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Abstract— OSPFOSPF is the most common infra-domain
routing profocol in Wide Area Networks. Thus, optimizing
OSPF weights will produce ftools for fraffic engineering with
Quality of Service consiraints, without changing the network
management model. Evolutionary Algorithms (EAs) provide a
valuable fool to face this NP-hard problem, allowing flexibie
cost functions with several metrics of the network behavior. A
novel framework is proposed that enriches current models for
network congestion with delay constraints, setfing the basis for
EAs that aflocate OSPF weights, guided by a bi-objective cost
Junction. The results show that EAs make an efficient method,
oulperforming common heuristics and achieving effective network
behavior under unfavorable scenarios.

I. INTRODUCTION

Resource provisioning is a crucial task for any Inrernet
Service Provider (ISP) network administrator, which is be-
comin g more challenging due to the increases in demand and
the onset of new types of applicaticns. In this context, ZSPs
have Service Level Agreements (SIAs) [1] with their clients
and/or with peered ISPs that have to be strictly obeyed to
aveid strong financial penalties.

The convergence of telephony services with the Internet,
in the form of Veice over IP (VoIP) services, raised extra
challenges to network resource management tasks. Since
the existing best-effort 7CPAP model does not have a
connection admission control infra-stmucture, flows arriving
to the network may dismpt existing traffic. Moreover, even if
network capacity is sufficient, delay requirements that have
to be enforced present extra constraints to be dealt by the
administrator.

When modeling this class of problems, it is usual to
assume that the administrater has access to a matrix rep-
resenting traffic demands between each pair of nedes in the
network. Optionally, delay constraints of part of the flows
may alse be available. Given this data, it i3 important to
develop precise techniques to allocate network resources
resorting to expedite administrative procedures.

To accomplish this aim, distinct Quality of Service (QoS)
architectures and specific mechanisms were propesed by
the research community, in crder to provide distinct service
levels to networked applications [2]. However, the provision
of QoS differentiation capabilities in computer networks
requires many cempenents working together, One of such
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components is related to the ability of defining enhanced
QoS aware mechanisms, which control the data path fellowed
by packets that traverse a given Wide Area Network (WAN).
In a TCPAP WAN, consisting of a single administrative
domain, there are altemative strategies: Intra-domain routin g
protocels or Muiti-Protocol Label Switching (MPLS) [3].

The most commen routing protocel today is Gpen Shorzest
Path First (OSPF) [4][5]. Here, the administrator assigns
weights to each link in the network, which are then used to
compute the best path from each source to each destination
using the well known Dijkstra algorithm [6]. The results of
this method are then used to compute the routing tables in
each node.

Since the weight setting process is the only way admin-
istrators can affect the network behavior, this choice is of
crucial importance. Nevertheless, in practice, simple rles of
thumb are typically used in this task, like setting the weights
inversely properticnal te the link capacity. This appreach
often leads to sub-optimal network resource utilization.

An alternative way to implement traffic engineering is to
use MPLS. This is a more flexible approach since one can
decide and configure the path of each individual flow. Hence,
at least in theory, it is possible to use this technique to opti-
mize network rescurce allocation. However, the use of MPLS
presents significant drawbacks when used in the context of
packet switching: firstly, it adds significant complexity to
the IP model when compared with the simplicity of GSPF,
since per-flow state has to be stored in every router of the
path; secondly, it is not widely tested and deployed; finally, it
represents a management cverhead that incurs on extra costs
for the organization.

An ideal altemative is to improve the process of OSPF
weight seiting to implement traffic engineering. This was the
approach taken by Fertz et al [7] where this task was viewed
as an optimization problem, by defining a cost function that
measures the network congestion. The same authors proved
that this task is a NP-hard preblem and propesed seme lecal
search heuristics that compared well with the MPLS moedel.
An alternative approach te this problem was the use of meta-
heuristics such as Evelutionary Algorithms (EAs) to improve
these results [8]. However, this approach did net accemme-
date delay based constraints that are crucial te implement
oS aware networking services in the Internet resorting to
specific QoS architectures (e.g. as the Differentiated Services
Architecture [9]).

In this work, EAs are employed to calculate link-state
routing weights, that optimize traffic congestion, while si-
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multaneously complying to specific delay requirements®. To
reach this goal, a novel analytical medel of the preblem
was defined that accommedates both congestion and delay
censtraints. This model is used to define a proper cost
functicn and therefore to develop fitness functicns for the
EAs, which are then used to calculate the optimal GSPF
weights for each network link.

Given their numerous and successful applicaticns in real-
world constrained problems, beth in numerical and combi-
natorial optimization, EAs make the ideal tool to address
this problem. They are typically capable of obtaining near-
optimal results within an acceptable computational time,
which may be critical in a real network scenario.

The paper is crganized as follows: firstly, the preblem is
defined under the model developed; next, the EAs designed
to tackle this preblem are desecribed; the fellowing section
presents the experiments and cerrespending results; fially,
cenclusions are drawn and the future work is revealed.

II. PROBLEM DESCRIPTION

The general reuting preblem [10], that underpins our work,
represents routers and transmission links by a set of nodes
(JV) and a set of arcs (A) in a directed graph ¢ = (N, A). In
this model, ¢, represents the capacity for each link o € A.
Additionally, a demand matrix [ is available, where each
element d,. represents the traffic demand between each pair
of nodes ¢ and ¢ from V.

Let us assume that, for each arc o, the variable fé")
represents how much of the traffic demand between s and ¢
travels over arc «. The total load en each arc o (/,) can be
defined in the following way:

b= ¥, = ey

(st)eNXN

while the link utilization rate u, is given by éﬂ- It is then
possible to define a congestion measure for each link ($.),
using a cost function p that has small penalties for values
near 0; however, as the values approach the unity becomes
more expensive and exponentially penalizes values above 1
(Figure 1):

e =€ [0,1/3)
9z —2/3, =€ [1/3,2/3)
] 1021673, = € [2/3,9/10)
P@)=9 rox_1718/3,  =e[9/10,1) @)
500z — 1468/3, « € [1,11/10)
5000z — 1631873, = > 11/10

Given this function, the congestion measure for a given arc
can be defmed by ©, = p(u.) [8]. Under this framework,

INote that the end-to-end delay of a given network path includes the
propagation delays and the queueing delays. However, in the cantext of this
work, we have relaxed the terminclogy and the ferm delay is from now on
uged to express fhe propagation delay of a given network path, The queneing
delay part of the end-to-end delay is expected to be controlled/differentiated
by the use of specific mechanisrns operating at each node, such s queusing
and scheduling mechanisms,
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8
T ——

_I““Aocepi‘able Region _________—_/l

0 0.2 0.4 ae 0.8 1 1.2
x

Fg 1. Oraphical representaion of the penalty function p.

it is possible to define a linear programming instance [7].
where the purpose is to set the value of the variables #°*
that minimize the following objective function:

=) (3
aEd
subject to:

I i R T

wiuw)ed wvu)ed
{ —dy, fo=s
=< dy, ifv=t u,s,te N (4)
0, otherwise,
= 3. 3 e A (5
s, t)ENXN
Pa 2 la, ac A ()
¢a 235‘1 _Q/BCM aEA (7)
ta > 101, — 16 /3¢, ace A (8)
do = T0l, —178/3¢,, ae A 9
b = OB, — 1468 /3¢, aec A (1)

$a = 5000, — 16318/3¢,, acAd (11
fiot) >0, ae A steNA2)

In the following the optimal solution to this problem is
denoted by @54y

In OSPF, all arcs are associated with an integer weight.
Every node uses these weights in the Dijkstra algorithm [6] to
calculate the shortest paths to all other nodes in the network,
with themselves as the root. Each of these paths has alength
equal to the sum of the weights of each arcs in this route.
All the traffic from a given source to a destination fravels
along the shortest path. If there are two or more paths with
the same length, between a given source and a destination,
traffic is evenly divided among the arcs in these paths (load
balancing) [11].

Let us assume a given solutien, i.e. a weight assignment
(w), and the corresponding ufilization rates on each arc. In
this case, the total routing cost is expressed by
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B(w) =Y &,
aEA

for the loads calculated based on the given OSPF weights.
In this way, the OSPF weight setting problem (as defined in
[71, [8]) is equivalent to finding the optimal weight values
for each link (w,,¢), in order to minimize the function ().
The congesticn measure can be normalized over distinct
topology scenarios, by using a scaling factor defned as [7]:

(13)

Z dst hst
[s,t)EN=N

Cunoar = (14)

where fi;¢ is the minimum hop count between nodes s and
£
Finally, the scaled congestion measure cost is defined as:

T () = el 1s)
UNCAPFP
and the following relaticnships hold:
1< 8ppr < 5 pt0s5pr < 5000 (16)

where &5 .5 op @ is the nomalized congesticn imposed by
the optimal sclution to the GSPF weight seiting problem.

It is important tc nete that when ©* equals 1, all loads
are below 1/3 of the link capacity; on the other hand, when
all arcs are exactly full the value of ©* is 1¢ 273, This value
will be considered a thresheld that bounds the acceptable
working region of the network,

In order to include QoS constraints in this model, it is
necessary to include delay constraints in the optimization
framework. These requirements were modeled as a matrix
DR, that for each pair of nodes (s,¢) € N x N (where
dst > () gives the delay target for traffic between origin s
and destination ¢ (denoted by DR ).

In a way similar to the congesticn model presented before,
a cost function was develeped to evaluate the delay compli-
ance for each scenaric (a given solution defined by the set of
weights in the GSPF). This function takes into account the
average delay of the traffic between the twe nodes (Jel ),
a value calculated by considering all paths between s and
¢ with minimum cost and averaging the delays in each (the
delay in each path is the sum cf the delays in its arcs).

The delay cempliance ratic for a given pair (s,£) € N x N
is, therefore, defmed as

.DEI“
-DRH

As before, a penalty for delay compliance can be calcu-
lated using function p. So, the -y function is defined according
to the following equation:

dese = (17

Vst =p(dcat) (18)

This, in turn, allows the defmition of a delay minimization
cost function, given a set of OSPF weights (w):

3 e (19)

[st)ENXN

y(w) =

This function can be nermalized dividing the values by
the sum of all minimum end-tc-end delays (for each pair
of nodes the minimum end-te-end delay (minDel,) is
caleulated as the delay of the path with minimum possible
overall delay):

y(w)
(s, eNx N i Delse

v (w) = = (26)

It is now pessible te define the optimization problem
addressed in this work, that is clearly multiobjective. Indeed,
given a network represented by a graph & of nodes and ares
A, a demand matrix I and a delay requirements matrix D B,
the aim is to find the set of OSPF weights that simultaneously
minimizes the functions $*(w) and ~y*(w).

III. EVOLUTIONARY ALGORITHMS FOR OSPF WEIGHT
SETTING

In this work, Evelutionary Algorithms (EAs) are proposed
to address the abeve formulated problems, either by consid-
ering the multiobjective formulation, or by taking the two
distinct aims described in the previcus secticn separately.

In the propesed EA, each individual encodes a scluticn as a
vector of integer values, where each value (gene) correspends
to the weight of an arc in the network, whose values range
from 1 t© - Therefore, the size of the individual equals
the number of arcs in the graph (links in the network). The
individuals in the initial populaticn are randomly generated,
with the arc weights taken from a uniform distribution in the
allowed interval.

In order to create new sclutions, several reproduction
operaters were used, more specifically twe mutaticn and twe
CrOsSSOVer operators:

s Random Muiation, replaces a given gene by a new
randomly generated value, within the allowed range
[1, Wmaz|;

+ Incremental/decremental Mutation, replaces a given
gene by the next or by the previous value (with equal
probabilities) and constrained to respect the range of
allowed values;

o Uniform crossover and Two-point crossover, two stan-
dard crossover operators, applied in the traditional way
[12].

In each generation every operator is used to create new
solutions with equal probabilities (all operators are used in
every un). The selection procedure is done by converting the
fitness value into a linear ranking in the population, and then
applying a roulette wheel scheme. In each generation, 50%
of the individuals are kept from the previous generation, and
50% are bred by the application of the genefic operators.

The evaluation process, for each individual in the popu-
lation, measures the quality of the OSPF weights in the
optimization aims defined in the previous section. When a
single objective is considered the fitness of an individual
(encoding weight set w) is calculated using functions &*(w)
for congestion and ~*{w) for delays.
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For multicbjective optimization a quite simple scheme was
devised. The fitness (f{w)) of the individual is, in this case,
derived by the expressicn:

f(w) = a®*(w) + (1 — o)y (w) (21)

This scheme, although simple, can be effective since both
cost functions are normalized in the same range and use a
similar penalty function.

IV. EXPERIMENTS AND RESULTsS

In order to evaluate the effectiveness of the proposed
EAs, a number of experiments was conducted. For this
purpose, a sef of 12 networks was generated by using
the Brite topology generator [13], varying the number of
nodes (I = 30,50,80,100) and the average degree of
each node (m = 2,3, 4). This resulted in networks ranging
from 57 to 390 links (graph edges). The link bandwidth
(capacity) was generated by an uniform distribution between
1 and 10 Gbits/s. The network was generated using the
Barabasi-Albert model, using a heavy-tail distribution and
an incremental grow type (parameters .S and LS were set
to 1660 and 100, respectively).

Next, the demand and delay constraints matrices (I and
D R) were generated. For each of the twelve instances a set of
three distinct U matrices was generated, varying a parameter
(D,) which determined the expected mean of the congestion
in each link (u,) (values for [, in the experiments were
0.1, 0.2 and 0.3). For the genmeration of the DR matrix,
the strategy was to calculate the average of the minimum
possible delays, over all pairs of nodes. A parameter (DR )
was considered, this time representing the multiplier applied
to the previous value to get the matrix DE (values for
DR, in the experiments were 3, 4 and 5). Overall, a set
of 12 x 3 x 3 = 108 instances of the optimization problem
was considered.,

A number of heuristic methods was considered [7], for a
cemparison with the results cbtained by the EA:

+ Unit - sets all arc weights to 1 (one);

+ InvCap - sets arc weights to a value inversely propor-
tional to capacity of the link;

o L2 - sets arc weights to a value proportional to the
physical Euclidean distance (L2 norm) of the link;

+ Random - a number of randomly generated solutions
are analyzed and the best is selected. The number of
solutions censidered is always equal to the number of
solutions evaluated by the EA in each problem.

The proposed EA and heuristics were implemented by the
authors using the Java programming language. The EA was
run for a number of generations ranging from 1000 to 6000,
a value that was incremented proportionally te the number
of variables optimized by the EA. The running times varied
from a few minutes in the small networks to a few hours
in the larger ones. So, in order to perform all the tests, a
cemputing cluster with 46 dual Xeon nodes was used.

The population size was kept in 100 and w,,,, was set
to 20. In multiobjective optimization all the results shown in

this paper consider « te be .5, thus considering each aim
to be of equal impertance. Since the EA and the Random
heuristic are stochastic metheds, B runs were executed in
each case (B was set to 10 in the experiments).

For a better understanding, the results are grouped inte
three sets according to the cost function used. The first twe
consider single cbjective cest functicns, feor the optimization
of congestion and delays respectively. These are used mainly
as baselines for the comparisen with the results cbtained with
the last group, that presents the results using the multiocb-
jective cost functicn. In all figures the data was plotted in a
logarithmic scale, given the expenential nature of the penalty
function adopted.

A. Congestion

Since the number of performed experiments is quite high,
it was decided to present all the results for just one of
the networks (out of the 12), to explain the experimental
methodology, and then to show some aggregate results that
can be used to draw conclusions. This strategy was also used
in the presentation of the results of the following sections.

Therefore, in Table I we shew the results for the opti-
mization of the congestion, for one of the networks (with
100 nodes and 197 links). Both the results obtained by the
proposed KA and by the set of heuristic methods described
before are shown. In this table, the first column represents
the demand generation parameter 0, (higher values for
this parameter indicate higher mean demands, thus harder
optimization problems). The remaining columns indicate
the congestion measure (©*(w)) for the best solution (u)
obtained by each of the methods considered in this study.
In the case of the EAs and Random heuristic the results
represent the mean value of the results obtained in the set of
Tuns.

TABLEL
RESULTS FOR THE OPTIMIZATION OF CONGESTION (FUNCTION ©*) 1N
ONE EXAMPLE NETWORK WITH 100 NODES AND 197 LINKS.

Hp Unit L2 InvCap Random  EA
0.1 362 19087 1.68 1205 1.02
02 13675 65864 135.07 28027 1325
0.3 26402 87489 488.5% 551.65 1.49

Table I shows the results for all available networks,
averaged by the demands levels (value of [J,), including in
the last line the overall mean value for all problem instances.
It is clear that the results for all the methods get worse with
the increase of 7, as would be expected.

The comparison between the methods shows an impres-
sive superiority of the EA when compared to the heuristic
methods. In fact, the EA achieves solutions which manage a
very reasonable behavior in all scenarios (worse case is 1.49),
while the other heuristics manage very poorly. Even TnuCap,
an heuristic quite used in practice, gets poor results when D,
is 0.2 or 0.3 (Figure 2), which means that the optimization
with the EAs assures good network behavior in scenarios
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where demands are at least 200% larger than the ones where
InvCap would assure similar levels of congesticn.

TABLE II
RESULTS FOR THE QPTIMIZATIONOF CONGESTION ($*) - AVERAGED
RESULTS BY DEMAND LEVELS

Dy Unit L2 InvCap Ramdom EA
0.1 8.0 11594 1.50 Bas 102
0.2 99.96 77087 57710 49874 118
0.3 22730 1288.56  316.33 892,87 173
Overall 111.75 758,79 128.51 489.12  1.31

Congestion Cost Vzlues (averaged by demand)
10090 ;

N} e
[ L
[[ InvCap %= /4L2
Random —S— 3
5 1000 EA —m— i ________'—'—"f
E -
o
(=R E ]
e
B
g
=]
9 1
ad 0.2 43
Demand (D)
Fig. 2. Graphical representaion of the results obfained by the different

methods in congestion optimization (averaged by Dy).

Table IIT shows the results for congestion, averaged by
the number of nedes in the network, Figure 3, on the other
hand, represents the same data, but aggregated by the number
of arcs (links). It is ¢lear from both results that the results
cbtained by the EAs are quite scalable, since the quality
levels are not affected by the number of nedes or edges in
the network graph.

TABLE IIT
RESULTS FOR THE OPTIMIZATION OF CONGESTION(<d *) - AVERAGED
RESULTS BY THE NUMBER OF NODES.

Nodes Unif L2 InvCap Random EA
30 9890  598.35 9571 163.68  1.29
50 12108 81508 104.92 418.59 1.28
80 111.62 73071 157.50 594,37 131
100 11545 89100 155.20 579.82 1.36

The results obtained in this section show that the EA makes
an effective method for the cptimization of OSPF weights,
in order to minimize the congestion of the network.

These results confirm the findings of Ericsson et al [8], al-
though a precise comparisen of the approaches is impossible
since the original data is not available

B. Delays

Regarding the optimization of delays (cost function %),
a similar methodology was adopted. Indeed, in Table IV
the results for the same example network are shown. The
methods used in the optimization are the same as in the

Congestion Cost Values (averaged by number of edges )

= = T T T T T T T T T
10000 L3 —
ICap -
Randam —=— L2 5
EA —m—
" A |

s
2

Caongestion Cost (€%
g

s

InvGap
.
Leg—t" gy g
7 84 97 110 {44 157 {90 197 B4 B4 30 N
Edgas

Fig. 3. Craphical representation of the results obtained by the different
methods in congestion optimization (averaged by the number of nefwork
links).

previous section. In this case, the fist column represents
the parameter used for the generation of delay recuirements
(DR,).

TABLE IV
RESULTS FOR THE OPTIMIZATION OF DELAYS (FUNCTION +* ) IN ONE
EXAMPLE NETWORK WITH 100 NODES AND 197 LINKS.

DHp  Unit L2 InvCap Random EA
3 1350 1.38  201.62 436 L35
4 200 113 18.33 182 1.1%
5 1.47 104 3.62 154 104

On the other hand, Table V and Figure 4 represent the
results cbtained for the delay optimization averaged by the
parameter used in the generaticn of delays requirements
(D E,). In this case, the results of all methods improve when
the value is higher, since this means the optimization problem
is easier (higher delay requirements are easier to comply).

The relative performance of each method shows a goed
behavior of the EA, as before, but now there is a simpler
heuristic methed - the L2 - that achieves very similar results.
This is not a surprise, since in the prepesed model cnly prop-
agation delays were considered and these are proporticnal te
the length of each link. The 1.2 heuristic considers the GSPF
weights to be properticnal to the arc length, which means
they are also directly proportional to the delays. Se, it is
clear that the 12 heuristic exhibits a near-optimal behavicr
in this preblem.

It is important to notice that in the context of network
management, the delay minimization, unlike the congestion,
is not typically an optimization aim by itself. So, the results
in this section will be used mainly as a basis for comparison
with the results of multichjective optimization,

As before, the results for the delay minimization are also
shown aggregated by the number of nodes (Table VI) and
by the number of links (Figure VI). The scalability of both
L2 and the EAs prevails in these results,
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TABLE ¥
RESULTS FOR THE OPTIMIZATION OF DELAYS (y*)- AVERAGED RESULTS
BY THE DELAY REQUIREMENTS PARAMETER (D Rp)

DRy Unit L2 InvCap Random EA

15237 184 57794 15662 1.8
4 2878 125 158.85 9433 195
5 659 110 44,13 429 1.0
Overall 62.98 176  260.30 61.75 1,73

Delay CostValues (averaged by delay request)

1000 T T -
T ——|
5__\_\_\_\_\_-‘ 12—
_______ i / InvGap R:wg;» aigene :
T i ET__;'Z\
'\.\\ iy e i
5100 e e et e e e s s}
B
[
=
8 10
i
Delay Request (DRy)
Fig. 4. Graphical representation of the results obtained by the different

methods in delay opfimization (averaged by TiRp).

C. Multi-objective optimization

In this section, the results for the multiobjective opti-
mization are discussed. From the set of methods discussed
before, only the EA and the Random heuristic can be used to
perferm multicbjective optimization by considering function
7/ (Bquatien 21) as the cost/ fitness function. In all other
heuristic methods the solution is built disregarding the cost
function, so the results for multichjective optimization can
be copied from the ones cbtained in its single objective
counterpart.

The results of both EAs and Random methods are pre-
sented in terms of the values for the twe objective functions
(®* and ~"), since the value of f for these solutions can be
easily obtained and is not relevant to the analysis (it does
not represent any measure for the network behavior).

Table VII represents the results obtained in the example
network, for the the multi-objective optimization obtained
by the EAs and Random heuristics. The first two columns
represent the parameters for demand and delay requirements;
the next two indicate the results for the Random heuristic
in both aims and, finally, the last two give the results of
the EA for both cengestion and delay, each with an extra
information indicating the percentage by which this results
exceed the ones obtained by the corresponding EA under the
cerresponding single objective cost function.

In Table VIII the results are aggregated averaging by the
demand level (IJ,) being shown, in the last row, the overall
mean results. The overall results show that, in average, there
a 25% decrease in the congestion perfommance and around
44% in the delays minimization. These values are quite
good, since in this case both aims have to be simultaneously

TABLE VI
RESULTS FOR THE OPTIMIZATION OF DELAYS (y*)- AVERAGED RESULTS
VALUES BY THE NUMBER OF NODES

Nodes Unit L2 InvCap Random EA
20 a7y Lz 208,72 1834 132
50 115.32  2.04 417.88 7475 198
80 5716  1.69 137.45 9753 168
100 17.08 1.48 139.497 571.88 1.50

Delay Cost Values (averaged by number of edges)

Dalay Cost (v)

& g
Df o
% .
®

| [
? i

67 a4 ar 110 144 i6r 199 197
Edges

Fig. 5, Graphical representation of the results obtained by the different
methods in delay optimizafion (aversged by the number of links).

obbeyed, even if they are contradictory. In fact, a decrease
in the performance, when compared to single objective
optimization would always be expected. If the absclute
average values for both cost functions are taken into account
this indicates a quite acceptable network performance, well
within the defined working region.

It is clear that when the problem gets harder in terms
of congestion, both optimization aims are affected, both in
absolute terms and when comparing to the results of single
objective optimization in the previous sections. However,
even in the worst case (when [, equals 0.3) the network
still manages an acceptable behavior. It is important to notice
that in this scenario, and even when the [, equals 0.2, all
heuristics behave quite badly.

A similar picture is found looking at Table IX, where
the results are averaged by the delay requirement parameter
DE,. In fact, with the increase of DR, the results improve
on both aims, both in absolute terms and considering the
percentage of deviation from single objective optimization.
Still, and as before, the results are quite acceptable in terms
of network behaviour and the deviation from single objective
results are within reasonable ranges.

Table X, on the other hand, confimms the good scalability
properties of the EA. In fact, and as seen in the previous
sections for both congestion and delay optimization, the
results are almost constant for the different network sizes
(in this case, measured by the number of nodes).

A different view is offered by Figures 6 and 7 where the
results are plotted with the two objective functions in each
axis. The former shows the results averaged by the demand
levels and the latter by the delay requirements parameter.
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TABLE VII
RESULTS FOR MULTIOBIECTIVE OFPTIMIZATIONIN ONE EXAMPLE
NETWORK WITH 100 NODES AND 197 LINKS,

Ly DERp Random EA
o+ i i o (%) 7t (%)
01 R 27.36  39.97 | 1,14 (11.4%) 1.52 (10.2%)
01 4 722 16.08 1.09 (6.9%) 1.26 (11.8%)
0.1 5 3.82 2.28 1.02 (6.1%) 1.13 (2.9%)
02 3 356.25 2942 | L47 (17.4%) 175 (26.2%)
0.2 4 274.06 237 | 1.40 (11.9%) 1.42 (25.9%)
02 35 339.08 1.98 1.38 (9.8%) 1.29 (23.7%)
0.3 3 587.51 48.72 1.76 (18.4%) 2.04 (47.8%)
0.3 4 495,32 108 1.61 (8.0%) 1.56 (38.4%)
03 35 601.00 2.34 1.56 (5.0%) 1.37 (31.3%)
TABLE VIIL

RESULTS FOR THE MULTIOBIECTIVE OPTIMIZATION - AVERAGED BY Dy

D Random EA

T 72 D* (%) 7 (%)
0.1 BB.00 106,79 | L1J (149%) 102 (12.8%)
0.2 481.50  136.4% | 147 (25.1%)  2.32 (35.2%)
0.3 049.85 148.96 | 2.41 (37.5%) 3.23 (83.3%)
Overall | 506.45 130,81 | 1.68 (25.7%) 2.49 (43.8%)

In these graphs, the good overall network behavior of
the sclutions provided by the EA is clearly visible, both
in absolute temms, regarding the network behavior in terms
of congestion and delays, and when compared to all other
alternative methods. In fact, it is easy to see that no single
heuristic is capable of acceptable results in both aims si-
multaneously. 7.2 behaves well in the delay minimization but
fails completely in congestion; InvCap is better on congestion
(although in a very limited range) but fails completely in
the delays. £As, on the other hand, are capable of a goed
compromise between both optimization targets.

Congestion vs. Delay Cost Values (averaged by demand)
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Fig. 6. Graphical representation of the results obtained by the different
methods in the mulfiobjective optimization (averaged by Dyp).

Y. CONCLUSIONS AND FURTHER WORK

The optimization of OSPF weights brings important tools
for traffic engineering in WAN;, without demanding any
modifications on the basic network management model. This
work presented an optimization scheme based on Evolution-

TABLE IX
RESULTS FOR THE MULTIOBJECTIVE OPTIMIZATION - AVERAGED BY

DRy,
DR Random EA
+* 5t 2* (%) 7* (%)
3 333.08 18416 | 1.95 (42.8%) 4.22 (30.20)
4 505.69 82,04 | 1.59 (20.3%) 1,78 (41.8%)
5 478.37 27.23 | 1.51 (14.2%) 1.48 (34.4%)
TABLE X

RESULTS FOR THE MULTIOBJECTIVE OPTIMIZATION - AVERAGED BY
THE NUMBER OF NODES,

“Node Random
L+ oy D* (%) 2+ (%)
N 3 R A O W LR RV ER LRI
50 442.16 165.6% | 1L.78 (36.0%)  2.96 (51.9%)
20 §12.14 17075 | 1.62 (22.8%) .37 (42.7%)
100 agl.17 112209 | L75 (24.3%)  2.38 (56.2%)

ary Algorithms with an integer representation for the purpose
of multiobjective routing in the Internet.

To achieve this aim, an analytical mode]l was developed
allowing the performance evaluation of several QoS con-
strained GSPF routing scenarios of a given ISP. Resorting
to a large set of network topology configurations, each
one constrained by several bandwidth and end-to-end delay
requirements, it was shown that the proposed EAs were able
to provide OSPF weight seftings able to satisfy the users
demands. Moreover, the performance of EAs was compared
with several heuristics, some of them rules of thumb typically
used by network administrators, clearly showing the superi-
ority of the propesed optimization approach in this specific
multicbjective problem.

The research results presented in this work give ground to
the idea that it is possible to develop network management
tools which automatically provide network administrators
with optimal configurations for a given network topology and
corresponding sets of QoS demands. In this way, ISP resource
provisioning management tasks can be now simplified, while
providing better results and, consequently, strong financial
improvements can be achieved by organizations using the
proposed OSPF optimization scheme,

The proposed optimization framework, although requiring
some computational effort, can be achieved in useful time,
since a change in the OSPF weights in reply to a change in
traffic is a rare event. If very distinct traffic profiles occur in
different times of day (e.g. night and day) the corresponding
matrices should be used to optimize distinct OSPF weights.
Furthermore, the adaptation to a new solution is always
faster than mnning from scratch, since a good solution is
available to boost the search. Given all these facts, we can
say that the proposed framework would be implemented in
a straightforward way in a real world scenario.

Although a simple weighting method was used to face
the multiobjective nature of the problem, the results were of
high quality. This is probably due to the effort of normalizing
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Fig. 7. Graphical representation of the results obtained by the different

methods in the multiobjective optimization (averaged by D Ep).

beth cost functions in a coherent manner, Nevertheless, the
censideration of more specific E4As te handle multichjective
problems [14][15] will be taken into account in future work.

Memetzic Algorithms, that consider local optimization pro-
cedures embedded in the £A, have alsc been attempted in
the congestion optimizaticn preblem [16]. Their application
in this bi-chjective scenario is alsc a research direction that
has a strong potential to improve these results.

Another topic for future work is the integration of priority
QoS demands in the propesed cptimization medel. This will
allow to provide QoS guarantees to specific flows witheut
the overhead of network signaling.
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