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Bisimulation as a Reynolds-arrow

Bisimulation as a relation closed for the coalgebra dynamics

For c and d are F-coalgebras, [Jac06] Def 3.1.2 (pg 67) defines
bisimulation as a relation R st

(x, y) ∈ R ⇒ (c(x), d(y)) ∈ Rel(F)(R) (1)

is PF-transformed to

R ⊆ c◦ · (F R) · d (2)

Shunting on c◦ above (c is a function, not a relation), yields

c · R ⊆ (F R) · d (3)
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Bisimulation as a Reynolds-arrow

Bisimulation as a relation closed for the coalgebra dynamics

This brings to mind the “Reynolds arrow combinator”-pattern:

f(R ← S)g ≡ f · S ⊆ R · g (4)

leading to

R is a bisimulation ≡ c(F R ← R)d (5)

Reasoning about Bisimulations: the Laws

id← id = id (6)

(R ← S)◦ = R◦← S◦ (7)

R ← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (8)
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Bisimulation as a Reynolds-arrow

Reasoning about Bisimulations: the Laws

from where one get monotony on the consequent side and thus,

S ← R ⊆ (S ∪ V)← R (9)

>← S = > (10)

anti-monotony on the antecedent one

R ←⊥ = > (11)

and two distributive laws:

S ← (R1 ∪ R2) = (S ← R1) ∩ (S ← R2) (12)

(S1 ∩ S2)← R = (S1← R) ∩ (S2← R) (13)
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Reasoning about Bisimulations

⊥ is a bisimulation for any pair of coalgebras c and d

〈∀ c, d : : c(F⊥←⊥)b〉

≡ { PF-transform }

〈∀ c, d : : c(F⊥←⊥)b ≡ T〉

≡ { PF-transform }

F⊥←⊥ = >

≡ { (11) }

T
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Reasoning about Bisimulations

The converse of a bisimulation is a bisimulation

c(F R ← R)d

≡ { converse }

d(F R ← R)◦c

≡ { (7) }

d((F R)◦← R◦)c

≡ { relator F }

d(F(R◦)← R◦)c

≡ { (5) }

R◦ is a bisimulation
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Reasoning about Bisimulations

Bisimulations are closed under composition

Is a direct consequence of another generic law on the
Reynolds-arrow combinator:

(R ← V) · (S ← U) ⊆ (R · S)← (V · U) (14)

which expresses fusion (but not fission) and of which we shall
need a special case (cf Jose’s morning talk):

(r · s◦)← (f · g◦) = (r ← f) · (s← g)◦ (15)

if pair r , s is a tabulation.
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Reasoning about Bisimulations

Bisimulations are closed under union

(F R1← R1) ∩ (F R2← R2)

⊆ { (9) (twice) ; monotonicity of meet }

((F R1 ∪ F R2)← R1) ∩ ((F R1 ∪ F R2)← R2)

= { (12) }

((F R1 ∪ F R2)← (R1 ∪ R2)

= { relators }

(F(R1 ∪ R2)← (R1 ∪ R2)
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Reasoning about Bisimulations

Behavioural equivalence is a bisimulation

uRv ≡ [(c)]u = [(d)]v R is a bisimulation

c(F ([(c)]◦ · [(d)])← [(c)]◦ · [(d)])d

≡ { definition }

[(c)]◦ · [(d)] ⊆ c◦ · F ([(c)]◦ · [(d)]) · d

≡ { relators }

[(c)]◦ · [(d)] ⊆ c◦ · F [(c)]◦ · F [(d)] · d

≡ { converse }

[(c)]◦ · [(d)] ⊆ (F [(c)] · c)◦ · F [(d)] · d
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Reasoning about Bisimulations

Behavioural equivalence is a bisimulation

[(c)]◦ · [(d)] ⊆ (F [(c)] · c)◦ · F [(d)] · d

≡ { universal property of coinductive extension }

[(c)]◦ · [(d)] ⊆ (ω · [(c)])◦ · ω · [(d)]

≡ { converse }

[(c)]◦ · [(d)] ⊆ [(c)]◦ · ω◦ · ω · [(d)]

≡ { Lambek (final coalgebra is an isomorphism) }

true
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Reasoning about Invariants

Invariants are coreflexive coalgebras

c(F Φ← Φ)c

Get for free:

id (everywhere true predicate) is largest invariant

⊥ (everywhere false) is the least one

Invariants are closed by disjunction (ie. union), ...
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Reasoning about Invariants

The next ( e) combinator

[Jacobs,06] definition:

x′ eΦ x ≡ cx′ F Φ cx

PF-converts to

eΦ = c◦ · F Φc

Φ invariant ≡ Φ ⊆ eΦ
c(F Φ← Φ)c ≡ c · Φ ⊆ F Φ · c

≡ Φ ⊆ c◦F Φ · c

≡ Φ ⊆ eΦ
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Reasoning about Invariants

The henceforth (�) combinator

[Jacobs,06] definition 4.2.8:

�Φ(x) ≡ (∃Q ∈ X : Q inv ∧ Q ∈ Φ ∧ Q(x))

’hides’ a supremum:

(
⋃

Q : Q inv ∧ Q ∈ Φ : Q)
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Reasoning about Invariants

The henceforth (�) combinator

(
⋃

Q : Q inv ∧ Q ∈ Φ : Q)

≡ { invariant definition }

(
⋃

Q : Q ⊆ eQ ∧ Q ∈ Φ : Q)

≡ { ∩-universal }

(
⋃

Q : Q ⊆ Φ ∩ eQ : Q)

≡ { ∩ is · for coreflexives }

(
⋃

Q : Q ⊆ Φ · eQ : Q)
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Reasoning about Invariants

The henceforth (�) combinator

which means �Φ = (νX : Φ · eX)
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Reasoning about Invariants

�Φ = Φ ≡ Φ inv
(cf, [Jacobs,06] Lemma 4.2.6, pg 109)
�Φ ⊆ Φ is obvious from the definition, but

Φ inv

≡ { just proved }

Φ ⊆ eΦ
≡ { Φ· monotonic; composition of coreflexives is involutive }

Φ ⊆ Φ · eΦ
⇒ { greatest fixed point induction: x ≤ fx ⇒ x ≤ νf }

Φ ⊆ �Φ
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Reasoning about Invariants

�Φ = Φ ≡ Φ inv

Φ ⊆ �Φ

⇒ { �Φ ⊆ f(�Φ) for fx = Φ · dx and gfp induction: νf ≤ fνf }

Φ ⊆ Φ · e(�Φ)

≡ { shunting of coreflexives: }

Φ ⊆ e(�Φ)

⇒ { monotony; �Φ ⊆ Φ }

Φ ⊆ eΦ
≡ { definition }

Φ inv
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Reasoning about Invariants

�Φ ⊆ ��Φ

�Φ ⊆ ��Φ

≡ { definition }

�Φ ⊆ (νX :: �Φ · eX)

⇐ { gfp induction }

�Φ ⊆ �Φ · e(�Φ)

≡ { �Φ · Φ = �Φ because ∩ is composition and �Φ ⊆ Φ }

�Φ ⊆ �Φ · Φ · e(�Φ)

≡ { shunting of coreflexives }

�Φ ⊆ Φ · e(�Φ)

≡ { νf ≤ fνf }

true
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Jacobs ≡ Aczel & Mendler

It pays to have both around: compare in both settings the
proof that coalgebra morphisms entail bisimulation

...
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Coalgebra morphisms entail bisimulation

In the relational setting

Immediate, since inclusion of functions is equality:

c(F h← h)d ≡ c · h = (F h) · d (16)
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Coalgebra morphisms entail bisimulation

In the Aczel & Mendler setting

Let h : d ←− c a coalgebra morphism and conjecture γ : F h ←− h

γ = F (π2)
◦ · d · π2 (17)

Now prove the diagram commutes: i.e., both π1 and π2 are
coalgebra morphisms, i.e.,

F π1.γ = c · π1 F π2.γ = d · π2 (18)

Clearly, π2 is a coalgebra isomorphism. Then, prove that π1 is also
a colagebra morphism, i.e.,

c · π1 = F π1 · γ (19)
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Coalgebra morphisms entail bisimulation

In the Aczel & Mendler setting

c · π1 = F π1 · γ

≡ { conjecture on γ; functors }

c · π1 = F (π1 · (π2)
◦ · d · π2

≡ { h = π1 · (π2)
◦ }

c · π1 = F h · d · π2

≡ { h morphism }

c · π1 = c · h · π2

≡ { π2 iso, h = π1 · (π2)
◦ }

c · π1 = c · π1
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Coalgebra morphisms entail bisimulation

In the Aczel & Mendler setting

Now the converse direction: if h is a function st the diagram
commutes, h is a coalgebra morphism.

c · h = F h · d

≡ { h = π1 · (π2)
◦, functors }

c · π1 · (π2)
◦ = F π1 · F (π2)

◦ · d

≡ { hyp: (18) }

F π1.γ · (π2)
◦ = F π1 · F (π2)

◦ · d

≡ { γ definition and π2 is iso }

F π1.γ = F π1 · γ
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Jacobs ≡ Aczel & Mendler

...

Equivalence was proved in this morning talk, resorting to a
basic (new) result (law 15):

(r · s◦)← (f · g◦) = (r ← f) · (s← g)◦

if pair r , s is a tabulation.
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Jacobs ≡ Aczel & Mendler

(r · s◦)← (f · g◦) ⊆ (r ← f) · (s← g)◦

which equivales

c · f · g◦ ⊆ r · s◦ · d ⇒ 〈∃ k : : c(r ← f)k ∧ d(s← g)k 〉

≡ { shunting and (?? ) }

c · f ⊆ r · s◦ · d · g ⇒ 〈∃ k : : c · f = r · k ∧ d · g = s · k 〉

This, in turn, is an instance of

x ⊆ r · s◦ · y ⇒ 〈∃ k : : x = r · k ∧ y = s · k 〉

≡ { shunting and split-universal, followed by split-fusion }

x · y◦ ⊆ r · s◦ ⇒ 〈∃ k : : 〈x, y〉 = 〈r , s〉 · k 〉 (20)

for x, y := c · f , d · g
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Jacobs ≡ Aczel & Mendler

The righthand side of (20) is an assertion of split-fission.
image of 〈x, y〉 must be be at most image of 〈r , s〉 which is
exactly the antecendent of (20):

img 〈x, y〉 ⊆ img 〈r , s〉

≡ { split image transform, see (?? ) below }

x · y◦ ⊆ r · s◦

〈r , s〉 must be injective within the range of 〈x, y〉. Here we go
stronger than required in forcing 〈r , s〉 to be
everywhere-injective:

ker 〈r , s〉 ⊆ id

≡ { kernels of splits ; functions kernels of reflexive }

ker r ∩ ker s = id

This is equivalent to saying that pair r , s is a tabulation (cf.
side condition of (15).
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Function fission

Given f and g, find a functional solution k to equation

g = f · k

Clearly, a relational upperbound for k always exists, f \g = f◦ ·g, cf.

g = f · k

≡ { equality of functions }

f · k ⊆ g

≡ { shunting }

k ⊆ f◦ · g
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Function fission

Conditions for such a (maximal) solution f◦ · g to be a function:
it must be entire

id ⊆ (f◦ · g)◦ · f◦ · g

≡ { shunting and definition of image }

img g ⊆ img f

and simple:

f◦ · g · (f◦ · g)◦ ⊆ id

≡ { converses }

f◦ · g · g◦ · f ⊆ id

So, for f more surjective than g and f injective within the
image (range) of g, equation f · k = g has k = f◦ · g as
maximal (in fact, unique) functional solution.
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Function fission

Summing up, we proved

〈∃ k : : g = f · k 〉 ≡ k = f◦ · g ⇐ img g ⊆ img f ∧ f◦ · g · g◦ · f ⊆ id
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Images of splits

img 〈R ,S〉 ⊆ img 〈U,V〉

≡ { switch to conditions }

〈R ,S〉 · !◦ ⊆ 〈U,V〉 · !◦

≡ { “split twist” rule (21) }

〈R , !〉 · S◦ ⊆ 〈U, !〉 · V◦

≡ { (22) thanks to !-natural }

〈id, !〉 · R · S◦ ⊆ 〈id, !〉 · U · V◦

≡ { 〈id, f〉 is injective for any f , thus left-cancellable }

R · S◦ ⊆ U · V◦
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Images of splits

The “split twist” rule

〈R ,S〉 · T ⊆ 〈U,V〉 · X ≡ 〈R ,T◦〉 · S◦ ⊆ 〈U,X◦〉 · V◦ (21)

is proved in [Oliveira,06], as is

〈R ,S〉 · T = 〈R · T ,S · T〉 ⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S

as a consequence of fusion results given in [Backhouse,04].
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Conclusions & Current Work

Towards an ”agile” theory for bisimulation?
The powerset case:

(ΛS)(PR ← R)(ΛU)

≡ { ... }

...

≡ { ... }

S · R ⊆ R · U ∧ U · R◦ ⊆ R◦ · S

vs recent work on weak bisimulation for generic process
algebra [Ribeiro thesis]
Revisiting modal logic for coalgebras.
Simulations vs. current work on coalgebraic refinement

c(v ·FR · v← R)d

where v: Sets → PreOrd [Jacobs & Hughes, 03].Oliveira, Silva, Barbosa Bisimulation Revisited


	 
	 
	 
	 

