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Abstract- The complex task of giving out tables to guests,
according to their preferences, at a wedding party, instan-
tiates a broader class of clustering problems, whose pur-
pose is to group a number of entities into a number of
clusters, according to a set of hard constraints, and opti-
mizing an objective function.

In order to study the application of Genetic and Evo-
lutionary Algorithms (GEAs) to these class of problems,
some experiments were conducted. These contemplated
different approaches to constraint handling, namely the
use of penalty functions and decoders. The encoding is-
sue was also studied, being compared direct and indirect
representations of the problem’s solutions in the chromo-
somes. The development of hybrid genetic operators, that
combine the synergies of the GEAs paradigm with those
of problem dependent heuristics, were also taken into ac-
count.

The overall result is a study on the performance of
several approaches to constrained optimization by GEAs,
that can be used to guide the application of the paradigm
in real-world problems, in the Combinatorial Optimization
arena.

Keywords: Hybrid Genetic and Evolutionary Algorithms, ‘

Direct and indirect representations, Combinatorial Optimiza-
tion, Grouping problems, Minimum/Maximum k-clustering
sum problem.

1 Introduction

Only those who have not been called upon to organize a wed-
ding party are unfamiliar with the complexity of the under-
lying table’s assignment task. In fact, assigning the proper
table to each guest, considering the network of complicities
or preferences among the entities involved, is typically very
hard. In fact, a number of constraints have to be taken into ac-
count, dictated by the set of, more or less strict, social rules.
For example, husband and wife must sit together and a guest
should not be isolated from his/her relatives and/or friends.
The problem can be viewed as an optimization process, in

terms of a solution’s space S and an objective function f, that -

assigns numeric values to any s € S. Being possible to define
S and f, the solution to the problem is given by the maximum
of f. It is obvious that, in this case, S should be the set of
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all possible configurations of guests per table. The function
f is harder to define, once it is a non-trivial task to evaluate a
particular solution, given the diversity of criteria available.
At a glance, the problem may seem to be of little interest,
from an optimization point of view. A closer look, however,
reveals a different insight. In fact, the problem represents
an instance of a broader class of Combinatorial Optimization
(CO) problems, where the aim is to group a number of entities
into a number of classes, complying with a pre-defined set of
constraints and optimizing a given objective function, defined
over the set of allowed configurations. One can also view
these problems as consisting in the search for a given partition
of the set of entities (V') into a collection of mutually disjoint
subsets V;, where V; N V; = 8,Vi # jand J; Vi = V. These
are named grouping, partitioning or clustering problems.
These class includes a number of well known CO prob-
lems, such as the Bin Packing, the Graph Coloring, the Graph
Partitioning or the Three Matching, just to name a few. In
each case, the set of constraints and the objective function di-
verge. For example, in the Graph Coloring problem, the con-
straint is that no connected entities are allowed in the same
cluster, and the objective function is the number of different
colors needed for a given graph. On the other hand, the Bin
Packing problem imposes a maximum capacity for each bin,

" but optimizes a similar function.

The application of Genetic and Evolutionary Algorithms
(GEAs) to this kind of problems is strongly motivated by the
success on the paradigm’s application to solve complex prob-
lems in the CO arena. In fact, although some skepticism from
researchers in the traditional field of Operations Research,
the use of GEAs has been growing and the results obtained in
some tasks are quite impressive.

Good examples are the applications on the eternal Trav-
eling Salesman Problem [11], on the complex Quadratic As-
signment Problem [15] and on several types of Scheduling
[6] and Timetabling [3] tasks. Therefore, it is not a surprise
to-find applications of GEAs to the mentioned grouping tasks.
Some of the earlier approaches are summarized in Table 1.

In this work, the task of assigning tables to guests in a
wedding party is a starting point for a voyage through several
alternative approaches for the application of GEAs to clus-
tering problems. The comparison of direct and indirect repre-
sentations of the problem’s solutions into the genomes is con-



Table 1: A Summary of Approaches to Grouping Problems

by GEAs

Problem Authors

Graph Galinier and Hao [12]
Coloring Fleurent and Ferland [10]

Graph Talbi and Bessiére [25]

Partitioning Miihlenbein [19]
Bin Reeves [22]

Packing Falkenauer [8][9]

Three Matching Magyar, Johnson and Nevalainen [16]}

sidered, as well as the definition of operators that combine the
strengths of the genetic and evolutionary search, with those of
heuristics tailored for specific situations.

In what follows, the problem is firstly presented and for-
mulated; then, GEA approaches which make use of direct
representations and penalties are presented; next, the intro-
duction of hybrid genetic operators is considered and eval-
uated; the following section is devoted to a description and
an evaluation of the use of indirect representations; finally,
some conclusions are drawn and prospective future work is
presented.

2 The problem’s formulation

The afore mentioned task, in what follows designated by 7Ta-
ble Assignment Problem (TAP), can be viewed as a maximum
k-clustering sum problem [1], proven to be NP-complete. The
problem is defined in terms of:

e aset V of entities;

e an attraction functiona : V xV — R, defined for each
pair of entities in V'; and

o a number of m clusters (C1,Cs, ..., Cn),

aiming at the partition of V' into mutually disjoint clusters, of
equal cardinality (S), that maximizes the sum of the attrac-
tion function values, for all pairs of entities assigned to the
same cluster. A similar problem is given by the correspond-
ing minimization task.

Thus, the problem can be postulated as:

Maximize/ Minimize Yok i jecy, @(64) ¢))
[Ckl =8, Vke {l,....m} (2)

CeNC =0,Vk,1€{1,...,m} (3

subject to:

In the TAP case, the clusters are the tables and its size is
given by the maximum number of guests allowed to sit in
each table. The function a represents the strength of the re-
lationship for every pair of guests; i.e., (i, j) is the added
value given by sitting guests ¢ and j in the same table. The
objective function can be defined as the sum of the attraction
values for every pair of guests in the same table. In this case,
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the function a() can be represented by a symmetric matrix A,
being a(i, §) given by a;j, if ¢ < j or by aj;, otherwise.

In practice, the construction of matrix A by hand is oner-
ous. So, a process to achieve the automation of this task was
devised. The logic programming paradigm was chosen to
provide for the computation framework, since it presents a
simple syntax and allows for the generation of new knowl-
edge from previous one, with minimum effort.

A set of logical predicates was developed to define the
relationships between the guests (e.g., parents, couples,
friends). Each kind of relationship was given a numerical
weight, with closer links being rewarded with higher values.
A convenient scheme was developed to uncover all the re-
lationships between every pair of guests, weighting it and
putting it into A.

The particular instance used in the experiments is based on
areal case, with a total of 160 guests to be assigned to 20 clus-
ters, with a maximum size of 8. The relationships between
the guests were defined in a set of logical predicates and the
matrix A built according to the above defined methodology.

A similar problem was considered, where the entities to be
grouped are scattered in a bi-dimensional space, being there-
fore characterized by its z and y coordinates. The attraction
function is, in this case, given by the Euclidean distance be-
tween the pairs of entities. The purpose is to group them in
a pre-defined number of clusters, with equal cardinalities, in
order to minimize the sum of the distances between all pairs
of entities assigned to the same cluster. This could be used
as the first stage to a Vehicle Routing problem, by partition-
ing the clients to be served by the different vehicles, and then
solving a TSP instance for each cluster. These are named rwo-
phase heuristics [2].

In the experiments presented below, an instance of the
problem with 280 entities and a cluster size of 20 was used,
being the coordinates of the problern taken from a TSP in-
stance from TSPLIB [23], named a280. In what follows, this
will be named the Euclidean Clustering Problem (ECP).

3 Direct representations with penalty functions

The term Genetic and Evolutionary Algorithm (GEA) is used
to name a family of computational procedures, where a num-
ber of potential solutions to a problem is evolving simultane-
ously within a population. Each individual codes a solution in
a string (chromosome) of symbols (genes), being assigned to
each a numerical value (fitness), that stands for the solution’s
quality.

New solutions are created through the application of ge-
netic operators (typically crossover or mutation). The whole
process evolves via a process of stochastic selection biased
to favor the strongest individuals (the ones with higher fit-
nesses). Traditional GEAs use a binary representation in the
codification of solutions to the target problem. More recently,
some researchers found advantages in the use of representa-
tion schemes closer to the solution’s space [18].



A solution to the k-clustering sum problem can be given
in terms of n tuples (v,c), v € V andc € {C1,...,Cpn}
(being n the cardinality of V' and m the number of clusters).
Assuming that the entities are sequentially numbered, with
an integer value from the set {1,...,n}, a solution s can be
represented as a sequence of integers s[1], . . ., s[n], where the
index ¢ represents the entity’s number and sfi] € {1,...,m}
the number of the cluster assigned to it. A straightforward
encoding scheme is to consider one gene per object, coding
the cluster assigned to it. Thus, each gene will be given in the
alphabet {1,...,m}.

Under this coding scheme, there is a number of genomes
that code for solutions that are not feasible, since they do
not comply with the problem’s restriction regarding the equal
clusters’ cardinalities. Thus, there is a constraint handling
problem to be faced.

This problem may be handled by the introduction of penal-
ties to constraint violations. In this case, the evaluation func-
tion for a solution s turns out to be given by

Eval(s) = F(s) — P(s) (€]

where f(s) is the objective function, and P(s) is the
penalty function. In (4), and in the discussion that follows,
it is assumed a maximization problem, although the conver-
sion for a minimization one tends to be straightforward.

It is important, when defining a penalty function, to have
some measure of the degree of the constraints’ violation, by
the proposed solution. In this way it is possible to assign
higher penalties to larger violations. In the k-clustering sum
problem, it is logical that this measure should be the total
number of entities in excess, considering all the clusters. This
measure for a given cluster k is given by the expression:

if[{x:2€Cr}{ <0
otherwise

0
excy = { Hz:z e Gl ®
The simplest penalty function, in terms of the degree of
violation, is given in the form:

m
P(s)=p x E excy, (6)
k=1

where p denotes a constant. In order to find a proper value
for p, a compromise has to be found. If the penalty is too hard
the GEA will have difficulties in finding near-optimal solu-
tions. On the other hand, if it is too light, the GEA will tend
to keep invalid solutions. In this case, it was intended to find
a value that would denote the maximum profit an entity can
achieve by being placed improperly; i.e., by being assigned
to a cluster with a cardinality above the limit.

In order to get such a measure, the sum of the attractions,
for each entity, was calculated. The average of this value over
all the entities was taken, as the measure looked for. Since
the matrix is symmetric, such value can be calculated as:

N N
—9. Zi:l Zj=i+1 Aij
N

P )
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Under this representation, three different crossover opera-
tors were used, namely the one-point, the two-point and the
uniform ones, whose implementation is similar to those of
their binary counterparts [13][24]. It must be noticed that
these operators are general-purpose, and that no guarantee is
granted that the offspring will code a feasible solution, even
when both ancestors are valid individuals. .

In what mutation is concerned, it was considered a non-
adjacent swap operator, that exchanges the value of the genes
in two randomly selected positions in the chromosome. This
operator is also general purpose, but it is guaranteed that only
feasible offspring is created with feasible ancestors.

Some experiments were conducted under this approach,
taking into consideration the problem instances for the k-
clustering sum problem, referred in Section 2, namely the
TAP and the ECP. The purpose was to observe whether the
constraint handling procedure was capable of producing fea-
sible solutions, and also to study the behavior of the different
genetic operators.

Selection is performed by ordering the individuals in a lin-
ear ranking and then performing a roulette wheel sampling. In
every generation, 40% of the individuals are kept to the next
generation and the remaining are created through the applica-
tion of genetic operators.

In each run a crossover and a mutation operator were cho-
sen, being the former responsible for breeding 75% of the off-
spring, and the latter the remaining ones. A population size
of 200 individuals was used, being the process terminated af-
ter a fixed computation time. This termination criteria makes
sure that all the approaches presented in this work have a fair
comparison. The maximum time was set to 300 seconds in
the TAP, and to 2000 in the Euclidean one.

The implementation of the different GEAs described in
this work took advantage of a development environment,
the Genetic and Evolutionary Programming Environment
(GEPE) [20], that runs under the Linux operating system, be-
ing programmed in the C++ language. The common back-
ground gives an extra assurance of the fair comparison be-
tween the different alternatives. All the experiments were
conducted in a PC with a Pentium II 350 MHz processor.

Each experiment was repeated 20 times, with randomly
generated initial populations, being the results given in Table
2. The first column shows the crossover operator used; the
second shows the objective function of the best solution found
(the average of the 20 runs) for the TAP; the last one shows
the same results for the ECP (keep in mind that the former
is a maximization problem and that the last is a minimization
one).

Prior to an analysis of the table, it is important to empha-
size that the penalty methodology used allowed to obtain fea-
sible solutions in all the runs. An analysis of the table shows
larger differences between the operators in the EP case, where
the one-point crossover performs better.



Table 2: Experimental results for the GEA with direct repre-
sentations and penalties

Crossover operator TAP ECP
One-point 682.8 8531
Two-point 690.5 9336

Uniform 679.9 16157

4 Order-based representations

In an Order Based Representation (OBR), the chromosome is
a permutation of the symbols from a given alphabet. Without
loss of generality, the genes in the alphabet can be considered
as the integers in the set {1, 2, ..., N'}. The genetic operators
designed to work with this kind of genomes are necessarily
different, since they have to maintain valid permutations in
the genotypes.

Therefore, the mutation operators are typically based on
a reordering of the chromosome. One common attitude is
to consider an operator that swaps the value of two genes in
random positions in the chromosome.

For the crossover operation a number of alternatives have
been developed. Historically, the problem was approached
using the Partially Matched Crossover (PMX)[14], where two
crossing points are randomly chosen, defining a matching
section on the string used to effect a cross between the two
ancestors, through position-to-position exchange operations.

A different family of operators is the Order Preserving
one, where the emphasis is put on the relative order of the
genes from both parent [4]. The process may be based in
the random selection of one (OPXI) or two (OPX2) cutting
points, or in the generation of a binary mask, thus defining
the Uniform Order Preserving Crossover (UOPX) [5].

Another alternative is found with the Cycle Crossover
[21], that performs recombination under the constraint that
each node (gene) in a certain position must come from one
parent or the other.

In the k-clustering sum problem, the fact that the size of
the clusters must be constant has worked to make the problem
more complex, under the previous approach. However, this
situation can also work on one’s behalf, by using a different
representation scheme, taking advantage of OBR’s. In this
case, it is considered that the first S entities will be on cluster
C1, the next S entities on cluster C, and so on, being S the
cluster size. Using this approach every permutation codes for
a valid solution.

Some experiments were conducted under this new frame-
work, by considering the afore mentioned crossover and mu-
tation operators and keeping the settings of previous experi-
ments.

The results are presented in Table 3, and seem to be quite
better than those obtained by the previous approach. In terms
of the crossover operator, the differences are not quite signi-
ficative, although the PMX offers the best overall behavior.
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Table 3: Experimental results for the Order Based Represen-
tation approach.

Crossover operator TAP ECP
OPX1 6742 6867
OPX2 701.8 5813
UoPX 4823 6014
PMX 701.5 5727
Cycle 693.3 5812

S Hybrid approaches

5.1 The group based crossover

Both approaches devised so far are based on general purpose
representations and operators. Furthermore, the representa-
tions are redundant, since the same solution can be repre-
sented by a number of different chromosomes. It is also ar-
guable that the crossover operators do not recombine the in-
formation of the ancestors in a meaningful way. These facts
lead some researchers to propose a different representation
scheme to grouping problems, and to devise new genetic op-
erators [19]{7].

This path was also followed in this work, although it was
considered to be sufficient to reformulate the genetic opera-
tors, in order to take effectively into account the information
in the genotypes.

The proposed operators were devised to work with both
representation schemes proposed earlier, since they work on
the solution itself (the phenotype) and not on the genotype.
Each solution is defined by the clusters it induces. If m is the
number of clusters, a solution can be given in terms of m sets,
Vi,...,Vin, where e € V;, if 1 is the cluster assigned to e.

The new crossover operator devised, the Group Based
Crossover (GBX), considers two ancestors and generates one
offspring. In the first step, one of the ancestors is selected,
and a randomly selected subset of its clusters is automatically
passed into the offspring. The effective number of clusters is
chosen randomly in the range {m/3;2m/3]. The entities that
are assigned a cluster in this first step are removed from the
clusters in the second ancestor.

In the next stage, the clusters of the second parent are or-
dered by their sizes (without the removed entities). These
clusters are taken in decreasing crder, and completed by
choosing the required number of entities, from those not yet
assigned. Once this entities are assigned they are removed
from the clusters in the second parent, being the process fin-
ished when all clusters are empty.

This process is executed in a grezdy ways; i.e., in each step
it is chosen the available entity that optimizes the objective
function, from a local point of view. The process is stopped
when all clusters in the offspring are complete.

The GBX was tested in the same problems as the previous
approaches, and under similar conditions. Both representa-
tions of the previous sections were used, and the results are
shown in Table 4.



Table 4: Experimental results for the Group Based Crossover.

Representation TAP ECP
Direct 751.7 5598
OBR 755.2 5581

It is not surprising to verify that the results were signifi-
cantly improved over the standard crossover operators. The
results obtained under the OBR are slightly better than those
of the direct representations with penalties, but the compu-
tational overhead required by the constraint handling mech-
anism does not seems to be overwhelming, since the results
are on similar levels for both problems.

5.2 Local optimization operators

Hybrid approaches, that combine GEAs with local optimiza-
tion heuristics have been increasingly developed to tackle
CO problems, with considerable success. Some examples of
this research trend has been materialized into applications to
Graph Coloring [12], Quadratic Assignment [17}, Traveling
Salesman [11] or Bin Packing [9] problems.

A local optimization mutation operator was considered for
the k-clustering sum problem, although it is based on an anal-
ogy with the 2-opt operator, designed for the 7SP. The pro-
posed operator exchanges two entities in different clusters,
being this exchange accepted only if the objective function of
the overall solution is improved. This mechanism is repeated
for all possible pairs of entities, in a one-pass strategy.

In the direct representation with penalties, when the oper-
ator is applied to an invalid solution, it first moves towards
feasibility. To achieve such purpose, it first finds a cluster
with an excessive number of assigned entities, and moves one
of its members to another cluster, not yet completely full.

The proposed local optimization operator was tested, be-
ing a replacement for the standard mutation operators. The
results obtained, with the standard and the group crossover
operators, under the conditions postulated above, are shown
in Tables 5 and 6, for the each of the two proposed represen-
tations.

Table 5: Experimental results for the local optimization oper-
ator (direct representations with penalties).

Crossover operator TAP ECP
One-point 701.7 5633
Two-point 699.5 5612
Uniform 705.3 5824

GBX 739.9 5546

A closed look at the table reveals that the best results are
obtained by combining the GBX with a local optimization
procedure, under the OBR scheme. The same combination,
but using a direct representation, with penalties to handle con-
straints, leads to slightly worse results (about 2%). In general,

L J
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Table 6: Experimental results for the local optimization oper-
ator (order based representations).

Crossover operator TAP ECP
OPX1 7239 5486

OoPX2 7223 5514

UOPX 720.7 5537

PMX 722.8 5522

Cycle 7182 5560

GBX 755.3 5459

and with any crossover operator, the 2-opt operator works sig-
nificantly better than the standard mutation one.

6 Indirect representations

The problems of constraint handling in GEAs may be tack-
led by the use of indirect representations, where an individual
does not directly encode a solution, but instead it defines a
strategy to reach one, by means of an heuristic decoder, that
is problem dependent. This strategy presents an obvious ad-
vantage, once every possible chromosome codes for a valid
solution.

On the other hand, it requires the definition of a proper
decoding procedure that can determine, in a large sense, the
success of the approach, that implies extra computational re-
sources. In the definition of a decoding scheme, a compro-
mise has to be found between the greediness of the approach
and a correct representation of the search space. A greedy
approach can induce good results in a short time, but can also
reduce substantially the genetic diversity of the GEA’s popu-
lations, by considering only local optima.

It is possible to use the previously defined Order Based
Representations, in order to implement an indirect represen-
tation, in grouping problems. Under this scheme, the chromo-
some is a permutation of the entities considered, that defines
the order by which the entities are assigned. In each step, an
entity is assigned a cluster in a way that no invalid solution is
reached, and optionally optimizing a given criterion.

In the k-clustering sum problem, this criterion turns out
in finding the cluster which locally leads to the best objective
function. While there are unoccupied clusters, each entity has
to choose whether to join an existing cluster or to start a new
one. This decision is based on the expectation of starting a
better cluster, instead of sticking to the ones available.

In order to make such decision, the best possible cluster
for the entity is calculated, with a basis on the entities still to
assign. If the average attraction to an already started cluster
is above a given threshold, measured as a percentage of its
optimum value, it is accepted. Otherwise, the entity starts -
a new cluster and takes its chances. A value of 90% for the
threshold was found to work well on the problems considered.

When, on the other hand, all possible clusters are already
occupied with at least one entity, the decision is to choose the
one that locally optimizes the objective function; i.e., the one



that maximizes (or minimizes) the average of the attraction in

the chosen cluster.

The results of the application of this approach, in the in-
stances and under the settings defined in the previous sec-

tions, is shown in Table 7.

Table 7: Experimental results for the indirect representation.

Crossover operator TAP ECP
OPX1 731.7 5580
OPX2 748.4 5500
Uorx 7552 5520
PMX 670.2 5808
Cycle 5558

736.2

Looking at the table, one is faced with fair results, almost
at the same level of quality of the hybrid approaches. Indeed,
the best result obtained for the TAP is similar to the best of the
previous alternatives, but in the ECP case it is unable to reach
the same result, although being quite close (with an error of
no more than 1%). ) )

This small difference is probably explained by the fact that
the indirect representation does not search the same solutions
space, since the decoder makes decisions that may eliminate
a number of possible solutions. Most of these solutions are of
poor quality, and their removal is beneficial but, on the other
hand, there are no guarantees that the optimal solution can be
obtained by using a greedy decoder.

7 Overall analysis

To make a judgment of the several GEAs approaches it is im-
portant to assert each method’s capacity of obtaining good
solutions in a short period of time. In Figures 1 and 2 it is
-shown the evolution of the results, according to the CPU time
(in seconds), for the two problems and for the best three ap-
proaches, namely:

¢ Direct representations with penalties, the GBX and lo-
cal optimization;

o Direct order based representations and identical opera-
tors; and

¢ Indirect order based representations, the UOPX opera-
tor and standard swap mutation.

The first conclusion to be drawn from the figures is that
all the methods good quality results in a short fraction of the
total amount of time put for the comparison. Furthermore,
the hybrid approaches are faster in their initial convergence,
while the indirect approach takes more time to achieve similar
behavior.

It is paramount to have a measure of the quality of these
results. This is a complex task, since the optimum solution
to each of the problems is difficult to find, given the NP-
completeness of the tasks. Some simple heuristics were im-
plemented to achieve a comparison, although it is known that
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Figure 2: Evolution of the results obtained for the ECP per
time unit (in seconds).

these are typically less demanding in terms of computational
resources.

The first heuristic implemented is a greedy one, where the
entities are considered in order and assigned the best clus-
ter, by locally optimizing the objective function. The other
heuristic implemented was the complete 2-opt, where the one-
pass 2-opt, described above, is applied until no improvement
is possible. One last comparison was made with a strategy
that uses a model similar to the GEA one, but considering
only a local optimization operator in the generation of new
individuals. A similar computation time was given to all the
methods equal to that of the GEA’s experiments. In all cases
the results show the average of the best solution over 20 runs
of each method.

The best results of the GEA based approaches are better
than those obtained with these heuristics. Furthermore, in
both problems, the best solution was repeatedly found with
different-approaches, and in several runs, which leads to the



Table 8: Experimental results for the heuristic procedures.

Heuristic TAP ECP
Greedy 731.3 5907
Complete 2-opt 714.9 5532

Local optimizationonly 717.2 5563

belief that the optimum solution was found. The value of the
objective function for this solutions is of 755.5 for the TAP,
and of 5452 for the ECP.

8 Conclusions and future work

It has not been the purpose of this work to compare GEAs
with other problem solving paradigms in a specific task. In
fact, although the results were considered satisfactory, tests
with more challenging instances and comparisons with other
meta-heuristics would be necessary.

The purpose of the exercise was, rather, to compare some
genetic and evolutionary approaches in a given constrained
optimization problem. The lessons learned from this work
can help in finding more interesting problem solving strate-
gies to apply to real world problems, where the constraints
are typically numerous, and most traditional methods fail.
A travel through constraint handling techniques was endeav-
ored, and the conclusions reached are indeed logical, yet cu-
rious. '

The use of indirect representations, based on a well built
decoder, showed some interesting results, that are expected
to be confirmed in other studies. This approach is a good
alternative to be considered in constrained problems and is of
a generic nature. On the other hand, the good results claimed
with the increasing use of hybrid GEAs was also confirmed
in this study. This was, indeed, the best method.

The use of penalties and direct representations was the ap-
proach that presented the less competitive results. However,
when considering the use of hybrid operators, under this rep-
resentation the results improved significantly, reaching a level
of quality closed to that of its competitors.

It must be remembered that the use of order based rep-
resentations, to a direct encoding of the problem’s solutions,
was only allowed by the circumstance of the clusters being of
equal sizes. In a more general case, this representation would
not be possible, and the consideration of penalties would be
inevitable. Under this scenario, the comparison of this ap-
proach with indirect representations is relevant, and the ad-
vantage of the latter is not definitive, since both showed com-
petitive behavior.

This work showed that it is possible to obtain good results
with general purpose encodings, but that they should be used
by the genetic operators having into consideration the mean-
ing of the information they encode. These simple represen-
tations have some advantages in terms of the computational
implementation of GEAs, since they make use of fixed size
chromosomes. Indeed, in Nature, the diversity of living be-
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ings is handled by one single genetic representation.

In terms of future work, it is intended to apply the pro-
posed approaches to other problems, namely to those in the
same class, such as Bin Packing, Graph Coloring or Three-
Matching ones, and to other constrained optimization tasks,
such Scheduling and Vehicle Routing. In all cases, a compari-
son with other approaches (e.g., Simulated Annealing, Tabu
Search, Ant Colony Optimization) should be performed to
evaluate its merits.
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