
Lazy Functional
Slicing

CIC’06
Nuno Rodrigues
nfr@di.uminho.pt

Agenda

What is Program Slicing?
Functional Slicing

High Level Functional Slicing
Low Level Functional Slicing

Conclusions and Future Work

What is Program Slicing ?

The original concept was introduced by Weiser 1979.
“A program slice S is a reduced, executable program
obtained from a program P by removing statements,
such that S replicates part of the behaviour of P”
Other notions of program slices have been purposed.
Mainly because different applications require different
properties of slices.
Program slicing consists in isolating a specific part of a
program using some choice criterion

Example – criterion(10, product)
1: read(n)

2: i :=1 ;
3: sum := 0;
4: product := 1;

5: while i <= n
{

6: sum := sum + i;

7: product := product * i;
8: i := i + 1;

}

9: write(sum);
10: write(product);

1: read(n)
2: i :=1 ;

3: sum := 0;
4: product := 1;
5: while i <= n

{
6: sum := sum + i;
7: product := product * i;

8: i := i + 1;
}

9: write(sum);

10: write(product);

Applications of Program Slicing

Debugging
Maintenance
Parallelization
Model Checking
Security Analysis
Reverse engineering
Program Comprehension
Program Restructuring, Refactoring
…

Functional Slicing Problems
Non trivial control flow

Depends largely on the values being evaluated
In a complete static analysis, the CFG is enormous

Polymorphism
Data dependencies may not be explicit

High Order functions
Function dependencies may not be explicit

Functional programs are not oriented to code
line. Thus, the approach taken by most of the
existing slicing techniques doesn’t apply.
Depends on the evaluation strategy

High Level Functional Slicing
HaSlicer

Fully functional Haskell
slicer
Based on FDG
Slices high order entities

Modules
Data Types
Functions

Several applications
Component Discovery

Doesn’t go to the
statement/expression level

http://labdotnet.di.uminho.pt/HaSlicer/HaSlicer.aspx

Low Level Functional Slicing

Given that slicing depends on the
evaluation strategy, we choose lazy
evaluation

Syntactically
Transformed Program

Evaluate With an
Augmented Lazy

Semantics Slice
+

Evaluated
ValueOriginal

Program

Syntactic Transformation

Functional application involves an expression and a variable
There are no expression-expression applications

If then else statements are substituted by case expressions
Every expression is tagged

Place in code
Kind of transformation

The Lazy Semantics
John Launchbury

Lazy Slicing Without Criterion

Lazy Slicing WSC (continued)

The evaluation is too lazy!!!

let x = complexF y z w
y = complexG w k z

in (x, y)

let x = complexF y z w
y = complexG w k z

in (x, y)

Slice

So we need an extra rule to put it to work

Remarks about Lazy Slicing WSC

It slices not only the program code, but also the values
passed to it.

Good to inspect what and how much values are being consumed
by the program
Good to inspect some special case values behaviours: empty
list, Nothing, negative integers, etc…

Slices tend to be rather big.
Specially with programs developed by experienced functional
programmers and with a wide range of values

Possibly interesting for education….

Example
foo x y z = fst (len (app x y), snd z)

len k = case k of
[] -> Z
(y:ys) -> Succ (len ys)

app m n = case m of
[] -> n
(z:zs) -> z : (app zs n)

fst (p, q) = p

snd (x, y) = y

p =(0, 1)
a = []
b = [1,2,3]

*> foo a b p

Example
foo x y z = fst (len (app x y), snd z)

len k = case k of
[] -> Z
(y:ys) -> Succ (len ys)

app m n = case m of
[] -> n
(z:zs) -> z : (app zs n)

fst (p, q) = p

snd (x, y) = y

p =(0, 1)
a = []
b = [1,2,3]

*> foo a b p

Lazy Slicing With Slicing Criterion

Calculate a Slicing Function

Calculating the slice

Given a Slicing Criterion x = {sc} and a Slicing
function F, the slice can be calculated by

µ x . F x U x

More slices can be easily calculated
reusing slicing function F

Example
foo x y z = fst (len (app x y), snd z)

len k = case k of
[] -> Z
(y:ys) -> Succ (len ys)

app m n = case m of
[] -> n
(z:zs) -> z : (app zs n)

fst (p, q) = p

snd (x, y) = y

p =(0, 1)
a = []
b = [1,2,3]

*> foo a b p

Example
foo x y z = fst (len (app x y), snd z)

len k = case k of
[] -> Z
(y:ys) -> Succ (len ys)

app m n = case m of
[] -> n
(z:zs) -> z : (app zs n)

fst (p, q) = p

snd (x, y) = y

p =(0, 1)
a = []
b = [1,2,3]

*> foo a b p

Conclusions and Future Work

The methods are implemented and working with good
results for small tests
Backward Slicing

Just invert the slicing function
Static Slicing

No ideas, yet.
Implement an automatic translator for the syntactic
transformation
Prove that the slicing process doesn’t introduce non-
termination (or not)

