an average value of 20357.2, which is better than
the results obtained in [4], usingsequential quadratic pro-
gramming.

In case study III, the work reported in [19] uses sev-
eral alternatives based on aReal Coded Genetic Algorithm
(RCGA)combined with a number of specialized filtering

Figure 3: Convergence of the traditionalEAsand the auto-
matic interpolation (case study II).

operators. The plainRCGAobtains a result of 32.41, while
the alternatives with filtering operators obtain results in the
range between 32.64 and 32.67.

In case study I, the results are better than the ones ob-
tained by using a gradient based algorithm, implemented by
the MATLAB optimization toolbox functionfmincon(ver-
sion 2.1). The detailed results can be found in [15].

6 Conclusions and further work

In this work a novelEA was proposed in order to optimize
the feeding trajectory in fed-batch bioreactors. A new rep-
resentation was suggested to encode the values of a variable
over time. This representation contemplates the use of vari-
able size chromosomes, where each gene consists of a pair
time label (integer) - value (real number). A number of re-
production operators were adapted or built to work with this
representation.

It was shown that this newEA effectively optimizes
the feeding trajectory, automatically handling interpolation/
discretization issues and producing good results in terms of
the performance index and smooth profiles. Three distinct
case studies were taken as benchmarks, with quite distinct
features, namely when looking at the optimal feeding pro-
files.

In previous work, real valuedEAs were developed to
simultaneously optimize the feeding trajectory, the initial
conditions and the duration of a fermentation process (case
study I). In the future, the new representation proposed here
will be extended to handle the optimization of the initial val-
ues of the state variables and also to allow the optimization
of the final time of the process.

The quantitative model that serves as a base for the sim-
ulations done in this work is based on differential equa-
tions. Other types of models have been proposed in lit-
erature, namelyFuzzy Rulesor Artificial Neural Networks
[20][11]. The testing of the proposedEAsin these settings
is desirable.

Another area of future research is the consideration of
on-line adaptation, being the model of the process updated



during the fermentation process, a task that can be also per-
formed byEAs. In this case, the good computational perfor-
mance of the proposedEAsare a benefit, if there is the need
to re-optimize the feeding given a new model and values for
the state variables measured on-line.

Furthermore, a number of parameters in the proposedEA
can be adjusted, namely the selection procedure (e.g. by
consideringstochastic universal sampling). Since theEA
also makes use of several genetic operators, it would be in-
teresting to study the adaptation of its probabilities along
the evolution of tbe algorithm, following a strategy that was
firstly proposed by Davis [6].
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