Adaptive Strategies and the Design of Evolutionary Applications

José Neves Miguel Rocha

Hugo Rodrigues

Miguel Biscaia José Alves

Departamento de Informatica
Universidade do Minho
PORTUGAL

Abstract

Over the last few decades, one has observed
a remarkable increase, both in the number,
and in the quality of approaches to problem
solving, with an inspiration on natural evolu-
tion. It was shown how the evolutionary pro-
cesses can be applied to solve scientific and
engineering problems, using what is well un-
derstood as genetic, or more generally, Evo-
lutionary Algorithms (EAs). However, in the
software engineering counterpart, some cor-
relations have not been fully matched, and
often a new problem to solve implies the de-
velopment of an application from scratch. So,
how does this apply to problem solving 7 By
developing a system that will take advantage
of the major features of the object-oriented
paradigm, using the ANSI/ISO C++ lan-
guage. By considering several abstraction’s
levels, therefore encapsulating the most sig-
nificant building blocks of the EA, although
leaving the sufficient room for specific imple-
mentations, so common in the field. A sys-
tem that will be reusable, in that, under mild
conditions, a wide variety of FAs can be tes-
ted (e.g., Fvolution Straiegies, Fvolution Pro-
gramming and Genetic Algorithms), either in
their sheer versions, or by considering some
processes of hybridization.

1 Introduction

In problem solving, the generality dimension suggests
two ways for moving through the problem space - one
can make the existing hypothesis more general, or one
can make it more specific. These options also suggest
two basic schemes for searching of the space of concept
descriptions. One may start with the most general hy-
pothesis and, as new instances are found, more specific
descriptions are brought forth. One the other hand,
one may begin with a very specific hypothesis, moving

to more general descriptions, as new facts are obser-
ved. Both approaches take advantage of the partial
ordering on hypothesis to constrain search, and most
machine learning approaches to problem solving have
adopted one or the other of these methods. Whereas
most problem solving systems have to arrange search
according to the procedure referred to above, an ex-
ception is the evolutionary approach, which does not
use the partial ordering [Hol75], [Hol86], [Fog66] and
[Rec73]. This knowledge is acquired on the fly, and
used to guide the evolution process; e.g. to reject ac-
tions, namely crossovers or mutations, which are either
recorded or suspected to be unsuccessful. It is claimed
that on trivial (static) problems, avoiding to repeat
errors is significantly less misleading than attempting
to repeat successes.

In recent years, one has been observing a remarkable
growth in the volume of applications, aiming to ta-
ckle an increasing number of problems, in a broader
set of domains, such as Numerical and Combinato-
rial Optimization, Design, Computer Vision, Machine
Learning, Telecommunications, Scheduling and Time-
tabling, just to name a few. Furthermore, it is clear
a significant trend to combine the capabilities of the
Evolutionary (or Darwinian) paradigm to problem sol-
ving, with other techniques and methods, bringing to
life the so called hybrid systems, already with some
good results on their shoulders.

An analysis to the Evolutionary Computation (EC)
field reveals an enormous diversity in terms of the me-
thodologies, architectures, algorithms and operators
used, that obviously leads to alike, but not identical,
software, and presents a major obstacle to its reusa-
bility. However, a careful look at the wide picture,
provided by this kaleidoscope of applications, can pro-
vide an useful insight. In fact, it is undeniable that
the great majority of the proposed approaches share
some common features; i.e., the building blocks that
make the core of the EC artifacts define a common
background, that can be used in terms of software de-
velopment and analysis.

Indeed, the purpose is straightforward - to identify
these building blocks, and to implement them, when
building FC applications. In order to accomplish this
alm, one resorts to the major features of the object
oriented paradigm, namely viewing problem solving
as a process that goes through an hierarchy of abs-
traction spaces - each criticality level being a different
abstraction space. The solution at each level forms
a plan for the solution at the immediate lower level,
making the way for the modular and incremental cons-
truction of EC’s applications; i.e., the user only needs
to implement the features that are specific to his/her
problem, and to take advantage of all the previously
stated abstraction spaces.

The system allows for several kinds of use, depending
on the task the user has at hand, and the programming
skills he/she possesses. Thus, the user can, on the
one hand, use the system’s knowledge, data structures
and operators, providing only the coding of the solu-
tions and the evaluation function, or he/she can, on
the other hand, redefine both the data or knowledge’s
structure and operators, or even the Fvolutionary Al-
gorithm (EA) itself. A framework is created under
which a vast number of paradigms may be studied, in-
cluding Evolution Strategies (ES), Evolution Program-
ming (EP) and obviously Genetic Algorithms (GAs).
A special attention is devoted to make sure the sys-
tem is capable of allowing for the development of hy-
brid systems, in their various forms. So, it is set that
one may combine the hierarchy of abstraction spaces
that make a problem, it’s data structures and ope-
rators, with the hierarchy of abstraction spaces that
make the KA. The language chosen to implement the
system was the ANST/ISO C++ [Str86].

In the next section, it is briefly presented the archi-
tecture of the proposed system, and addressed some
implementation issues, being given an overview of the
process of building an FC application. One finishes in-
terposing some questions and pinpoint some directions
for future work.

2 The Archetype

The system’s architecture is basically made upon th-
ree conceptual levels, encapsulating the properties and
methods of the main entities presented in it, namely
the individuals, the populations, and the EAs (Figure
1). The procedures decodification and evaluation make
the interface between the environment (or the problem
state) and the system.

The main question that arises is concerned with the
creation of abstraction spaces at these levels, and how
to connect the evaluation module with these structu-
res, in a convenient manner. These problems are ad-
dressed by using abstract classes, with template fields,
at the different abstraction spaces, at the different con-
ceptual levels. A posteriori, the templates are assigned

Evaluation
Module

Individuals Problem

Figure 1: The system’s conceptual levels.

with the respective types, where a type assignment to
a finite set T' of type variables z;(i = 1,...,n), is a fi-
nite list £ = (21,T1), ..., (2n, Ty), such that any T; is
legal in T

At the individual’s conceptual level, one defines an hie-
rarchy of classes, whose root is an abstract class, Indiv,
with a template field that contains its genotype; i.e.,
its genetic information. In this way, one sets the doings
for any kind of representational scheme, simply by as-
signment the template with the necessary type, either
simple or compound (Figure 2). The classes so far
developed contemplate binary genes, order-based re-
presentations (with integer genes), and real-valued re-
presentations (genes of C++ type float). Other kinds
of representational schemes and operators can easily
be introduced into the system, when required. An in-
dividual is given as an object, with a set of shared at-
tributes (e.g., fitness value, size) and a vector of genes
of a given type (the chromosome).

Abstract class

for individuals

Real-valued genes

Real-valued
Representation

Integer genes

OBRIndiv

Order-based
Representation

BRIndiv

Binary representation

,,,,,,,,, Template instanciation
——— Sub-class

Figure 2: Scheme of the classes developed at the indi-
vidual’s level.

A similar strategy is used at the population’s level,
where the basic class is Popul, and the template field

keeps the type of the individuals used by the EA. A
population is, therefore, an object containing several
attributes (e.g., size, statistics, selection parameters,
operator’s table), and an array of individuals of a gi-
ven type, defined as referred above; i.e., as classes at
the individual’s level.

At the upper level one has the FA, being possible to
define an hierarchy, rooted by a class that takes the po-
pulation as a template field. Its possible instantiations
are determined by the set of the classes defined at the
population’s level. An FA object includes an attribute
of a separate class, FAPar, to keep some run-time user
defined data, such as the selection procedure and con-
trol parameters, the population size, the chromosome
size, the information on the operator table, and a link
to the evaluation module. At this level one defines the
structure of the evolutionary algorithm; i.e., the com-
putations that may occur in each iteration of the FA,
and the termination criteria. A method, run(), is crea-
ted, setting the default structure of the FA (Figure 3);
this can be changed by redefining the method into an
user defined subclass.

BEGIN
Initialize time (¢ = 0).
Generate the individuals that will make
the initial population (Pp).
Evaluate these individuals.
WHILE NOT (end criteria) DO
Select from the present population (P;)
the individuals for reproduction.
Apply the genetic operators to the parents,
in order to breed the offspring.

Proceed on the evaluation of the new individuals.

Select the offspring to insert
into the next population (Pi41).
Select the survivors from Py
to be inserted into P;41.
Increase current time (¢t =t + 1).
END WHILE
END

Figure 3: Default structure of the EA.

The last of the functionalities to be incorporated into
the system was the evaluation module. This makes the
interface between the EA programming environment,
and the user’s related applications, clustering into a
class (and into sub-classes), the problem specific fea-
tures of the KA. It is mandatory to have a sub-class to
class Ewval, defining the process of decodification; i.e.,
how to depart from the genotype and arrive at the
phenotype (the solution to the target problem). Tt is
also necessary to define the way this solution should
be evaluated; i.e., how to assign a fitness value to the
individual.

In general, the FA’s are got by default, thus allowing

a less prepared user to take advantage of the system,
but also enabling a more experienced one to (re)design
several features from scratch and create its own FAs.

3 Implementation issues

3.1 Genetic operators

When faced with existing implementations of EAs, one
is confronted with a multitude of genetic operators, na-
mely the crossover and mutation ones, intimately re-
lated to the representational schemes used at the level
of the individuals’ genotype.

However, in a vast number of approaches, crossover
and mutation are not the sole operators used. For
example, it is common to consider specific optimiza-
tion operators, as in the so called Lamarckian evo-
lution [Whi95]. Other alternatives contemplate the
use of inversion operators, social disaster techniques
[Kur96], or multi-parent crossover (or orgies) [Muh93],
among many others.

In order to cope with all this diversity, and to gain
greater flexibility, a scheme was designed to consider,
for each application, a table of operators, to be sto-
chastically used at the reproduction phase. To each
operator on the table, is associated a range from which
it may be selected, via a roulette wheel scheme. The
sum of these values, for the chosen operators, should
be 1 (one):

n

L= {(m, P(m)) | Y Pn) =1} (1)

i=1

where T is the stochastic operator table, n; is the ope-
rator i, P(n;) is the probability of use of operator i,
and n is the number of operators. Each operator is
also defined in terms of the number of individuals ta-
ken as input, the number of individuals it returns, and
a value that measures its sense of application; i.e., a
genetic operator may be defined as the production:

... x Indiv,, x Parameters
... x Indiv,

Operator : Indiv; X
— Indivy %

where the 'x’ stands for the Cartesian product and
'’ means '—’. The described scheme allows one to
represent both the mutation and crossover operators,
and also to contemplate the definition of others. Fur-
thermore, it enhances the algorithm by opening the
possibility of considering several different operators in
the same run, feature that is believed to improve the
efficiency of the genetic algorithm in preventing its pre-
mature convergence to local optima.

The possibility of self-adaptation and control of the
FA, by changing the value of some parameters on the
fly is also contemplated, although the algorithms used

to do so in a profitable way are still a subject under
study [Ang95].

The definition and implementation of the genetic ope-
ratos is, obviously, done across the abstraction space,
that make the individual’s conceptual level. Gene-
ral purpose operators, that can be applied to diverse
representacional schemes are defined at higher levels,
while the more specific ones can be found at the base
of the hierarchy. Therefore, specific operators should
be defined in the leaf classes.

In run time, whenever an operator is selected to be
applied to a given set of individuals (the ancestors)
of a given type, the more specific suitable operator is
applied.

3.2 Selection

A set of selection procedures are provided, being at the
user’s shoulders to make the best choice, although the
system may act by default. Each of these procedures
make an object of the FA, being characterized by:

e The problem’s type (i.e., it may be a minimization
or maximization one);

e The number of the individuals of the population
being replaced, per generation;

e The number of ancestors selected for reproduc-
tion, per generation;

e The number of offspring created, per generation;

e The selection method used (e.g., roulette wheel,
universal stochastic sampling, tournament);

e The normalization process of the fitness values
used under the evaluation phase; 1.e., before se-
lection (e.g., raw, linear scaling, ranking)x ;

e The process used to convert a problem from a mi-
nimization setting, to a maximization one, when
necessary;

e The elitism value; i.e., the number of the indivi-
duals that are automatically selected to be part
of the next generation.

3.3 Evaluation function

The integration of the evaluation function, in an FA, is
quite straightforward. A sub-class to the virtual class
FEuval is created, and an object of this class is inclu-
ded as one of the FA’s parameters, at the level of the
EA. This subclass should implement a method, eva-
luate(), that assigns a fitness value to each individual
in the population. Conceptually, it should perform a
decodification of the chromosome into a solution to the
problem, and then evaluate it (Figure 4).

PROBLEM

Decodification
SOLUTION GENOTYPE
Cost function Evaluation
COST FITNESS

Figure 4: Conceptual scheme of the evaluation proce-
dure.

In terms of implementation, one includes in this class
a pointer to a structure containing the necessary data
from the problem instance.

3.4 Exception handling

To deal with abnormal situations a constraint handling
mechanism has been devised, working like a firewall.
The abnormal situations raise exceptions. These are
defined in terms of the class Invariant, given as:

template class <class I, class E>
Invariant(I inv, E#* excep)

At the implementation level, integer values are used for
the types I and E. The exceptions thrown when an
abnormal event is detected are captured by an object,
and handled by its set of instructions. One handles
both general purpose exceptions (e.g., memory allo-
cation errors), and specific ones raised by the user’s
misuse of the classes provided.

3.5 I/0 facilities

The I/O subsystem is based on C++ streams, being
device independent (Figure 5). To each class, with in-
put/output operations, two operators were developed:

istream& operator >> (istream& is, object& obj)
(2)
ostream& operator << (ostream& os, object& obj)

()

where operator (2) implements the reading operation;
i.e., it reads an object (e.g. Popul or Indiv) from a
device, handled by the input stream is. In a similar
way, through the operator (3), an object is written to
a device.

3.6 C++ operators

The features of the C++ language were largely exploi-
ted, namely its aptitude for operator handling, here

Individual Device
Population Socket
EA File

(D)

Figure 5: Stream I/O facilities.

(B

materialized through the operators:

e operator[] — it pinpoint objects in a container
(e.g., a gene in an individual or an individual in a

population).

e operator+ — it adds an object to a container.

e operator— — it removes an object from a contai-
ner.

On the other hand, operators like assignment or com-
parison were generalized to handle different kinds of
data types. This made the code to be more legible,
and keen for maintenance.

3.7 Termination criteria

The termination criteria is based on the number of ge-
nerations of the FA. Nevertheless, other methods are
being studied, in particular the ones based on statisti-
cal measures of convergence of the FA, and the genetic
diversity of the populations.

4 Building evolutionary applications

The framework so far studied may now be used in or-
der to build FA applications. One starts presenting
the user with a set of alternatives in the use of FAs
for problem solving, and the necessary steps to be con-
sidered at each stage. Finally, a practical example is
shown, namely the way one can build a set of different

FEAs for solving the well known Traveling Salesman
Problem (TSP).

One may consider, basically, two different approaches
to problem solving, according to the basics of EC. The
first one leads to the development of FAs, indepen-
dently of the problem to solve, creating robust and
general-purpose optimization tools. In this case, the
framework should provide the necessary representatio-
nal schemes and operators, at the indiwvidual’s level,
and also provide the general structure of the popu-
lation and the FA, at the higher levels. For example,

choosing a binary representation to the individuals, to-
gether with a proper selection of parameters and ope-
rators, it should be sufficient to build a simple GA, as
defined by Holland [Hol75].

To cope with such demands, there are already avai-
lable some representational schemes, and their asso-
ciated operators. If the problem fits into one of these
schemes, then the task of the programmer, in terms of
software development and analysis, is greatly reduced.
There is, however, an operation that has to be conside-
red, namely the creation of the evaluation procedure,

following the methodology referred to above (Section

The results obtained so far with general purpose evolu-
tionary problem solving tools are not yet satisfactory
- the solutions to the problem may not be coded with
the representational schemes, as the ones provided (Fi-
gure 2), the general purpose operators may not be ef-
ficient enough, or even the default structure of the FA
is not the most suitable one. Therefore, some more
specific applications, contemplating special represen-
tacional shemes and/or genetic operators are needed,
as well as hybridization processes, that may contribute
to combine the merits of the EFAs, with those of other
techniques. It is a requirement of the system to be
flexible enough to give the proper support to each of
these scenarios.

The (re)definition of new functionalities in the sys-
tem 1s done by a well known technique in object-
oriented programming, that involves the creation of
sub-classes at the appropriate conceptual levels (indi-
viduals,populations, EA, evaluation). For example, the
inclusion of a new genetic representational scheme or
the definition of problem specific operators imply the
inclusion of a sub-class at the individuals conceptual
level, as well as the definition of a non-random ini-
tial population implies the inclusion of a new class at
the population’s conceptual layer, or the definition of
a non-stationary fitness landscape would require the
inclusion of a sub-class into the evaluation module.

4.1 Developing EA’s to tackle the TSP

The TSP is a classic, well known NP-hard problem
in Combinatorial Optimization - given a set of n ci-
ties, seen as a graph, and the costs associated with
the travel between each pair, the objective is to find
a round-trip of minimal total cost (or length), visiting
each node exactly once.

The problem is stated as a n-dimensional cost matrix
of values d;;, where the purpose of the exercise is to
obtain a n-permutation, such that the sum of the va-
lues d;;, for any 7 and j being ¢ the precedent of j in
the sequence, is minimal. It can be defined in terms
of Integer Linear Programming as follows [Lap91]:

Minimize :

Dimt 2= dijij (4)
Yz i = 1,Vi (5)
Yiy zij = 1,V (6)
(7)
(8)

Subject to :

Yoijestiy <|S,VSCV,.S#0 (8

where (4) defines the objective function in terms of the
admissible costs (edges d;;), and a decision procedure
given by equations (5), (6), (7), and (8). If z;; is
1 (one), the edge connecting i and j belongs to the
solution, otherwise (z;; is 0 (zero)) the contemplated
edge is not in the solution. The equations (5) and
(6), state that only one edge enters and leaves a given
node. In (8), V stands for the set of nodes and |S|
for the cardinality of S, a subset of V. Equation (8)
restricts the solutions’ set, by eliminating those that
have cycles, whose length is smaller than n (being n
the number of nodes on the graph).

For the purpose of the FA, each individual (or chro-
mosome), codes a TSP valid tour. The genotype of the
individual is built on a sequence of n integers, with no
repeated values. The phenotype interpretation of this
is fairly obvious, once the position of any allele on the
chromosome determines the order by which the node
that it codes is visited. An edge is assumed to connect
the nodes that are given by the chromosome’s last and
first values.

This kind of genetic representation is named Order-
Based Representation (OBR), being, as referred to
above, included in one’s library.

As far as a TSP instance is considered, the evaluation
function will assign, to each individual in the popu-
lation, a fitness value, a measure of the cost of the
solution coded by its genotype.

The first EA here developed, to tackle the T'SP, follows
a general purpose strategy. It uses all the given values
by default, works with individuals of the class OBRIn-
div, makes no changes to the definitions in the popula-
tion’s conceptual level, and uses the default structure
for the FA (Figure 3). Under these settings it was
only necessary to implement a convenient evaluation
class, assuming the existence of a TSP class (or set
of classes), defining the data structures and methods
for the problem; i.e., it was created an EvalTSP class,
sub-class to Fwal with a pointer to an object of the
TSP class, defining the instance of the problem that
one intends to solve. In this class it were defined two
methods: an evaluation method and a class construc-
tor.

If the case is to combine the T'SP’s solving techniques
(or heuristics), with the F'A, some new functionalities
may have to be implemented. If the intention is to de-
velop new genetic operators, which may use knowledge

that stems from the TSP instance being solved (e.g.,
intelligent crossover or local optimization operators),
there is the need to create a class T'SPIndiv, subclass
to OBRIndiv, where this new set of operators can be
inserted. One may even consider the possibility of use
of heuristics, appropriate to handle the TSP, in order
to generate its initial solutions ; i.e., the individuals
that will make the initial population of the EA. This
implies the redefinition of the correspondent method,
at the level of class TSPPopul (a subclass to Popul),
and also of the process to create each individual, in

class TSPIndiv.

Other possibility is the application of the Baldwin ef-
fect [Ack91] to the TSP, in which case it is needed
a local optimization operator to improve the fitness
of the individuals, at each iteration, but, unlike the
Lamarckian approach, the new solution is not coded
back onto the genotype. In terms of implementation,
as far as the presented system is concerned, one has
only to create, into class FvalTSP, a new evaluation
procedure; i.e., a new instance to method evaluate().

5 Conclusions and further work

The motivation behind this work stemmed from one’s
goal to create a development tool, a tool that will make
the software so far written to specific evolutionary
applications to be reusable in future tasks; i.e., pre-
venting the programmer from beginning his/her work
always from scratch. Indeed, the EFA’s development
process shall be incremental and modular, allowing
for applications of increased conceptual complexity,
yet not imposing a similar overhead on the develo-
per’s shoulders. It also makes a toolkit that allows a
less experienced user to build an FA, with a minimum
programming effort. The use of the object-oriented pa-
radigm, and a proper identification of the EA building
blocks, was crucial to the success of one’s objectives.
Although this work is still undergoing, it is believed
that the methodological principles presented make the
proper core to the F(C’s software development and ana-
lysis processes of the future.

In terms of new developments, it is being considered
the creation of spatial structured populations, thus
enabling parallel models for the FAs. Another area
of research is concerned with the on the fly algori-
thms’ self-adaptation, and the definition of proper ter-
mination criteria. Indeed, a major problem in EAs is
the premature convergence to local optima, which is
strongly connected with the genetic diversity of the
populations. Some techniques to face this problem
are being developed and integrated into the system
[Roc99]. The integration of Neural Networks and EAs
is another area under consideration, where one’s pur-
pose is to tackle more complex problem’s domains with
non-stationary fitness landscapes (e.g. Machine Lear-
ning tasks). The issue of diploidy and dominance rules

is yet another issue under study, as well as the so called
Baldwin effect.

It is also ones aim to test the system and improve
its robustness, by developing several EA’s applications
to selected fields. In the Combinatorial Optimization
field, and apart from the above referred experiments
with the TSP, one is working in Graph Coloring, Knap-
sacking, Scheduling and Timetabling problems. In Nu-
merical Optimization the aim is to build a general-
purpose optimization tool for multi-variable functions,
subject to a number of constraints, based on real-gene
valued representational schemes.

In conclusion, one can say that the EC field is at a
turning point. The definition of methodological prin-
ciples, the sedimentation of processes of software deve-
lopment and analysis, make one’s contribution on such
an ongoing process.

6 Acknowledgments

Special thanks are due to Eduardo Marques and Or-
lando Pereira.

References

D.H.Ackley and M.Littman, Interac-
tions between learning and evolution. In
C.G.Langton, Proc. of the 2nd Conf. on
Artificial Life, Addison Wesley, 1991.

P.J.Angeline, Adaptive and Self-adaptive
evolutionary computation. In Palaniswami
M., Attikiouzel Y., Marks R.., Fogel D., Fu-
kuda T. (eds). Computacional Intelligence:
A Dynamic System Perspective, pages 152-
161. IEEE Press, 1995.

L.J.Fogel, A.J.Owens e M.J.Walsh, Artifi-
ctal Intelligence Through Simulated Fvolu-
tion, John Wiley, New York, 1966.

J.H.Holland, Adaptation in Natural and
Artificial Systems, University of Michigan
Press, Ann Arbor, 1975.

J.H.Holland, Escaping Brittleness: The
Possibilities of General Purpose Learning
Algorithms Applied to Parallel Rule-based
Systems. In R.S.Michalski, J.G.Carbonell
and T.M.Mitchell(eds), Machine Learning:
An Artificial Intelligence Approach, Vol.Il,
Morgan Kaufmann, Los Altos, CA| pp.593-
624, 1986.

V.Kureichick,

A .N.Melikhov, V.V.Miaghick, O.V.Savelev
and A.P.Topchy, Some New Features in the
Genetic Solution of the Traveling Salesman
Problem. In Ian Parmee and M.J.Denham
eds. Adaptative Computing in Engineering

[Ack91]

[Ang95]

[Fog66]

[Hol75]

[Hol86]

[Kur96]

[Lap91]

[Mic96]

[Muh93]

[Rec73]

[Roc99]

[Str86]

[Whi95]

Design and Control 96(ACEDC’96), 2nd
International Conference of the Integration
of Genetic Algorithms and Neural Network
Computing and Related Adaptative Com-
puting with Current Engineering Practice,
Plymouth, UK, March 1996.

Gilbert Laporte, The Traveling Salesman
Problem: An Overview of Exact and Ap-
proximate Algorithms, FEuropean Journal

of Operational Research, 59:231-247, 1992.

Michalewicz, Z. Genetic Algorithms +
Data Structures = Evolution Programs. 3rd
edition, Springer-Verlag 1996.

H.Mihlenbein and D.Schlierkamp-Vosen,
Predictive Models for the Breeder Gene-
tic Algorithm In FEwvolutionary Computa-
tion, Vol.I,No.1,pp.25-49, 1993.

Ingo Rechenberg, Evolutionsstrategie: Op-
timierung technischer Systeme nach Prin-
zipten der biologischen FEwvolution, Holz-
boog Verlag, Stuttgart, 1973.

M.Rocha and J.Neves, Preventing Prema-
ture Convergence to Local Optima by Ran-
dom Offspring Generation. Research Re-
port, Departamento de Informatica, Uni-
versidade do Minho, Janeiro 1999.

Bjarne Stroustrup, The C++ Program-
ming Language, 2nd ed., Addison-Wesley,
1986.

Darrell Whitley, Modeling Hybrid Gene-
tic Algorithms. In O.Winter, J.Periaux,
M.Galan, P.Cuesta eds. Genetic Algo-
rithms in Engineering and Computer
Science, pp.203-216, John Wiley, 1995.

