Configurations of Web Services

Marco Barbosa ${ }^{1} \quad$ Luís Barbosa ${ }^{1}$
${ }^{1}$ Departamento de Informática
Universidade do Minho
Braga - Portugal

CIC, 2006

Outline

(1) Introduction
(2) Aims
(3) Behavioural Interfaces

- Defining Interfaces
- Generic Process Algebra
(4) Configurations
- Connectors and Configurations
- Connectors
- Connector Combinators
- Configurations
(5) Examples
(6) Conclusions and Future Work

Two views on Componentware

Introduction

- The OO legacy
- components as (collections of) classes/objects
- method invocation as the kernel of component composition
- resort to middleware intervention to loosen tight-coupling
- The Coordination Paradigm View
- temporal/spatial decoupling to support a looser inter-component dependency
- amenable to external control
- requires anonymous communication

Aims

Aims

- Discuss an orchestration model combining Reo-like connectors with behaviourally annotated interfaces
- Configuration $=$ Components + Connectors + Glue code
- Tentative application to model configurations of web-services

Interface

Definition

A web-service S interface is specified by

- a port signature, $\operatorname{sig}(S)$ over \mathbb{D}, given by a port name and a polarity annotation (either in(put) or out(put))
- a use pattern, use(S), given by a process term over port names.

Generic Process Algebra

cf. "Process Algebra à la Bird-Merteens" [Bar01, RBB06]

- Processes are inhabitants of a final coalgebra;
- Combinators defined by coinductive extension;
- Interaction discipline: θ

Interaction Structure

- In Ccs, $a \theta \bar{a}=\tau$
- In Csp, $a \theta a=a$ for all action $a \in$ Act.
- In architectural configurations, ...
- allow different interaction disciplines to coexist.

Use Patterns and Interaction

- Let \mathcal{P} be a set of port identifiers and S a (the specification of) a web service. Its use pattern use(S) is given by a process expression over Act $=\mathcal{P}(\mathcal{P})$, given by

$$
\begin{aligned}
P::= & \mathbf{0}|\alpha . P| P+P|P \otimes P| P| | P|P ; P| P|P| \\
& \sigma P \mid \operatorname{fix}(x=P)
\end{aligned}
$$

- choosing $\operatorname{Act}=\mathcal{P}(\mathcal{P})$ allows for the synchronous activation of several ports in a single computational step

Use Patterns and Interaction

- All interaction between web services is mediated by a specific connector
- Therefore, if two web services are active their joint behaviour will allow the realization of both use patterns either simultaneously or in an independent way:
- The joint behaviour of a collection $\left\{S_{i} \mid i \in n\right\}$ of ws is

$$
\operatorname{use}\left(S_{1}\right)|\ldots| \operatorname{use}\left(S_{n}\right)
$$

where the interaction discipline is fixed by $\theta=U$.

Examples

$$
\begin{aligned}
& \operatorname{use}\left(S_{1}\right)=\operatorname{fix}(x=a \cdot x+b \cdot x) \\
& \operatorname{use}\left(S_{2}\right)=\operatorname{fix}\left(x^{\prime}=c d \cdot x^{\prime}\right), \text { where, cd } \stackrel{\text { abv }}{=}\{c, d\} \\
& u s e\left(S_{1}\right) \mid u \operatorname{use}\left(S_{2}\right)=\operatorname{fix}(x=a c d . x+b c d . x+a \cdot x+b \cdot x+c d . x)
\end{aligned}
$$

Services are coordinated via Connectors

- What are connectors and how do they compose?
- How do web services' interfaces and connectors interact in a configuration?

Connectors

A connector \mathbb{C} is defined through:

- a relation data. $\llbracket \mathbb{C} \rrbracket: \mathbb{D}^{m} \longleftarrow \mathbb{D}^{n}$ which records the flow of data;
- a process expression port. $\llbracket \mathbb{C} \rrbracket$ which gives the pattern of port activation.

Connectors

Basic Connectors

data. $\llbracket \bullet \longmapsto \bullet \rrbracket=\mathrm{Id}_{\mathbb{D}}$, port. $\llbracket \bullet \longmapsto \bullet \rrbracket=\mathrm{fix}(x=a b \cdot x)$ data. $\llbracket \bullet \stackrel{\diamond}{ } \bullet \rrbracket \subseteq \mathrm{Id}_{\mathbb{D}}$, port. $\llbracket \bullet \stackrel{\diamond}{ } \bullet \rrbracket=$ fix $(x=a b \cdot x+a \cdot x)$
 data. $\llbracket \bullet \vdash \vee \rrbracket \rrbracket=\mathbb{D} \times \mathbb{D}$, port. $\llbracket \bullet \vdash \nabla \bullet \rrbracket=$ fix $(x=a . x+b . x)$ data. $\llbracket \bullet \vdash \square \rightarrow \bullet \rrbracket=\mathrm{Id}_{\mathbb{D}}$, port. $\llbracket \bullet \vdash \boxtimes \rightarrow \bullet \rrbracket=$ fix $(x=$ a.b. $x)$

Connector Combinators

Aggregation

This combinator places its arguments side-by-side, with no direct interaction between them: port. $\llbracket \mathbb{C}_{1} \boxtimes \mathbb{C}_{2} \rrbracket=$ port. $\llbracket \mathbb{C}_{1} \rrbracket \mid$ port. $\llbracket \mathbb{C}_{2} \rrbracket$ with $\theta=\cup$

Combinators

Hook

Acts as a feedback mechanism.
On the data side:
Suppose data. $\llbracket \mathbb{C} \rrbracket=R: \mathbb{D}^{n} \longleftarrow \mathbb{D}^{m}$. Then,

$$
\begin{aligned}
& R \overbrace{i}^{j}: \mathbb{D}^{n-1} \longleftarrow \mathbb{D}^{m-1} \\
& t=t_{m}, \ldots, t_{i+i}, t_{i-i}, \ldots, t_{0}, \text { and } t^{\prime}=t_{n}^{\prime}, \ldots, t_{j+i}^{\prime}, t_{j-i}^{\prime}, t_{0}^{\prime} \\
& t(R \overbrace{i}^{j}) t^{\prime} \text { iff } \\
& \quad \exists_{x} \cdot\left(t_{n}, \ldots, t_{i+i}, x, t_{i-i}, \ldots, t_{0}\right) R\left(t_{m}, \ldots, t_{j+i}, x, t_{j-i}, \ldots, t_{0}\right)
\end{aligned}
$$

Combinators

Hook

On the behavioural side:
 ports i and j.

To be well-formed it is required that i and j appear in different factors of some form of parallel composition $(\|\|, \otimes$, or $\mid)$.

Introduction

Combinators

Join

Plugs ports with same polarity

- Right Join: $\left(\mathbb{C}{ }_{j}^{i}>z\right)$ (non deterministic merger)
- Left Join: $\left(z<{ }_{j}^{i} \mathbb{C}\right)$ (broadcaster)

At the behavioural level, both operators act as port renamers port. $\llbracket\left(\mathbb{C}{ }_{j}^{i}>n\right) \rrbracket=\operatorname{port} . \llbracket\left(n<_{j}^{i} \mathbb{C}\right) \rrbracket=\{n \leftarrow i, n \leftarrow j\}$ port. $\llbracket \mathbb{C} \rrbracket$

Configurations

Configuration Structure

A configuration involving a collection $S=\left\{S_{i} \mid i \in n\right\}$ of web services is a tuple

$$
\langle U, \mathbb{C}, \sigma\rangle
$$

where

- $U=\operatorname{use}\left(S_{1}\right)\left|\operatorname{use}\left(S_{2}\right)\right| \cdots \mid \operatorname{use}\left(S_{n}\right)$ is the (joint) use pattern for S
- \mathbb{C} is a connector
- σ a mapping of ports in S to ports in \mathbb{C}

Configuration Behaviour

The behaviour $b h(\Gamma)$ of a configuration $\Gamma=\langle U, \mathbb{C}, \sigma\rangle$ is given by

$$
b h(\Gamma)=\sigma U \otimes \text { port. } \mathbb{C} \mathbb{C} \rrbracket
$$

where θ underlying the \otimes connective is given by

$$
c \theta c^{\prime}= \begin{cases}c \cap\left(c^{\prime} \cup \text { free }\right) & \Leftarrow c^{\prime} \subseteq c \\ \emptyset & \Leftarrow \text { otherwise }\end{cases}
$$

and free denotes the set of unplugged ports in U, i.e., not in the domain of mapping σ.

Configuration Behaviour: intuitions

- Interaction is achieved by the simultaneous activation of identically named ports
- There is no interaction if the connector intends to activate ports which are not linked to the ones offered by the web services' side.
- The dual situation is allowed, i.e., if the web services' side offers activation of all ports plugged to the ones offered by the connectors' side, their intersection is the resulting interaction.
- Moreover activation of unplugged web services' ports is always possible.

Holiday Reservation (cf. [DA04])

Holiday Reservation

Configuration

$H R=\left\langle W H R, S B, \sigma_{H S}\right\rangle$, where $W H R=u s e(H R S) \mid$ use (HORS) \mid use(FRS) \mid use (CRS) $\sigma_{H S}=\{a \leftarrow A, b \leftarrow B, c \leftarrow C, d \leftarrow D, e \leftarrow E, f \leftarrow F, g \leftarrow G\}$

Usage

$$
\begin{aligned}
u s e(H R S) & =\operatorname{fix}(x=a \cdot x+b . x+c \cdot x+a b c \cdot x) \\
u s e(H O R S) & =\operatorname{fix}(x=e \cdot x) \\
u s e(F R S) & =\operatorname{fix}(x=f . x) \\
u s e(C R S) & =\operatorname{fix}(x=g . x)
\end{aligned}
$$

Holiday Reservation

Connector

$$
\begin{aligned}
& \text { port. } \llbracket c_{1} \rrbracket=\text { fix }\left(x=a a^{\prime} . x\right) \text {, port. } \llbracket c_{2} \rrbracket=\text { fix }\left(x=e^{\prime} e . x\right), \\
& \text { port. } \llbracket c_{3} \rrbracket=\text { fix }\left(x=b b^{\prime} . x\right) \text {, port. } \llbracket c_{4} \rrbracket=\text { fix }\left(x=f^{\prime} f . x\right),
\end{aligned}
$$

$C n_{1}=\operatorname{port} . \llbracket\left(n<_{d}^{e^{\prime}}\left(c_{2} \boxtimes c_{7}\right)\right) \rrbracket=$ fix $(x=$ end.$x)$
$C n_{2}=\operatorname{port} . \llbracket(\left(c_{1} \boxtimes C n_{1}\right) \overbrace{a^{\prime}}^{n}) \rrbracket=$ fix $\left(x=\operatorname{aed}^{\prime} \cdot x\right)$
port. $\llbracket b \rrbracket=$ fix ($x=$ abcefg. x), and finally
$b h(H R)=$ fix ($x=\operatorname{abcefg} . x$)

Bank System

Bank System

Configuration

$$
\begin{aligned}
& B S=\left\langle W B S, D B C, \sigma_{B S}\right\rangle, \text { where } \\
& W B S=u s e(A T M) \mid \text { use }(\text { Bank }) \mid \text { use }(D B R e p) \\
& \sigma_{H S}=\left\{a \leftarrow A_{r q}, e \leftarrow A_{r s}, c \leftarrow D B_{r}, f \leftarrow D B_{p}, d \leftarrow B_{r s}, b \leftarrow B_{r q}\right\}
\end{aligned}
$$

Introduction
Aims

Bank System

Use Patterns

$$
\begin{aligned}
u s e(A T M) & =\operatorname{fix}(x=\text { a.e. } x) \\
u s e(B a n k) & =\operatorname{fix}(y=b . d . y) \\
\text { use }(D B R e p) & =\operatorname{fix}(z=c . z+f . z)
\end{aligned}
$$

Bank System

Configuration

$$
\begin{aligned}
\text { port. } \llbracket D B C \rrbracket= & \text { port. } \left.\llbracket\left(c o_{1} \boxtimes c o_{2}\right)\right) \rrbracket= \\
& \text { fix }(x=a b c . x+\text { def. } x+a b c d e f . x) \\
\operatorname{bh}(B S)= & \text { fix }(x=a b c . \text { def. } x)
\end{aligned}
$$

Conclusions and Future Work

Conclusions

- Formal model for behavioural interfaces and configurations
- Exogenous coordination (cf, Reo model)
- Role of generic process algebra [Bar01,RBB06] (cf, coexistence of different interaction disciplines)

Conclusion and Future Work

Future Work

- Expressing workflow patterns
- Pattern 2 (Parallel split)

$$
\text { use }\left(\mathrm{WS}_{2}\right)=P_{1}|\ldots| P_{n}
$$

- Pattern 3 (Synchronization)

$$
u s e\left(\mathrm{WS}_{3}\right)=\left(a_{1} \cdot a_{2} \ldots \ldots a_{n} \cdot \S \otimes b_{1} \cdot b_{2} \ldots \ldots b_{n} \cdot \S\right) ; P
$$

- Is this framework suitable for expressing the semantics of orchestration languages?
- if so, how easily can properties be proved?

