
A Comparison of Algorithms for the
Optimization of Fermentation Processes

Rui Mendes Isabel Rocha Eugénio C. Ferreira Miguel Rocha

Abstract— The optimization of biotechnological processes is
a complex problem that has been intensively studied in the past
few years due to the economic impact of the products obtained
from fermentations.

In fed-batch processes, the goal is to find the optimal
feeding trajectory that maximizes the final productivity. Several
methods, including Evolutionary Algorithms (EAs) have been
applied to this task in a number of different fermentation
processes.

This paper performs an experimental comparison between
Particle Swarm Optimization, Differential Evolution and a
real-valued EA in three distinct case studies, taken from
previous work by the authors and literature, all considering
the optimization of fed-batch fermentation processes.

I. INTRODUCTION

A number of valuable products such as recombinant pro-
teins, antibiotics and amino-acids are produced using fer-
mentation techniques. Additionally, biotechnology has been
replacing traditional manufacturing processes in many areas
like the production of bulk chemicals, due to its relatively
low requirements regarding energy and environmental costs.
Consequently, there is an enormous economic incentive to
develop engineering techniques that can increase the pro-
ductivity of such processes.

However, these are typically very complex, involving
different transport phenomena, microbial components and
biochemical reactions. Furthermore, the nonlinear behavior
and time-varying properties, together with the lack of reliable
sensors capable of providing direct and on-line measurements
of the biological state variables limits the application of
traditional control and optimization techniques to bioreactors.

Under this context, there is the need to consider quantita-
tive mathematical models, capable of describing the process
dynamics and the interrelation among relevant variables.
Additionally, robust global optimization techniques must deal
with the model’s complexity, the environment constraints and
the inherent noise of the experimental process [3].

In fed-batch fermentations, process optimization usually
encompasses finding a given nutrient feeding trajectory that
maximizes productivity. Several optimization methods have
been applied in this task. It has been shown that, for simple
bioreactor systems, the problem can be solved analytically
[24].

Rui Mendes and Miguel Rocha are with Department of Infor-
matics and the Centro de Ciências e Tecnologias da Computação,
Universidade do Minho, Braga, Portugal (email: azuki@di.uminho.pt,
mrocha@di.uminho.pt). Isabel Rocha and Eugénio Ferreira with the
Centro de Engenharia Biológica da Universidade do Minho (email:
irocha@deb.uminho.pt, ecferreira@deb.uminho.pt).

Numerical methods make a distinct approach to this dy-
namic optimization problem. Gradient algorithms are used to
adjust the control trajectories in order to iteratively improve
the objective function [4].

In contrast, dynamic programming methods discretize both
time and control variables to a predefined number of values.
A systematic backward search method in combination with
the simulation of the system model equations is used to find
the optimal path through the defined grid. However, in order
to achieve a global optimum the computational burden is
very high [23].

An alternative approach comes from the use of algorithms
from the Evolutionary Computation (EC) field, which have
been used in the past to optimize nonlinear problems with
a large number of variables. These techniques have been
applied with success to the optimization of feeding or
temperature trajectories [14][1], and, when compared with
traditional methods, usually perform better [20][6].

In this work, the performance of different algorithms
belonging to three main groups - Evolutionary Algorithms
(EA), Particle Swarm (PSO) and Differential Evolution (DE)
- was compared, when applied to the task of optimizing the
feeding trajectory of fed-batch fermentation processes. Three
test cases taken from literature and previous work by the
authors were used. The algorithms were allowed to run for a
given number of function evaluations that was deemed to be
enough to achieve acceptable results. The comparison among
the algorithms was based on their final result and on the
convergence speed.

The paper is organized as follows: firstly, the fed-batch
fermentation case studies are presented; next, PSO, DE and
a real-valued EA are described; the results of the application
of the different algorithms to the case studies are presented;
finally, the paper presents a discussion of the results, conclu-
sions and further work.

II. CASE STUDIES: FED-BATCH FERMENTATION
PROCESSES

In fed-batch fermentations there is an addition of certain
nutrients along the process, in order to prevent the accumu-
lation of toxic products, allowing the achievement of higher
product concentrations.

During this process the system states change considerably,
from a low initial to a very high biomass and product concen-
trations. This dynamic behavior motivates the development
of optimization methods to find the optimal input feeding
trajectories in order to improve the process. The typical input
in this process is the substrate inflow rate time profile.

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

7371

For the proper optimization of the process, a white box
mathematical model is typically developed, based on dif-
ferential equations that represent the mass balances of the
relevant state variables.

A. Case study I
In previous work by the authors, a fed-batch recombinant

Escherichia coli fermentation process was optimized by EAs
[17][18]. This was considered as the first case study in this
work and will be briefly described next.

During the aerobic growth of the bacterium, with glucose
as the only added substrate, the microorganism can follow
three main different metabolic pathways:

• Oxidative growth on glucose:

k1S + k5O
µ1

−→ X + k8C (1)

• Fermentative growth on glucose:

k2S + k6O
µ2

−→ X + k9C + k3A (2)

• Oxidative growth on acetic acid:

k4A + k7O
µ3

−→ X + k10C (3)

where S, O, X , C, A represent glucose, dissolved oxygen,
biomass, dissolved carbon dioxide and acetate components,
respectively. In the sequel, the same symbols are used to
represent the state variables’ concentrations (in g/kg); µ1 to
µ3 are time variant specific growth rates that nonlinearly
depend on the state variables, and ki are constant yield
coefficients.

The associated dynamical model can be described by the
following equations:

dX

dt
= (µ1 + µ2 + µ3)X − DX (4)

dS

dt
= (−k1µ1 − k2µ2)X +

Fin,SSin

W
− DS (5)

dA

dt
= (k3µ2 − k4µ3)X − DA (6)

dO

dt
= (−k5µ1 − k6µ2 − k7µ3)X + OTR − DO (7)

dC

dt
= (k8µ1 + k9µ2 + k10µ3)X − CTR − DC (8)

dW

dt
' Fin,S (9)

being D the dilution rate, Fin,S the substrate feeding rate (in
kg/h), W the fermentation weight (in kg), OTR the oxygen
transfer rate and CTR the carbon dioxide transfer rate.

The kinetic behavior, expressed in the rates µ1 to µ3, was
given by specific functions of the state variables, that is out
of the scope of the present work but can be found in [16].

The purpose of the optimization is to determine the feeding
rate profile (Fin,S(t)) that maximizes the productivity of the
process, defined as the units of product (recombinant protein)
formed per unit of time. In this case, it is usually related with
the final biomass obtained, when the duration of the process

is pre-defined. Thus, a performance index (PI) is defined by
the following expression:

PI =
X(Tf)W (Tf) − X(0)W (0)

Tf

(10)

The relevant state variables are initialized with the follow-
ing values: X(0) = 5, S(0) = 0, A(0) = 0, W (0) = 3.
Due to limitations in the feeding pump capacity, the value
of Fin,S(t) must be in the range [0.0; 0.4]. Furthermore,
the following constraint is defined over the value of W :
W (t) ≤ 5. The final time (Tf) is set to 25 hours.

B. Case study II
This system is a fed-batch bioreactor for the production

of ethanol by Saccharomyces cerevisiae, firstly studied by
Chen and Huang [5]. The aim is to find the substrate feed
rate profile that maximizes the yield of ethanol.

The model equations are the following:

dx1

dt
= g1x1 − u

x1

x4
(11)

dx2

dt
= −10g1x1 + u

150− x2

x4
(12)

dx3

dt
= g2x1 − u

x3

x4
(13)

dx4

dt
= u (14)

where x1 is the cell mass, x2 the substrate concentration, x3

the ethanol concentration, x4 the volume of the reactor, u

the feeding rate.
On the other hand, the kinetic variables g1 and g2 are given

by the following algebraic equations:

g1 =
0.408

1 + x3

16

x2

0.22 + x2
(15)

g2 =
1

1 + x3

71.5

x2

0.44 + x2
(16)

The aim of the optimization is to find the feeding profile
(u) that maximizes the following performance index:

PI = x3(Tf)x4(Tf) (17)

The final time is set to Tf = 54 (hours), and the initial
values for the state variables are the following: x1(0) = 1,
x2(0) = 150, x3(0) = 0 and x4(0) = 10. Additionally,
there are physical constraints over the variables, namely: 0 ≤
x4(t) ≤ 200 for all time points and the feeding rate 0 ≤
u(t) ≤ 12.

C. Case study III
This system is a model for the production of a secreted

foreign protein using baker’s yeast as the host organism in
a fed-batch bioreactor, developed by Park and Ramirez [15].
The substrate feed flow rate is the only control variable
and the system is governed by the following differential
equations:

7372

dx1

dt
=

4.75A(x2 − x1)

0.12 + A
−

ux1

x5
(18)

dx2

dt
=

x3x4e
−5x4

0.1 + x4
−

ux2

x5
(19)

dx3

dt
= (A −

u

x5
)x3 (20)

dx4

dt
= −7.3Ax3 −

u(x4 − 20)

x5
(21)

dx5

dt
= u (22)

where x1, x2, x3 and x4 are the concentrations of secreted
protein (units/L), total protein (units/l), cells (g/l) and sub-
strate (g/l) respectively; x5 is the fermenter’s volume (l) and
u the feed rate (l/h).

The specific growth A (h−1) follows substrate inhibition
kinetics and is given by:

A =
21.87x4

(x4 + 0.4)(x4 + 62.5)
(23)

The aim of the optimization is to find the feeding profile
(u) that maximizes the following PI:

PI = x1(Tf)x5(Tf) (24)

The final time is set to Tf = 15 (hours) and the initial
values for relevant state variables are the following: x1(0) =
0, x2(0) = 0, x3(0) = 1, x4(0) = 5 and x5(0) = 1. The
feed rate is constrained to the range u(t) ∈ [0.0; 3.0].

III. THE ALGORITHMS

The optimization task is to find the feeding trajectory,
represented as an array of real-valued variables, that yields
the best performance index. Each variable will encode the
amount of substrate to be introduced into the bioreactor,
in a given time unit, and the solution will be given by the
temporal sequence of such values. In this case, the size of the
genome would be determined based on the final time of the
process (Tf) and the discretization step (d) considered in the
numerical simulation of the model, given by the expression:
Tf

d
.
However, as the resulting genome would be very large

(typically with 5000 genes, for case study I), feeding values
were defined only at certain equally spaced points, and the
remaining values are linearly interpolated. The size of the
genome (G) becomes:

G =
Tf

dI
+ 1 (25)

where I stands for the number of points within each interpo-
lation interval. The value of d used in the experiments was
d = 0.005, for case studies I, II and III.

The evaluation process, for each individual in the pop-
ulation, is achieved by running a numerical simulation of
the defined model, given as input the feeding values in
the genome. The numerical simulation is performed using

ODEToJava, a package of ordinary differential equation
solvers, using a linearly implicit implicit/explicit (IMEX)
Runge-Kutta scheme used for stiff problems [2]. The fitness
value is then calculated from the final values of the state
variables according to the PI defined for each case.

A. Particle Swarm Optimization
A particle swarm optimizer uses a population of particles

that evolve over time by flying through space. The particles
imitate their most successful neighbors by modifying their
velocity component to follow the direction of the most
successful position of their neighbors.

Each particle is defined by:

P
(i)
t = 〈xt, vt, pt, et〉

xt ∈ R
d is the current position in the search space; pt ∈

R
d is the position visited by the particle in the past that

had the best function evaluation; vt ∈ R
d is a vector that

represents the direction in which the particle is moving, it
is called the ‘velocity’; et is the evaluation of pt under the
function being optimized, i.e. et = f(pt).

Particles are connected to others in the population via a
predefined topology. This can be represented by the adja-
cency matrix of a directed graph M = (mij), where mij =
1 if there is an edge from particle i to particle j and mij = 0
otherwise.

At each iteration, a new population is produced by allow-
ing each particle to move stochastically toward its previous
best position and at the same time toward the best of the
previous best positions of all other particles to which it is
connected.

The following is an outline of a generic PSO.
1) Set the iteration counter, t = 0.
2) Initialize each x

(i)
0 and v

(i)
0 randomly.

Set p
(i)
0 = x

(i)
0 .

3) Evaluate each particle and set e
(i)
0 = f(p

(i)
0).

4) Let t = t + 1 and generate a new population, where
each particle i is moved to a new position in the search
space according to:

(i) v
(i)
t = velocity update(v

(i)
t−1).

(ii) x
(i)
t = x

(i)
t−1 + v

(i)
t .

(iii) Constrain solutions to the bounds and update x
(i)
t

and v
(i)
t accordingly.

(iv) Evaluate the new position, e = f(x
(i)
t).

(v) If the new position is better than the previous
best, update the particle’s previous best position.
i.e if e < e

(i)
t−1 then let p

(i)
t = x

(i)
t and e

(i)
t = e

else let p
(i)
t = p

(i)
t−1 and e

(i)
t = e

(i)
t−1.

If it is necessary to constrain solutions to the bounds,
the offending coordinate is reset to the nearest limit and
the velocity is changed accordingly. Clerc and Kennedy [7]
introduced the use of a factor called the ‘constriction factor’,
symbolized by χ, into the velocity update equation. The
velocity update equation for this scheme is given by:

7373

velocity update(v
(i)
t−1) = χ[v

(i)
t−1 + r1c1(p

(i)
t−1 − x

(i)
t−1) +

r2c2(p
(g)
t−1 − x

(i)
t−1)]

where c1 and c2 are constants known as the ‘individual’
and ‘social’ constants respectively, that represent the weight
accorded to the influence of the particle’s personal memory,
and the memory of its neighborhood respectively; r1 and r2

are random variables selected from U(0, 1). New values for
r1 and r2 are selected for each dimension of the updated
velocity vector as it is being computed; p

(g)
t−1 is the previous

best position of the particle in i’s neighborhood at time t−1
that has the best previous best evaluation of all particles in
that neighborhood. In other words, g = arg{min{ej(t −
1)|j ∈ N(i)}}, where N(i) is the neighborhood of particle
i. A common use of the parameters involves choosing c1 =
c2 = 2.05 and χ = 0.729.

B. Fully Informed Particle Swarm
The only difference between this method and the canonical

particle swarm resides in the velocity update. An approach
to the velocity update equation that involves utilizing infor-
mation from all members of a particle’s neighborhood was
proposed by Mendes et al [12]. In this case, each member of
the particle’s neighborhood contributes to the new direction
that the particle will travel in. Mendes’ formulation allows
for weighted contributions from each neighbor, with the
possibility of equal weightings. The velocity update equation
can be computed by

velocity update(v
(i)
t−1) =

X

j∈N(i)

r ·
(c1 + c2)

|N(i)|
· (p

(j)
t−1 − x

(i)
t−1)

where r ∼ U(0, 1) and N(i) is the neighborhood (the set
of the particles) of particle i. In this paper, the population
topology used is von Neumann [11]. In this topology each
particle is connected to four others, in a lattice that wraps
around on itself.

C. Differential Evolution
DE is a population-based approach to function optimiza-

tion that generates trial individuals by calculating vector
differences between other randomly selected members of the
population.

The following is an outline of a variant of the DE
algorithm called DE/rand/1 that uses a binomial crossover
[22]. For clarity, the computation of the new trial vector
has been shown separately from the crossover operation that
selects only some of the dimensions of the trial vector.

1) Initialize the population;
2) Evaluate the population;
3) Generate a new population where each candidate indi-

vidual is generated in parallel according to:
(i) Randomly select 3 distinct individuals r1, r2, r3

from the population that are different from i;
(ii) Generate a trial vector based on the formula ~t =

~xr1
+ F · (~xr2

− ~xr3
)

(iii) Incorporate coordinates of this vector with prob-
ability CR, using at least one coordinate;

(iv) If the candidate is not valid, change its invalid co-
ordinates by resetting them to the closest bound;

(v) Evaluate the candidate;
(vi) Use the candidate in the new generation if it is

at least as good as the current individual;
4) Loop to 3 unless the termination criterion is met.
Various schemes are currently in use for DEs [21]. Each

scheme varies with respect to the number of other random
individuals that are used to construct a new trial vector, as
well as with respect to whether or not the current individual
or the global best individual will be used as part of that
computation. Three schemes are considered in this paper.
These are shown below along with the corresponding trial
vector generation formula. xrj

, 2 ≤ j ≤ 3 represent distinct
randomly selected individuals that are different from the
current individual xi; xbest is the best individual and xt is
selected as the best of two randomly selected individuals
from the population that are different from the current
individual xi.

DE/rand/1 ~t = ~xr1
+ F (~xr2

− ~xr3
)

DE/best/1 ~t = ~xbest + F (~xr2
− ~xr3

)

DE/tourn/1 ~t = ~xt + F (~xr1
− ~xr2

)

D. Real-Valued EA
In this work, we adopted a real-valued EA that provided

good results in previous work [18][19]. The overall structure
of the EA is,

BEGIN
Initialize time (t = 0).
Generate and evaluate the initial population (P0).
WHILE NOT (termination criteria) DO

Select from Pt individuals for reproduction.
Apply the genetic operators to breed the offspring.
Evaluate the offspring.
Insert the offspring into the next population (Pt+1).
Select the survivors from Pt to be kept in Pt+1.
Increase current time (t = t + 1).

END

Regarding the reproduction step, both mutation and
crossover operators were taken into account.

Two mutation operators were used, namely:
• Random Mutation, which replaces one gene by a

new randomly generated value, within the range
[mini, maxi] [13]; and

• Gaussian Mutation, which adds to a given gene a value
taken from a Gaussian distribution, with a zero mean
and a standard deviation given by maxi−mini

4 (i.e., small
perturbations will be preferred over larger ones).

where [mini; maxi] is the range of values allowed for gene
i.

In both cases, an innovation is introduced: the mutation
operators are applied to a variable number of genes (a value
that is randomly set between 1 and 10 in each application).

7374

p-value code Condition
3 p < 0.001

2 0.001 ≤ p < 0.01

1 0.01 ≤ p < 0.05

N p ≥ 0.05

TABLE I
ENCODING USED IN THE PRESENTATION OF P-VALUES OF THE PAIRWISE

T-TESTS.

On the other hand, the following crossover operators were
chosen:

• Two-Point crossover, a standard Genetic Algorithm op-
erator [13], applied in the traditional way;

• Arithmetical, where each gene in the offspring will be
a linear combination of the values in the ancestors’
chromosomes [13];

• Sum where the offspring genes denote the sum or the
subtraction of the genes in the parents.

A set of experiments was conducted in order to find the
best set of genetic operators for this problem [18]. The best
result was obtained using an alternative that contemplates the
use of all genetic operators described above. In this case the
crossover operators are responsible for breeding 50% of the
offspring and the mutation operators the remaining 50%.

All operators were constrained to respect the limits of the
gene’s values, i.e., when an operator creates a gene value
outside of the allowed range, the value in the offspring is
equal to the one in the parents. Different ranges can be
defined to different genes at distinct locations.

The selection procedure is done by converting the fitness
value into a linear ranking in the population, and then
applying a roulette wheel scheme. In each generation, 50%
of the individuals are kept from the previous generation, and
50% are bred by the application of the genetic operators.

IV. EXPERIMENTS

A. Methodology
When comparing algorithms, it is necessary to have a way

to conclude that a certain approach is better than the other
ones. As the procedure is empirical, conclusions may only be
drawn after some statistical validation. The results presented
in this paper use 95% confidence intervals. Additionally, we
adopted the use of t-tests [9] for two-sample comparisons.
We decided to present our results using a symbolic encoding
of the p-values of t-tests. The reason for this is to improve the
readability that will allow us to visually interpret the result
of the test. The encoding used is presented in Table I.

When performing multiple pairwise comparisons, it is
important to use a correction of the p-value of each test.
There are several corrections that may be used. One of the
simplest and most widely used is the Bonferroni correction.
We decided to use the Bonferroni step-down (also called
Holm) correction, which is very similar to the Bonferroni,
but a little less stringent [10].

What makes a good algorithm? Even when a statistical test
cannot find a significant difference between two algorithms

(e.g., because the confidence interval of one of them is too
wide), we are interested in a reliable method: one that always
gives us good results. Thus, we prefer an algorithm with a
good average and a narrow confidence interval.

B. Parameter Settings and Test Conditions
When solving a real world problem, the main concern

is to have a tool that may be applied to the problem with
as few fine-tuning as possible. We are mainly interested in
the results and not in a thorough study about the algorithms
involved. We do not wish to go through the cumbersome task
of testing the valuation of all the parameters of these algo-
rithms until we find a setting that is perfect for the problem at
hand. Furthermore, these experiments take a long time1 and
we usually have time constraints to get good results. Thus,
we decided to choose the standard configurations for each
algorithm that were either validated by experimental results
or suggested by previous studies.

Due to the previous experience of the authors with the
real-valued EA, each run was stopped after 200,000 function
evaluations. In the case of canonical particle swarm (hence-
forth denoted CanPso) or fully informed particle swarm
(denoted Fips) the population size was 20 and the other
parameters have the usual values given in the literature. The
neighborhood topologies selected were gbest for CanPso and
von Neumann for Fips [11].

For DE, the population size was set to 20, F was set to
0.5, CR to 0.6 and the schemes used were DE/rand/1 (DE),
DE/best/1 (DEBest) and DE/tourn/1 (DETourn). In terms of
the real-valued EA, the population size was set to 200. Due
to the amount of time it took to run the experiments, only
20 runs were performed with each algorithm.

Three values were tested for the parameter I in each test
case, thus varying the number of variables to optimize.

C. Results for case I
Table II presents the results of the algorithms on case I

for the different values of I . In all cases, the 95% confidence
intervals for the PI are presented for 40000, 100000, 200000
function evaluations. We decided to probe PI at these time-
steps to estimate the possibility of terminating the runs earlier
whilst still maintaining good quality solutions.

The best solution found was by DE when I = 100. Using a
higher number of points provides a better trajectory. It could
be argued that it does not make sense to maintain the same
population sizes when increasing the number of variables.
However, it is interesting to note that certain algorithms
maintain a very similar performance on all three instances
while the performance of others degrades a lot. DE and
Fips maintain the same performance on all three instances,
closely followed by DETourn. Additionally, we remark the
narrowness of the confidence intervals of DE on all instances
of the problem.

It is also interesting to realize that DE, DETourn and Fips
do not improve much after 40,000 NFEs. This is especially

1As much as 24 hours per run in case II with I = 100

7375

Algorithm PI 40k NFEs PI 100k NFEs PI 200k NFEs
CanPso 2.5154 ± 0.7123 2.5563 ± 0.7091 2.5641 ± 0.7168

DE 9.3693 ± 0.0570 9.4738 ± 0.0052 9.4770 ± 0.0028

DEBest 2.7077 ± 0.1921 2.7419 ± 0.2115 2.7936 ± 0.2176

DETourn 9.1044 ± 0.1983 9.2913 ± 0.1240 9.3596 ± 0.1114

EA 7.9371 ± 0.1355 8.5161 ± 0.0883 8.8121 ± 0.0673

Fips 9.1804 ± 0.1642 9.4280 ± 0.0551 9.4528 ± 0.0538

CanPso 3.9338 ± 0.8631 3.9909 ± 0.8551 3.9910 ± 0.8551

DE 9.4728 ± 0.0003 9.4728 ± 0.0001 9.4728 ± 0.0001

DEBest 4.2618 ± 1.1503 4.4745 ± 1.1054 4.4919 ± 1.1041

DETourn 9.4374 ± 0.0265 9.4500 ± 0.0214 9.4534 ± 0.0187

EA 8.3242 ± 0.1053 8.8004 ± 0.0993 8.9937 ± 0.0849

Fips 9.4691 ± 0.0056 9.4729 ± 0.0000 9.4729 ± 0.0000

CanPso 7.1461 ± 1.1152 7.1461 ± 1.1152 7.1461 ± 1.1152

DE 9.4351 ± 0.0000 9.4351 ± 0.0000 9.4351 ± 0.0000

DEBest 7.6932 ± 0.8321 7.6937 ± 0.8321 7.6937 ± 0.8321

DETourn 9.4099 ± 0.0551 9.4099 ± 0.0551 9.4099 ± 0.0551

EA 8.7647 ± 0.1441 9.0137 ± 0.1421 9.1324 ± 0.1320

Fips 9.4351 ± 0.0000 9.4351 ± 0.0000 9.4351 ± 0.0000

TABLE II
RESULTS FOR CASE I FOR I = 100 (51 VARIABLES), I = 200 (26

VARIABLES) AND I = 500 (11 VARIABLES) RESPECTIVELY.

true for DE. What can we conclude about convergence
speed? We plotted the average of the best fitness in the
population for each algorithm. Figure 1 presents the conver-
gence curve of the algorithms for I = 200. The convergence
curves for other values of I are quite similar to this one. DE,
DETourn and Fips do not improve much after a certain mark.
The convergence speed of EA is slower when compared with
the other algorithms.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50000 100000 150000 200000

PI

NFEs

CanPso
Fips
DE

DEBest
DETourn

EA

Fig. 1. Convergence of the algorithms for case I when I = 200.

Both CanPso and DEBest are clearly inferior and seem to
be stuck in very poor local optima. This is to be expected
given that both algorithms are quite greedy. We are sure that
the result of CanPso could be improved with a more sparsely
connected neighborhood topology but previous studies sug-
gest it would not beat Fips [12].

We decided to test for statistical differences among the
algorithms. Table III shows the pairwise t-test results for all
values of I . The codes of the p-values are separated by dashes
and correspond to the ordering of I .

As can be seen from consulting the table, there is no

CanPso DE DEBest DETourn EA
DE 3-3-1

DEBest N-N-N 3-3-1
DETourn 3-3-1 N-N-N 3-3-1

EA 3-3-1 3-3-2 3-3-1 3-3-1
Fips 3-3-1 N-N-N 3-3-1 N-N-N 3-3-2

TABLE III
PAIRWISE T-TEST WITH THE HOLM P-VALUE ADJUSTMENT FOR THE

ALGORITHMS OF CASE I. THE P-VALUE CODES CORRESPOND TO

I = 100, I = 200 AND I = 500 RESPECTIVELY.

statistically significant difference between DE, DETourn and
Fips in this problem. We can conclude that DEBest and
CanPso are inferior to the other ones, while the EA stands
in an intermediate level between the two groups.

D. Results for case II
Table IV presents the results of the algorithms on case II.

In this case, the best result was found by DETourn or DE
when I = 540. Both of these algorithms also present narrow
confidence intervals, which means that they are reliable. EA
is a strong contender in this problem but needs more time to
achieve good results. Fips somehow lost its edge, especially
when the number of variables increases.

Algorithm PI 40k NFEs PI 100k NFEs PI 200k NFEs
CanPso 19142.9 ± 131.3 19146.5 ± 133.7 19157.7 ± 140.4

DE 20383.6 ± 21.0 20396.5 ± 20.5 20402.3 ± 21.2

DEBest 19144.3 ± 162.5 19149.4 ± 161.7 19151.3 ± 161.4

DETourn 20365.2 ± 26.1 20396.7 ± 15.2 20402.7 ± 14.7

EA 19876.0 ± 94.4 20127.4 ± 74.1 20235.2 ± 73.7

Fips 19413.6 ± 163.2 19413.7 ± 163.2 19413.7 ± 163.2

CanPso 19385.2 ± 284.3 19386.4 ± 284.3 19406.8 ± 272.5

DE 20379.4 ± 11.6 20397.2 ± 13.9 20406.9 ± 14.5

DEBest 19418.1 ± 290.0 19421.0 ± 290.4 19430.5 ± 293.5

DETourn 20362.7 ± 52.4 20380.4 ± 42.7 20394.3 ± 32.8

EA 20151.8 ± 69.7 20335.1 ± 54.1 20394.7 ± 23.1

Fips 19818.0 ± 160.7 19818.9 ± 161.1 19818.9 ± 161.1

CanPso 19914.7 ± 243.3 19917.7 ± 244.2 19934.3 ± 259.6

DE 20388.0 ± 9.4 20406.7 ± 5.6 20416.8 ± 3.7

DEBest 20190.0 ± 224.3 20213.5 ± 194.6 20218.9 ± 189.6

DETourn 20400.3 ± 5.2 20414.7 ± 4.2 20419.9 ± 3.8

EA 20237.7 ± 52.9 20340.1 ± 39.4 20371.7 ± 25.6

Fips 20233.9 ± 120.8 20234.0 ± 120.8 20234.0 ± 120.8

TABLE IV
RESULTS FOR CASE II FOR I = 100 (109 VARIABLES), I = 200 (55

VARIABLES) AND I = 540 (21 VARIABLES) RESPECTIVELY.

Table V shows the comparison of the algorithms. As can be
seen, CanPso continues to be the worst contender but DEBest
is not a very bad choice when the number of variables is
small. EA is still beaten by DE and DETourn in most cases.
Figure 2 presents the convergence curve of the algorithms.
DE and DETourn converge fast (around 40,000 NFEs); Fips
gets stuck in a plateau that is higher than the one of DEBest
and CanPso; EA converges slowly but is steadily improving.
It seems that, given enough time, EA finds similar solutions
to either DE and DETourn.

7376

CanPso DE DEBest DETourn EA
DE 3-3-1

DEBest N-N-N 3-3-N
DETourn 3-3-1 N-N-N 3-3-N

EA 3-3-1 2-N-1 3-3-N 2-N-1
Fips N-N-N 3-3-N N-N-N 3-3-N 3-3-N

TABLE V
PAIRWISE T-TEST WITH THE HOLM P-VALUE ADJUSTMENT FOR THE

ALGORITHMS OF CASE II. THE P-VALUE CODES CORRESPOND TO

I = 100, I = 200 AND I = 540 RESPECTIVELY.

 16500

 17000

 17500

 18000

 18500

 19000

 19500

 20000

 20500

 0 50000 100000 150000 200000

PI

NFEs

CanPso
Fips
DE

DEBest
DETourn

EA

Fig. 2. Convergence of the algorithms for case II for I = 200.

E. Results for case III
Table VI presents the results of the algorithms on case III.

This case seems to be quite simple and most algorithms find
similar results. DE, Fips and EA are the best algorithms in
this problem because of their reliability: they have narrow
confidence intervals. DETourn seems to be a little less
reliable, but its confidence intervals are still small enough.

Table VII shows the comparison of the algorithms for this
problem. In this case, most algorithms are not statistically
different. This is the case when we turn to the reliability
of the algorithms to draw conclusions. As we stated before,
most algorithms find similar solutions, which indicates that
this case is probably not a good benchmark to compare
algorithms.

Figure 3 presents the convergence curve of the algorithms
for I = 100. In this case DE, DETourn and Fips converge
very fast; EA has a slower convergence rate; CanPso and
DEBest get stuck in local optima.

V. CONCLUSIONS AND FURTHER WORK

This paper compares canonical particle swarm (CanPso),
fully informed particle swarm (Fips), a real-valued EA (EA)
and three schemes of differential evolution (DE, DEBest
and DETourn) in three test cases of optimizing the feeding
trajectory in fed-batch fermentation. Each of these problems
was tackled with different numbers of points (i.e., different
values for I) to interpolate the feeding trajectory. This is a
trade off: the more variables we have, the more precise the
curve is but the harder it is to optimize.

Algorithm PI 40k NFEs PI 100k NFEs PI 200k NFEs
CanPso 27.069 ± 1.751 27.370 ± 1.836 27.579 ± 1.681

DE 32.641 ± 0.029 32.674 ± 0.002 32.680 ± 0.001

DEBest 30.774 ± 1.004 30.775 ± 1.004 30.775 ± 1.004

DETourn 32.624 ± 0.057 32.629 ± 0.056 32.631 ± 0.056

EA 32.526 ± 0.025 32.633 ± 0.013 32.670 ± 0.008

Fips 32.625 ± 0.100 32.629 ± 0.099 32.630 ± 0.099

CanPso 30.668 ± 1.281 30.668 ± 1.281 30.668 ± 1.281

DE 32.646 ± 0.002 32.650 ± 0.000 32.651 ± 0.000

DEBest 31.766 ± 0.684 31.768 ± 0.685 31.768 ± 0.685

DETourn 32.648 ± 0.002 32.650 ± 0.002 32.650 ± 0.002

EA 32.553 ± 0.015 32.627 ± 0.005 32.643 ± 0.002

Fips 32.650 ± 0.001 32.651 ± 0.000 32.651 ± 0.000

CanPso 31.914 ± 0.662 31.914 ± 0.662 31.914 ± 0.662

DE 32.444 ± 0.000 32.444 ± 0.000 32.444 ± 0.000

DEBest 31.913 ± 0.700 31.914 ± 0.700 31.914 ± 0.700

DETourn 32.441 ± 0.005 32.441 ± 0.005 32.441 ± 0.005

EA 32.413 ± 0.012 32.439 ± 0.003 32.443 ± 0.001

Fips 32.444 ± 0.000 32.444 ± 0.000 32.444 ± 0.000

TABLE VI
RESULTS FOR CASE III FOR I = 50 (61 VARIABLES), I = 100 (31

VARIABLES) AND I = 200 (16 VARIABLES) RESPECTIVELY.

CanPso DE DEBest DETourn EA
DE 2-N-N

DEBest 1-N-N 1-N-N
DETourn 2-N-N N-N-N 1-N-N

EA 2-N-N N-3-N 1-N-N N-3-N
Fips 2-N-N N-N-N 1-N-N N-N-N N-3-N

TABLE VII
PAIRWISE T-TEST WITH THE HOLM P-VALUE ADJUSTMENT FOR THE

ALGORITHMS OF CASE III. THE P-VALUE CODES CORRESPOND TO

I = 50, I = 100 AND I = 200 RESPECTIVELY.

A new DE scheme was presented: DE/tourn/1. The ra-
tionale behind this scheme was that it is a compromise
between DE/rand/1 and DE/best/1. The more individuals
participate in the tournament and the more it should behave
like DE/best/1. In these problems, the results of DE were
very similar to the ones of DETourn. In some cases DE had
narrower confidence intervals and therefore it seems that a
more complicated scheme is not helpful in these problems.
However, more research needs to be performed over a wider
range of problems to ensure this conclusion. DEBest did not
work well on these problems. In fact, it was one of the lowest
performers: it suffered from premature convergence most of
the time.

When compared to the other algorithms, DE and DETourn
seemed to be able to achieve good results consistently and
fast. From all the algorithms tested, they are the ones we
recommend the most. Fips was a good contender and in the
majority of the tests found good results and was as fast as
DE and DETourn. However, it got stuck on local optima in
case II. CanPso was one of the worst performers.

EA was slow to converge but reliable. If you can afford the
computational time needed, it always finds good solutions.
However, in some problems it requires a large number
of function evaluations. Given that the computational time
needed for these problems is quite large, it is a good reason

7377

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 50000 100000 150000 200000

PI

NFEs

CanPso
Fips
DE

DEBest
DETourn

EA

Fig. 3. Convergence of the algorithms for case III when I = 100.

to choose DE instead.
Previous work by the authors [19] developed a new

representation in EAs in order to allow the optimization
of a time trajectory with automatic interpolation. It would
be interesting to develop a similar approach within DE or
Fips. Another area of future research is the consideration
of on-line adaptation, where the model of the process is
updated during the fermentation process. In this case, the
good computational performance of DE is a benefit, if there
is the need to re-optimize the feeding given a new model and
values for the state variables are measured on-line.

ACKNOWLEDGMENTS

This work was supported in part by the Portuguese
Foundation for Science and Technology under project
POSC/EIA/59899/2004. The authors wish to thank Project
SeARCH (Services and Advanced Research Computing with
HTC/HPC clusters), funded by FCT under contract CONC-
REEQ/443/2001, for the computational resources made avail-
able.

REFERENCES

[1] P. Angelov and R. Guthke. A Genetic-Algorithm-based Approach to
Optimization of Bioprocesses Described by Fuzzy Rules. Bioprocess
Engin., 16:299–303, 1997.

[2] Spiteri Ascher, Ruuth. Implicit-explicit runge-kutta methods for time-
dependent partial differential equations. Applied Numerical Mathe-
matics, 25:151–167, 1997.

[3] J.R. Banga, C. Moles, and A. Alonso. Global Optimization of Bio-
processes using Stochastic and Hybrid Methods. In C.A. Floudas and
P.M. Pardalos, editors, Frontiers in Global Optimization - Nonconvex
Optimization and its Applications, volume 74, pages 45–70. Kluwer
Academic Publishers, 2003.

[4] A.E. Bryson and Y.C. Ho. Applied Optimal Control - Optimization,
Estimation and Control. Hemisphere Publication Company, New York,
1975.

[5] C.T. Chen and C. Hwang. Optimal Control Computation for
Differential-algebraic Process Systems with General Constraints.
Chemical Engineering Communications, 97:9–26, 1990.

[6] J.P. Chiou and F.S. Wang. Hybrid Method of Evolutionary Algorithms
for Static and Dynamic Optimization Problems with Application to a
Fed-batch Fermentation Process. Computers & Chemical Engineering,
23:1277–1291, 1999.

[7] Maurice Clerc and James Kennedy. The particle swarm - explosion,
stability, and convergence in a multidimensional complex space. IEEE
Transactions on Evolutionary Computation, 6(1):58–73, 2002.

[8] J. Stuart Hunter George E. P. Box, William G. Hunter. Statistics for
experimenters: An introduction to design and data analysis. NY: John
Wiley, 1978.

[9] Cyril Harold Goulden. Methods of Statistical Analysis, 2nd ed. John
Wiley & Sons Ltd., 1956.

[10] S Holm. A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics, 6:65–70, 1979.

[11] J. Kennedy and R. Mendes. Topological structure and particle swarm
performance. In David B. Fogel, Xin Yao, Garry Greenwood, Hitoshi
Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings of the
Fourth Congress on Evolutionary Computation (CEC-2002), Honolulu,
Hawaii, May 2002. IEEE Computer Society.

[12] Rui Mendes, James Kennedy, and José Neves. The fully informed par-
ticle swarm: Simple, maybe better. IEEE Transactions on Evolutionary
Computation, 8(3):204–210, 2004.

[13] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, USA, third edition, 1996.

[14] H. Moriyama and K. Shimizu. On-line Optimization of Culture
Temperature for Ethanol Fermentation Using a Genetic Algorithm.
Journal Chemical Technology Biotechnology, 66:217–222, 1996.

[15] S. Park and W.F. Ramirez. Optimal Production of Secreted Protein in
Fed-batch Reactors. AIChE J, 34(9):1550–1558, 1988.

[16] I. Rocha. Model-based strategies for computer-aided operation of
recombinant E. coli fermentation. PhD thesis, Universidade do Minho,
2003.

[17] I. Rocha and E.C. Ferreira. On-line Simultaneous Monitoring of
Glucose and Acetate with FIA During High Cell Density Fermentation
of Recombinant E. coli. Analytica Chimica Acta, 462(2):293–304,
2002.

[18] M. Rocha, J. Neves, I. Rocha, and E. Ferreira. Evolutionary algo-
rithms for optimal control in fed-batch fermentation processes. In
G.Raidl et al., editor, Proceedings of the Workshop on Evolutionary
Bioinformatics - EvoWorkshops 2004, LNCS 3005, pages pp.84–93.
Springer, 2004.

[19] Miguel Rocha, Isabel Rocha, and Eugénio Ferreira. A new represen-
tation in evolutionary algorithms for the optimization of bioprocesses.
In Proceedings of the IEEE Congress on Evolutionary Computation,
pages 484–490. IEEE Press, 2005.

[20] J.A. Roubos, G. van Straten, and A.J. van Boxtel. An Evolutionary
Strategy for Fed-batch Bioreactor Optimization: Concepts and Perfor-
mance. Journal of Biotechnology, 67:173–187, 1999.

[21] Rainer Storn. On the usage of differential evolution for function
optimization. In 1996 Biennial Conference of the North American
Fuzzy Information Processing Society (NAFIPS 1996), pages 519–523.
IEEE, 1996.

[22] Rainer Storn and Kenneth Price. Minimizing the real functions of
the icec’96 contest by differential evolution. In IEEE International
Conference on Evolutionary Computation, pages 842–844. IEEE, May
1996.

[23] A. Tholudur and W.F. Ramirez. Optimization of Fed-batch Bioreactors
Using Neural Network Parameters. Biotechnology Progress, 12:302–
309, 1996.

[24] V. van Breusegem and G. Bastin. Optimal Control of Biomass Growth
in a Mixed Culture. Biotechnology and Bioengineering, 35:349–355,
1990.

7378

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

