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In the last decade, bio-inspired methods have gained an increasing acceptation as alternative approaches for Time Series Forecasting. Indeed,
the use of tools such as Artificial Neural Networks (ANNs) and Genetic and Evolutionary Algorithms (GEAs), introduced important features
to forecasting models, taking advantage of nonlinear learning and adaptive search. In the present approach, a combination of both paradigms
is proposed, where the GEA’s searching engine will be used to evolve candidate ANNSs topologies, enhancing forecasting models that show
good generalization capabilities. A comparison was performed, contrasting bio-inspired and conventional methods, which revealed better

forecasting performances, specially when more difficult series were taken into consideration; i.e., nonlinear and chaotic ones.
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1 Introduction

Nowadays, the ability to forecast the future, based only on
past data, leads to strategic advantages, which may be the key
to success in organizations. Time Series Forecasting (TSF),
the forecast of a time ordered variable, allows one to model
complex systems, where the goal is to predict the system’s be-
havior and not how the system works. Indeed, in the last few
decades an increasing focus as been put over this field. Con-
tributions from the arenas of Operational Research, Statis-
tics, and Computer Science has lead to solid TSF methods
that replaced the old fashioned ones. Although these methods
give accurate forecasts on linear Time Series (TS), they carry
an handicap with noisy or nonlinear components, which are
common in real world situations (e.g., in financial daily TSs)
[22].

An alternative approach for TSF arises from the Artifi-
cial Intelligence (Al) field, where one has observed a trend to
look at Nature for inspiration, when building problem solving
models. In particular, studies on the nervous system and bio-
logical evolution influenced the loom of powerful tools, such
as Artificial Neural Networks (ANNs) and Genetic and Evolu-
tionary Algorithms (GEAs), that enriched the potential use of
Al in a broad set of scientific and engineering problems, such
as the ones of Combinatorial and Numerical Optimization,
Pattern Recognition or Computer Vision [12].

ANNS s are connectionist models that mimic the central ner-
vous system, being innate candidates for TSF due to capa-
bilities such as nonlinear learning, input-output mapping and
noise tolerance. Indeed, comparative studies have shown that
ANNSs can perform as well or even better than conventional
methods (Sharda & Patil, 1990; Tang & Fishwick, 1993). On
the other hand, GEAs are suited for combinatorial problems,
where the exhaustion of all possible solutions requires huge
computation. GEAs perform a global multi-point search, be-
ing able to escape from undesired local minima.

The present work aims at combining both bio-inspired ap-
proaches, over a broad range of real and artificial TSs. The
paper is organized as follows: firstly, the basic concepts for
TS analysis are defined; then, ANNSs are briefly introduced and
the ANNSs forecasting models are presented. Next, a descrip-
tion of the different experiments performed on ANNs models
is given and the results are analyzed; the GEAs are then de-
fined, as well as the combination of both paradigms under the
proposed approach. Finally, the results obtained are shown
and discussed, being compared with other conventional TSF
methods (e.g., Exponential Smoothing or ARIMA).

2 Time Series Forecasting

A Time Series (TS) is a collection of time ordered observa-
tions z;, each one being recorded at a specific time ¢ (period).
TS can uprise in a wide set of domains such as Finance, Pro-
duction or Control, just to name a few. A TS model (z;) as-
sumes that past patterns will occur in the future. The error
of a forecast is given by the difference between actual values
and those predicted by the model:

€t = Tt — i"\t (1)

The overall performance of a model is evaluated by a fore-
casting accuracy measure, namely the Sum Squared Error
(SSE), Root Mean Squared (RMSE) and Normalized Mean
Square Error (NMSE), given in the form:

SSE=Y"_ e
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where [ denotes the number of forecasts and z the mean of
the TS.



Table 1: Time Series data

Series Type Domain Description

passengers  Seasonal  Tourism Monthly international airline passengers

paper & Trended  Sales Monthly sales of French paper

deaths Traffic Monthly deaths & injuries in UK roads

maxtemp Seasonal Meteorology Maximum temperature in Melbourne

chemical Trended Chemical Chemical concentration readings

prices Economy Daily IBM common stock closing prices

sunspots Stationary Physics An_nual Wolf’s Sunspot Numbers

kobe Geology Seismograph of the Kobe earthquake
uadratic . Artificial Quadratic maj

ﬂenon Chaotic Artificial Henon map P

A common statistical instrument for TS analysis is the au-
tocorrelation coefficient, defined by:
s—k — _
t=1 (‘T’.t - ZL’) (‘T’.t+k - 'Z.) (3)
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in terms of the &’s lag, where s denotes the TS’ size. Auto-
correlations can be useful for decomposition of the TS main
components (e.g., trend and seasonal effects).

One popular TSF method is Exponential Smoothing (ES),
also known as Holt-Winters, which is based on underlying
patterns (e.g., trend and seasonal ones) that are distinguished
from random noise by averaging the historical values [14].
This popularity is due to advantages such as the simplicity of
use, the reduced computational demand, and the accuracy on
short-term forecasts, specially with seasonal series.

The AutoRegressive Integrated Moving-Average (ARIMA)
is another important TSF methodology, going through model
identification, parameter estimation, and model validation
[3]. The main advantage relies on the accuracy over a wider
range of series domains, despite being more complex, in
terms of usability and computational effort, than ES. The
ARIMA model is based on a linear combination of past val-
ues and errors, being its parameters estimated using statistical
approaches (e.g., least squares methods).

To the experiments carried out in this work, a set of ten
series was selected (Table 1), ranging from financial mar-
kets to natural processes [3][14][10] (Figure 4). The last two
series were artificially created, using the chaotic formulas:
2y = axg_1(1 — x4_1),20 = 0.2,a = 4 for the quadratic
series [15]; and z; = 1 — az?_; + bzy_2,a = 1.4, b = 0.3,
2o = 0.11 for the henon one [2]. A gaussian noise was
also added each value of the last series, with a standard de-
viation equal to 0.1. All TS were classified into five main
categories, that encompass the majority of the TS’s types,
namely: Seasonal and Trended, Seasonal, Trended, Station-
ary and Chaotic.

Ty =

Input Layer Hidden Layer Output Layer

Figure 1: A fully connected FNN with 2 inputs, 2 hidden
nodes, 1 output, bias and shortcut connections.

3 Connectionist Forecasting Models

An Artificial Neural Network (ANN) is made up by simple
processing units, the neurons, which are connected in a net-
work by synaptic strengths, where the acquired knowledge is
stored. One can find a kaleidescope of different ANNs, that
diverge on several features, such as the learning paradigm or
the internal architecture [8]. In a Feedforward Neural Net-
work (FNN), neurons are grouped in layers and only forward
connections exist (Figure 1). This provides a powerful archi-
tecture, capable of learning any kind of continuous nonlin-
ear mapping, with successful applications ranging from Com-
puter Vision, Data Analysis or Expert Systems, just to name
a few. FFNs are usually trained by gradient descent algo-
rithms, such as the popular Backpropagation, or fast variants
like RPROP [17].

The use of ANNs for TSF began in the late eighties, with
the work of Lapedes and Farber [11], where FFNs were used
to predict chaotic deterministic TS. Forecasting competitions,
confronting ANNs with traditional TSF methods, have re-
ported either poor (e.g., M competition [13]) or favorable re-
sults (e.g., Santa Fé competition [25]). Results seem contra-
dictory for the latter competition, where FFNs got the best
and the worst results, showing that a great care is needed
when fitting ANNs as forecasting models. Other studies also
showed that ANNSs can forecast as well or even better than the
ARIMA methodology [20][23].

Under this context, there are several ANN candidates, such
as Radial Basis Functions [21] or Recurrent Neural Networks



[24], although most studies use FNNs [23, 4, 5]. This last ar-
chitecture will be adopted, using fully connected networks,
with bias and shortcut connections (from input to output
nodes), since these links add a linear component to the model
(Figure 1). To enhance nonlinearity, the logistic activation
function was applied on the hidden nodes, while in the output
node, the linear function was used instead, to scale the range
of the outputs (the logistic function has a [0,1] co-domain).
This solution avoids the need of filtering procedures, which
may give rise to loose information (e.g., rescaling).

A Sliding Time Window (STW) defines the set of time
lags used to build a forecast, being denoted by the sequence
STW =< kyi,ko,....k, >, for a network with n inputs
and k; time lags. For one-step ahead forecasts, one output
is trained to map present values with past ones (given by the
STW). The general model provided by the ANN is given in the
form:

o—1 n
> O @ kwji+wjo)

j=n+1 i=1
(4)

where o denotes the output node, f the logistic function
(f(z) = 7t==), and n the number of input nodes (or the
size of the STW).

Generalization is influenced by three factors: the size of
the training set (a function of the size of the TS), the num-
ber of parameters of the model (number of weights), and the
complexity of the problem at hands (TS patterns). A model is
said to overfit when it correctly handles the training data but
fails to generalize. The usual statistical approach to model
selection is to estimate the generalization errors of different
candidate models, being selected the model with the mini-
mum of such estimate. Several complex estimators have been
developed (e.g., Bootstrapping), which are computationally
burdensome [18]. A reasonable alternative is the use of sim-
ple statistics that add a penalty that is a function of model
complexity, such as the Akaike’s Information Criterion (AIC)
[1] or the Bayesian Information Criterion (BIC) [19], which
are depicted bellow:

n
Ty = Wo,0 + E Tp f; Wo,; +
i=1

AIC = N x In(%3E) + 2p 5)
BIC = N x In(3%E) + p x In(N)

where N denotes the number of training examples and p the
number of parameters or weights, in this case:

p=n(np+1)+2n, +1 (6)

for a network with n;, hidden nodes.

4 Model Selection

What is the best sliding window for a given TS? A large slid-
ing window can increase the system complexity, diminishing
the learning capabilities of the model, while small windows
may contain insufficient information. The selection of the rel-
evant time lags can improve forecasting (e.g., ARIMA models

often use the 1, 12 and 13 lags for monthly seasonal trended
series).

An empirical approach to the problem is to use informa-
tion based on the TS analysis. Four heuristic strategies will
be tested for time lag selection, based on the series’ charac-
teristics, namely:

A - a full STW with all lags in a given range: STW =<
1,2,...,m > (m was set to 13, a value that was con-
sidered sufficient to encompass monthly seasonal and
trended effects);

B - a STW with all time lags with autocorrelations above a
given threshold (which was set to 0.2);

C - a STW with the time lags with the four highest autocorre-
lations (in the case of the seasonal trended series, these
were taken after differencing, since trend effects may
prevail in the original form); and

D - the use of decomposable information; i.e.,

e STW =< 1,K, K +1 > if the series is seasonal
(period K) and trended,;

e STW =< 1, K > if the series is seasonal ; and

¢ STW =<1 > and STW =< 1,2 > if the
series trended.

Several FNNs, with a number of hidden nodes (n,) rang-
ing from 0 to 13, were used to explore all sliding windows
for each TS of Table 1. Each model was trained with 90% of
the series elements, being the rest 10% used for the forecasts.
The initial weights were randomly generated within the range

=2; 2], for a node with i inputs. The RPROP algorithm was
used since it allows a faster convergence, being also more
stable in terms of its parameters adjustment [17]. The ANN
learning proceeds until the training progress drops; i.e, when
the training error slope is approaching zero [16]. This criteria
can not warranty in itself termination; but making a disjunc-
tive pair with a well defined number of training epochs (here
set to 1000), a termination criteria was enforced. Since dif-
ferent random starting weights can generate different results,
thirty independent runs were applied to each model.

As an example, the methodology used will be explained
in detail for the sunspots series (Table 2). Here, only the
first three sliding window strategies were applied, since this
is a stationary series. To simplify the explanation, only some
relevant results are visible in this table. The results of the
last four columns are given in terms of the mean of the thirty
runs. The 95% confidence intervals are also shown for the
forecasting errors [6]. The best training error (RM SE}) is
achieved for window A and 12 hidden nodes. This model has
an high number of parameters and overfits. In fact, more hid-
den nodes result in lower training RMSE values; indeed, when
a network specializes, its performance usually degrades. The
model suggest by the AIC values still has too many parame-
ters and also overfits. In contrast, the BIC criterion seems to



Table 2: ANNs’ results of the empirical approach to the
sunspots series

STW np p RMSE; AIC BIC RMSE;
0 14 147 1355 1404 18.24+0.1
A 6 104 116 1419 1784 20.5+0.7
12 194 9.0 1474 2155 20.2+0.8
0 5 14.8 1345 1369 17.94+0.1
B 5 47 115 1302 1467 17.0+0.6
13 111 094 1328 1717 19.0+0.8
0 5 15.1 1352 1369 18.1+0.0
C 1 11 141 1329 1368 17.84+0.3
8 53  10.7 1278 1464 19.44+0.5

Table 3: Model selection criteria performance

Series RMSE AIC BIC
passengers 13.5% 5.58%  5.58%
paper 147% 0.65%  0.65%
deaths 4.00% 0.66% 0.66%
maxtemp 11.7% 6.76%  6.76%
chemical 0.63% 6.91% 15.17%
prices 0.00% 0.00%  0.00%
sunspots 18.7% 14.42% 4.88%
kobe 128% 0.00%  0.00%
quadratic  27.3% 0.00%  0.00%
henon 19.3% 20.84% 0.00%
Mean 123% 558% 3.37%

work better, selecting a network that provides one of the best
short term forecasts, measured in terms of the RMSE (column
RM SEy). However, the best forecasting model (the one with
the lower RMSE) seems unattainable.

Faraday and Chatfield [5] recommended the BIC criterion
for the comparison of different ANN topologies, although the
unique tested series were the passenger one. A more detailed
test for the performance of the model selection criteria with
ANNSs is given in Table 3. The quality of each Selected Model
(SM) will be measured in terms of how far it is from the best
model (in percentage), being given by:

RMSEgy — RMSEps;
RMSEpest

Results confirm that the RMSE measures lead to overfitting
with ANNs. The few exceptions occur with the trended se-

ries, although the feeling is that it would ultimately overfit
for these kind of series, with an higher number of hidden

nodes. The AIC and BIC criteria suggest identical models

for seven of the series. However, the overall mean shows that

BIC provides better short term forecasts, failing only 3.37%

in average to get the best ANN model.

Table 4 shows the best ANNs, when adopting the BIC val-
ues for model selection. As expected, this criterion suggests
small sliding windows and linear models (with n;, = 0 hid-
den nodes) for all linear series. However, the BIC statistic

100 x

(")

Table 4: ANNs forecasting models with lower BIC values.

Series STW ng P RMSE;
passengers < 1,12,13 > 0 4 18.44+0.2
paper <1,12,13 > 0 4 51.6+0.2
deaths <1,11,12,13> 0 5 134+1
maxtemp <1,11,12,13> O 5 0.90+0.02
chemical <1,2> 0 3 0.40+0.01
prices <1l> 0 2 7.49+0.00
sunspots <1,2,9,.,12> 1 11 17.840.3
kobe <1,..,13> 0 14 557+4
quadratic <1,..,13> 9 149 0.06+0.02
henon <1,.,13> 2 44  0.35+0.05

also favors simple models (with zero or one hidden nodes)
for the nonlinear series (kobe and sunspots). For instance,
the best forecasts for series sunspots are given for a network
with 5 hidden nodes, although resulting in a higher BIC value,
due to an excessive weights’ number (Table 2).

In terms of the BIC criterion, adopting fully connected net-
works seems to prejudice networks with hidden nodes, due to
the number of extra weights implied by adding a single hid-
den node. Moreover, the sliding window heuristics are ulti-
mately based on autocorrelation values, which only measure
linear interactions that are not adequate for nonlinear series.

5 Evolutionary Neural Network Approach

The term Genetic and Evolutionary Algorithm (GEA) is used
to name a family of computational procedures where a num-
ber of potential solutions to a problem makes the way to an
evolving population. Each individual codes a solution in a
string (chromosome) of symbols (genes), being assigned a
numerical value (fitness), that stands for a solution’s quality
measure. New solutions are created through the application
of genetic operators (typically crossover or mutation). The
whole process evolves via a process of stochastic selection
biased to favor individuals with higher fitnesses.

The original model, due to Holland (1975), uses a binary
alphabet to encode the problem’s solutions. In each gen-
eration, all individuals are replaced by the offspring, which
are generated by the application of the two genetic operators,
crossover and mutation. In this work, the two-point crossover
and bit mutation operators were considered [7].

GEAs and ANNSs have been combined in three major ways:
to set the weights in fixed architectures, to learn neural net-
work topologies, and to select training data for ANNs [26].
The attention will be directed at the last two tasks in order to
tackle the issues raised in Section 4; i.e, what is the best slid-
ing time window and ANN topology for a given TS? These
issues can be addressed by adopting specific heuristics with
trial-and-error procedures (such as the ones applied in Sec-
tion 4), which tend to be unsuitable due to the huge size of
the search spaces involved.



A GEA is proposed, where an individual codes a different
ANN topology, each gene representing a possible connection.
Ifits value is 1, then the corresponding connection exists, oth-
erwise it is not considered. The connections between the hid-
den nodes and the output one always exist, since this strategy
enhances the creation of valid networks.

Assuming a fully connected network with n inputs nodes,
nyp, hidden nodes, bias and shortcut connections, the size of
the chromosome will be given by (n + 1) x (np + 1). Under
this scenario, hidden node pruning will occur when there are
no connections from input nodes, and time lag pruning will
occur when an input node has no outputs. This allows the
GEA to explore a search space containing ANN topologies
from the simplest linear network (with no hidden nodes) to
the fully connected one, and also to reach any subset of time
lags.

The fitness of each individual is obtained by decoding its
chromosome into the ANN, training it and, finally, calculat-
ing the BIC values. The aim of the computation is, therefore,
to find the ANN topology and sliding time window that mini-
mizes the BIC value. The overall system is depicted in Figure
2.

(" nitial Population )
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Generation
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(Sel ection of Ancestors)

Figure 2: The evolutionary approach

6 Experiments on the Evolutionary Approach

The initial populations’ genes were randomly assigned within
the alphabet {0, 1}. The maximum number of input (n) and
hidden nodes (n;) were set to 13 and 6. Previous experiments
have already favored small networks and larger values would
enlarge the search space with no added benefits. The popula-
tion size was set to 100 individuals. The crossover operation
is responsible for breeding 80% of the offspring and the mu-
tation operation is accountable for the remaining ones. The
selection procedure is done by converting the fitness value
into its ranking in the population and then applying a roulette

Table 5: Evolutionary forecasting models.
Series

STW nL p
passengers < 1,12,13 > 0 3
paper <12 > 1 4
deaths <1,2,11,12,13 > 1 6
maxtemp <1,2,3,6,10,...,13 > 3 13
chemical <1,2,7,12,13 > 2 7
prices <1,7,13 > 1 4
sunspots <1,2,3,8,11,12,13 > 3 17
kobe <1,..,7,9,..,13 > 3 17
quadratic <1,2,4,6,7,8,9,12,13> 6 34
henon <1,..,58911,12,13> 4 23

wheel scheme. The GEA is stopped after a convenient num-
ber of generations, here set to 500, once the best individuals
were found in earlier generations. Thirty independent ANN
trainings are applied to the best topology obtained during the
evolutionary process, being the final result presented as the
average of the runs.

Figure 3: The best model for the sunspots series.

Table 5 shows the best models achieved by the GEA, for
all series of Table 1. As an example, Figure 3 plots the best
ANN topology for the sunspots series. In comparison with
the previous results (Table 4), the ones obtained by the evolu-
tionary approach (Table 6) show better forecasts (the excep-
tion is series paper), specially for the nonlinear series. Here,
the higher flexibility of the GEA allows to select models with
low BIC values for ANN’s topologies with a small number of
weights, despite having some hidden nodes.

A comparison throughout bio-inspired and conventional
models is given in Table 7. The error values in the table are
given in terms of two measures, namely the RMSE and the
NMSE (in brackets). This last measure is included since it
makes easier the comparison among the different series and
methods. Each model was optimized using all known values
from the TS, excluding the last 10% values, which will be
used for forecasting. The ES parameters («, 8 and ) were
optimized using a 0.01 grid search for the best RMSE, while
the ARIMA models were achieved using a forecasting pack-
age (FORECAST PRO).

ES gives a better overall performance on the seasonal



Table 6: Evolutionary forecasting results.

Series RMSEy
passengers 18.2+0.3
paper 52.5+0.6
deaths 132+1
maxtemp 0.87+£0.02
chemical 0.36+0.01
prices 7.49+0.01
sunspots 17.4+0.5
kobe 498+8
quadratic ~ 0.01+0.00
henon 0.2440.02

Table 7: Comparison between different TSF approaches

Series ES ARIMA ENN
passengers 16.7 (0.71%) 17.8 (0.81%) 18.2(0.84%)
paper 41.0(3.1%) 61.0(6.8%) 52.5(5.0%)
deaths 145 (43%) 144 (42%) 132 (36%)
maxtemp 091 (4.1%) 1.07(5.6%) 0.87 (3.8%)
chemical 0.35 (51%) 0.36 (53%) 0.36 (54%)
prices 7.50 (0.39%) 7.72(0.41%) 7.49 (0.38%)
sunspots 28.4 (35%) 21.4 (20%) 17.4 (13%)
kobe 3199 (105%) 582 (3.5%) 498 (2.6%)
quadratic  0.38 (101%) 0.35(101%) 0.01 (0.07%)
henon 0.76 (106%) 0.63 (83%) 0.24 (13%)

trended series. This is not surprising, since ES was developed
specifically for these kind of series. In the case of the trended
series (chemical and prices), both ES and the proposed Evo-
lutionary Neural Network (ENN) produce comparable results.
However, this scenario differs when considering other series,
where the evolutionary approach outperforms both conven-
tional TSF methods, specially for the last four nonlinear se-
ries. For the chaotic series, conventional approaches fail,
while ENN captures perfectly the nonlinear effects, produc-
ing accurate forecasts.

7 Conclusions and Future Work

The surge of new bio-inspired optimization techniques, such
as ANNs and GEAs, has created new exciting possibilities for
the field of forecasting. Currently, the application of these
bio-inspired methods requires some effort from an analyst, in
processes such as data analysis (e.g., preprocessing and fea-
ture analysis) and model selection. In this work, a system-
atic approach is applied, assuming no prior knowledge over
each series (e.g., the use of specific known transformations).
Furthermore, the system works autonomously and does not
require any kind of statistical preprocessing or analysis. The
drawback is the increase of computational effort required.
Comparative experiments, among conventional and bio-
inspired approaches, with several real and artificial series

from diverse domains, were held. These show that ES, al-
though very simple, gives a good overall performance on lin-
ear TS (seasonal and trended ones), being also a method that
requires few computational resources. However, when the
domain gets more complex, with nonlinear behavior, this kind
of methods is clearly not appropriate. The proposed approach
shows its strength exactly in these scenarios. The results so
far obtained prevail both on nonlinear series or on the linear
ones, specially on those with seasonal components.

In the experiments conducted, it was possible to verify that
ANNs are powerful methods, yet rely heavily on the network
design. Poor structures provide insufficient learning capabil-
ities while too complex ones lead to overfitting. There is the
need of methods to select which topologies provide the best
generalizations for a given task. The proposed ENN, based on
the BIC criterion, has revealed itself as an adequate solution
for the forecasting domain, although it is potentially useful
for any other applications.

In future research it is intend to explore different ANNs
topologies, such as Recurrent Neural Networks or Radial Ba-
sis Functions. In terms of the GEA it is possible that its
performance could be enhanced by more appropriate control
of genetic diversity in order to avoid local minima. Finally,
one promising field is the application of similar approaches
to long term and multivariate forecasting.
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Figure 4: The series of Table 1



