
COORDINSPECTOR: a tool for extracting
coordination data from legacy code

Nuno F. Rodrigues
DI-CCTC, Universidade do Minho

4710-057 Braga, Portugal
Email: nfr@di.uminho.pt

Luis S. Barbosa
DI-CCTC, Universidade do Minho

4710-057 Braga, Portugal
Email: lsb@di.uminho.pt

Abstract—Current software systems rely on, more and more,
non trivial coordination logic for combining autonomous services
typically running on different platforms and owned by different
organizations. Often, however, coordination data is deeply entan-
gled in the code and, therefore, difficult to isolate and analyse
separately.

COORDINSPECTOR is a software tool which combines
slicing[1] and program analysis techniques to isolate all coordi-
nation elements from the source code of an existing application.
Such a reverse engineering process provides a clear view of the
actually invoked services as well as the orchestration patterns
which bind them together.

The tool analyses Common Intermediate Language (CIL) code.
CIL being the native language of the Microsoft .Net Framework,
COORDINSPECTOR is therefore suitable for processing code
developed in any programming language compiling to the .Net
Framework. The tool generates graphical representations of the
coordination layer together with business process orchestrations
specified in Orc.

I. INTRODUCTION

Intro

II. IMPLEMENTING COORDINSPECTOR

COORDINSPECTOR1 is a software analysis tool developed
as a proof-of-concept of the ideas presented in this paper.

The tool, a snapshot of which is presented in Fig. targets
CIL code, the native language of the Microsoft .Net Frame-
work, to which every .Net compilable language ultimately
gets translated to before being executed by the framework.
This decision to target CIL code was not an arbitrary one.
Indeed we intended the tool to be able to cope with as many
programming languages as possible, because most real world
software systems are developed in more than one language.
Moreover, given the potential of the tool to assist legacy
systems evolution, the ”language agnostic” feature became
an important invariant. Thus, by choosing CIL, the tool is
presently able to analyse more than 40 programming lan-
guages2, and this number has only but potential to increase.

In order to take advantage of existing CIL analysis tools,
COORDINSPECTOR is developed as a plug-in for the CIL de-
compiler .Net Reflector3. The only, and important component

The research reported in this paper is supported by FCT, under contract
POSC/EIA/56646/2004, in the context of the IVY project.

1The tool is available from http://www.di.uminho.pt/∼nfr
2Source: http://en.wikipedia.org/wiki/CLI Languages
3http://www.aisto.com/roeder/dotnet

Fig. 1. COORDINSPECTOR

COORDINSPECTOR takes from .Net Reflector is the parse for
CIL code which delivers an object tree representation of the
CIL concrete syntax tree.

Such tree is then processed to build the corresponding
MSDG instance. Given the intrinsic modularity of this process,
it is executed by different components that are responsible for
the calculation of each of the MSDG sub-graphs i.e., the MDG,
ClDG, IDG and the NDG, as detailed in section ??. Each
component traverses the concrete syntax tree, using the object
oriented proxy pattern, and collects the relevant information
for the construction of a particular graph.

When applied to real world systems, and if executed se-
quentially, the MSDG calculation process can be a time con-
suming task because of the size and computational complexity
involved. In order to cope with this situation one has improved
the MSDG calculation performance by multithreading the
tasks which build each MSDG sub-graph. This improvement
reduced the MSDG calculation time to roughly on third of the
original time.

The CDG calculation implemented by COORDINSPECTOR
follows the approach presented in the previous section, thus
starting by labeling the vertices based on rules identifying
communication primitives. At the moment of writing, CO-
ORDINSPECTOR is only instantiated with rules identifying web
services communications, distinguishing between synchronous
and asynchronous calls as well as between invocation and
provisioning of functionality using web services. Other sets



of rules can, however, be easily added.
The graph pruning and slicing operations were once again

implemented by following the specifications presented in
the previous section and implemented by a series of graph
traversal algorithms and transformation functions.

COORDINSPECTOR is also able to depict and navigate
through both the calculated MSDG and CDG graphs, by
resorting to the Microsoft Research GLEE graph library. The
graphs provide different colors for the vertices, based on
the labels the vertices hold, which facilitates direct manual
reasonings over the graphs.

The graphical presentation of the graphs is also able to
supply the user with specific vertex information, like labeling
and the CIL code captured, by applying a double click on a
particular vertex of the graphs.

Code generation in COORDINSPECTOR though based on
function ϕ defined above, was not implemented as a syntax
oriented operation. Instead, this functionality is implemented
by using and extending the same graph traversal operations
that were defined for the labeling process of the MSDG.

III. CONCLUSIONS AND FUTURE WORK

REFERENCES

[1] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995.


