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General motivation

To study abstract models of spatial logic.

To study spatial and behavioural features of systems in a unified
(coalgebraic) framework.
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What is spatial logic ?

In distributed computing verification must handle behavioural and
non-behavioural properties:

Location-dependent access rights to resources.

Invariants of the communication topology and routing.

Dynamically created objects and references.

Security and secrecy features.

Spatial logic addresses both kinds of properties extending temporal
logic with constructs for spatial reasoning.
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Why abstract models ?

To provide language independent models of spatial logic.

To bring the study of models of spatial logic more in line with the
models of temporal logic.

To isolate spatial logic constructions, postulate their properties
and analyze the corresponding classes of models.
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Why coalgebras ?

Uniform treatment of time and space.

Natural refinement of behavioural bisimulation.

Spatial logics as modal logics for coalgebras.
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An example: Topological properties of networks

A simple spatial logic for networks:

x , y , z ∈ Var

A, B ::= l(x , y) % a link from x to y

x = y % equality

> % truth

¬A % negation

A ∧ B % conjunction

∃ x .A % existential quantification

0 % void

A|B % composition
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Example (cont.)
Models

Set of nodes Nodes

Nets Pω(Nodes × Nodes)

Spatial function sp : Nets → Pω(Nets × Nets)

sp(N) =

{
∅ if N = ∅,

{(M, K ) : N = M ∪ K , M ∩ K = ∅} if N 6= ∅.
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Example (cont.)
Satisfaction (classical connectives)

ρ ∈ Env = Var → Nodes

|=⊆ Nets × Env × L

N, ρ |= l(x , y) iff N = {(ρx , ρy)}.
N, ρ |= x = y iff ρx = ρy .

N, ρ |= > always.

N, ρ |= ¬A iff N, ρ 6|= A.

N, ρ |= A ∧ B iff N, ρ |= A and N, ρ |= B.

N, ρ |= ∃ x .A iff N, ρ[v/x ] |= A for some v ∈ Nodes.
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Example (cont.)
Satisfaction (spatial connectives)

N, ρ |= 0 iff sp(N) = ∅ (iff N = ∅).
N, ρ |= A|B iff exists (M, K ) ∈ sp(N) st M, ρ |= A and K , ρ |= B.
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Example (cont.)
Some properties

No link to x :
in0(x) , ¬(∃y .l(y , x)|>)

n + 1 links to x :

inn+1(x) , ∃y .l(y , x)|inn(x)

n links from x :

outn(x) defined similarly

Minimal net satisfying A:

min(A) , A ∧ ¬(A|¬0)

x is a node in the net:

in_net(x) , ∃y .(l(x , y) ∨ l(y , x)|>)
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Example (cont.)
Non-recursive definition of path

A net is a path:

is_path(x , y) ,

min[x = y ∨ (in0(x) ∧ out1(x) ∧ in1(y) ∧ out0(y)∧

∀z.z 6= x ∧ z 6= y ∧ in_net(z) ⇒ in1(z) ∧ out1(z))]

Existence of a path:

exists_path(x , y) , is_path(x , y)|>
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Transition systems 〈S,→〉 coalgebraically

The transitions from a state are observed through an observation
function:

tr : S → Pω(S)

tr(s) = {t : s → t}

s → t iff t ∈ tr(s)
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States with internal structure

The internal structure of a state is observed through an appropriate
function:

sp : S → Structures(S)

sp(s) =?
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A single coalgebra for space and time

The two observation functions may be combined into a single one:

〈tr , sp〉 : S → Pω(S)× Structures(S)

〈tr , sp〉(s) = 〈tr(s), sp(s)〉
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Two classes of spatial models of parallel composition

Using pairs

sp : S → Pω(S × S)

Using (finite) multisets

sp : S →M(S)
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A simple spatial logic L

HML-like with spatial operators

A, B ::= > | ¬A | A ∧ B | ♦A | 0 | A|B

A simple spatial TS

tr : S → Pω(S)

sp : S → Pω(S × S)
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Satisfaction |=⊆ S × L

s |= > always.

s |= ¬A iff s 6|= A.

s |= A ∧ B iff s |= A and s |= B.

s |= ♦A iff ∃t ∈ tr(s) such that t |= A.

s |= 0 iff sp(s) = ∅.
s |= A|B iff ∃(t , u) ∈ sp(s) st t |= A and u |= B.
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Spatial bisimulation R ⊆ S × S

sRt implies:

1 sp(s) = ∅ iff sp(t) = ∅, and
2 ∀ (s′, s′′) ∈ sp(s),∃ (t ′, t ′′) ∈ sp(t) such that s′Rt ′ and s′′Rt ′′, and

conversely.

Definition
Spatial bisimilarity ∼sp is the greatest bisimulation.
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Caracterization of ∼sp by the purely spatial logic Lsp

Definition
s =Lsp t iff {A : s |= A} = {B : t |= B}.

Theorem
∼sp coincides with =Lsp .

The proof technique is similar to the one in the purely temporal case,
where the logic is basically HML.

Does a similar result hold for the combined space/time logic and
system ?

Yes, combining the proofs for the temporal and spatial cases.
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Classes of models described by axioms

A|0 ⇔ A (empty states are neutral with respect to parallel
composition).

A|B ⇒ B|A (parallel composition is commutative).

(A|B)|C ⇔ A|(B|C) (parallel composition is associative).

0 ⇒ ¬♦T (empty states are inactive).

(♦A)|B ⇒ ♦(A|B) (local transitions cause global transitions).
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Models of A|B ⇒ B|A

Notation
s l t |u means (t , u) ∈ sp(s).

Property
The following statements are equivalent:

1 s |= (A|B) ⇒ (B|A) for all formulas A and B.
2 s l t |u implies s l u′|t ′ for some t ′ ∼ t and u′ ∼ u.
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Spatial logic as a coalgebraic logic
Predicate lifting (Pattinson)

tr : S → TS, TS = Pω(S)

s |= ♦A iff ∃t ∈ tr(s) such that t |= A

s ∈ [[♦A]] ⇔ tr(s) ∩ [[A]] 6= ∅
⇔ tr(s) ∈ {X : X ∩ [[A]] 6= ∅}

[[♦A]] = tr−1({X : X ∩ [[A]] 6= ∅})

λ♦
S : P(S) → P(TS) λ♦

S(Y ) = {X : X ∩ Y 6= ∅}

[[♦A]] = tr−1(λ♦
S([[A]]))
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Predicate lifting defined
The spatial modalities

λ : P∗(−)n → P∗ ◦ T

Void λ0
S : 1 → P∗(TS) TS = Pω(S × S)

λ0
S(∗) = ∅ [[0]] = sp−1(λ0

S(∗))

Composition λ
|
S : P∗(−)2 → P∗(TS) TS = Pω(S × S)

λ
|
S(X , Y ) = {Z : Z ∩ (X × Y ) 6= ∅}

[[A|B]] = sp−1(λ
|
S([[A]], [[B]]))
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Noninterleaving semantics

Another type of system:

tr : S → Pω(S)

sp : S →M(S)

Intuition:

s ∈ S is the parallel composition of the elements in sp(s).

1 For any such system a Petri net can be constructed and
vice-versa.

2 The constructions are functorial and form an adjunction.

Main goal: To describe causality and independence relations between
events.

L. Monteiro (N.U. Lisbon) Coalgebraic models for spatial logic CIC 2006 24 / 34



Auxiliary definitions

State s is local sp(s) = [s]

Set of local states Loc(S) = {s ∈ S : s is local}
Transition s → t is local
If p → q with sp(s) = sp(p)⊕M and sp(t) = sp(q)⊕M, then
M = [].

Extension of → to M(Loc(S))
P → Q iff exists s → t and M st P = sp(s)⊕M and Q = sp(t)⊕M
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Axioms of spatial TS’s

1 sp(s) ∈M(Loc(S)).
2 P ⊆ sp(s) implies P = sp(t) for some t .
3 sp(s) → P implies s → t for some t st sp(t) = P.
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Morphism f : S → S′ of spatial TS’s

1 sp′ ◦ f = M(f ) ◦ sp.
2 tr ′ ◦ f = Pω(f ) ◦ tr .
3 s → t local in S implies f (s) → f (t) local in S′.
4 Pω(f ) ◦ St = St ′ ◦M(f ),

where St : M(Loc(S)) → Pω(S) is given by

St(M) = {s ∈ S : sp(s) ⊆ M}.
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Petri nets N = (B, E , pre, post)

pre, post : E →M(B)

Axiom pre(e′) = pre(e)⊕M and post(e′) = post(e)⊕M imply M = []
and e = e′.
Kind of situation discarded by the axiom:

��������M

!!
e′

aa

����������
00

..

��������
e

DD
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Morphism f : N → N ′ of Petri nets

Pair of functions
fB : B → B′, fE : E → E ′

such that

1 pre′ ◦ fE = M(fB) ◦ pre.
2 post ′ ◦ fE = M(fB) ◦ post .
3 En′ ◦M(fB) = Pω(fE) ◦ En.

Here En : M(B) → Pω(E) gives the set En(M) of events enabled by
M ∈M(B).
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From a Petri net N to a spatial TS ns(N)

1 ns(N) = M(B).
2 sp(M) = [[b] : b ∈ M].

3 tr(M) = {M ′ : M e→ M ′} for some event e.
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From a spatial TS S to a Petri net sn(S)

1 B = Loc(S).
2 E = Loc(Tr).
3 pre(s → t) = sp(s).
4 post(s → t) = sp(t).
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Relating the functors

The functor

sn : Spatial TS’s → Petri nets

is left adjoint to the functor

ns : Petri nets → Spatial TS’s.
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A spatial TS for CCS

The transition function is defined as usual.
The spatial function sp : Proc → Pω(Proc × Proc) is defined by:

sp(P) =

{
∅ if P ≡ 0,
{(P1, P2) : P ≡sp P1|P2} otherwise.

≡sp is defined as ≡ except for the conditions

P|0 ≡ 0 and νx .0 ≡ 0

to guarantee that sp(P) is a finite set.
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Future work

Systematic study of classes of models.

Spatial operators related to the use of names.

Predicate liftings for the adjoint modalities.

Other non-interleaving models of concurrency.
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