Bisimulation Revisited (or How point-freeness matters)

José Nuno Oliveira ${ }^{1} \quad$ Alexandra Silva ${ }^{2}$ Luís Barbosa ${ }^{1}$

${ }^{1}$ DI-CCTC, Minho
${ }^{2}$ CWI, Amsterdam
2006.10.11

Bisimulation as a Reynolds-arrow

Bisimulation as a relation closed for the coalgebra dynamics

For c and d are F-coalgebras, [Jac06] Def 3.1.2 (pg 67) defines bisimulation as a relation R st

$$
\begin{equation*}
(x, y) \in R \Rightarrow(c(x), d(y)) \in \operatorname{Rel}(F)(R) \tag{1}
\end{equation*}
$$

is PF -transformed to

$$
\begin{equation*}
R \subseteq c^{\circ} \cdot(F R) \cdot d \tag{2}
\end{equation*}
$$

Shunting on c° above (c is a function, not a relation), yields

$$
\begin{equation*}
c \cdot R \subseteq(F R) \cdot d \tag{3}
\end{equation*}
$$

Bisimulation as a Reynolds-arrow

Bisimulation as a relation closed for the coalgebra dynamics
This brings to mind the "Reynolds arrow combinator"-pattern:

$$
\begin{equation*}
f(R \leftarrow S) g \equiv f \cdot S \subseteq R \cdot g \tag{4}
\end{equation*}
$$

leading to

$$
\begin{equation*}
R \text { is a bisimulation } \equiv c(\mathrm{FR} \leftarrow R) d \tag{5}
\end{equation*}
$$

Reasoning about Bisimulations: the Laws

$$
\begin{align*}
i d \leftarrow i d & =i d \tag{6}\\
(R \leftarrow S)^{\circ} & =R^{\circ} \leftarrow S^{\circ} \tag{7}\\
R \leftarrow S \subseteq V \leftarrow U & \Leftarrow R \subseteq V \wedge U \subseteq S \tag{8}
\end{align*}
$$

Bisimulation as a Reynolds-arrow

Reasoning about Bisimulations: the Laws

from where one get monotony on the consequent side and thus,

$$
\begin{align*}
& S \leftarrow R \subseteq(S \cup V) \leftarrow R \tag{9}\\
& T \leftarrow S=T \tag{10}
\end{align*}
$$

anti-monotony on the antecedent one

$$
\begin{equation*}
R \leftarrow \perp=\top \tag{11}
\end{equation*}
$$

and two distributive laws:

$$
\begin{align*}
& S \leftarrow\left(R_{1} \cup R_{2}\right)=\left(S \leftarrow R_{1}\right) \cap\left(S \leftarrow R_{2}\right) \tag{12}\\
& \left(S_{1} \cap S_{2}\right) \leftarrow R=\left(S_{1} \leftarrow R\right) \cap\left(S_{2} \leftarrow R\right) \tag{13}
\end{align*}
$$

Reasoning about Bisimulations

\perp is a bisimulation for any pair of coalgebras c and d

$$
\left.\left.\begin{array}{lc}
& \langle\forall c, d:: c(\mathrm{~F} \perp \leftarrow \perp) b\rangle \\
\equiv & \{\mathrm{PF} \text {-transform \}}
\end{array}\right\} \begin{array}{cc}
\langle\forall c, d:: c(\mathrm{~F} \perp \leftarrow \perp) b \equiv \text { TRUE }\rangle \\
\equiv & \{\mathrm{PF} \text {-transform \}}
\end{array}\right\} \begin{gathered}
\mathrm{F} \perp \leftarrow \perp=\mathrm{T} \\
\equiv \\
\\
\\
\text { TRUE }
\end{gathered}
$$

Reasoning about Bisimulations

The converse of a bisimulation is a bisimulation

$$
\begin{array}{cc}
& c(\mathrm{FR} R \mathrm{R}) d \\
\equiv & \{\text { converse }\} \\
& d(\mathrm{~F} R \leftarrow R)^{\circ} c \\
\equiv & \{(7)\} \\
& d\left((\mathrm{FR})^{\circ} \leftarrow R^{\circ}\right) c \\
\equiv & \{\text { relator } \mathrm{F}\} \\
& d\left(\mathrm{~F}\left(R^{\circ}\right) \leftarrow R^{\circ}\right) c \\
\equiv & \{(5)\}
\end{array}
$$

Reasoning about Bisimulations

Bisimulations are closed under composition

Is a direct consequence of another generic law on the Reynolds-arrow combinator:

$$
\begin{equation*}
(R \leftarrow V) \cdot(S \leftarrow U) \subseteq(R \cdot S) \leftarrow(V \cdot U) \tag{14}
\end{equation*}
$$

which expresses fusion (but not fission) and of which we shall need a special case (cf Jose's morning talk):

$$
\begin{equation*}
\left(r \cdot s^{\circ}\right) \leftarrow\left(f \cdot g^{\circ}\right)=(r \leftarrow f) \cdot(s \leftarrow g)^{\circ} \tag{15}
\end{equation*}
$$

if pair r, s is a tabulation.

Reasoning about Bisimulations

Bisimulations are closed under union

$$
\begin{aligned}
& \left(\mathrm{F} R_{1} \leftarrow R_{1}\right) \cap\left(\mathrm{F} R_{2} \leftarrow R_{2}\right) \\
& \subseteq \quad\{(9) \text { (twice) ; monotonicity of meet }\} \\
& \left(\left(\mathrm{F} R_{1} \cup \mathrm{~F} R_{2}\right) \leftarrow R_{1}\right) \cap\left(\left(\mathrm{F} R_{1} \cup \mathrm{~F} R_{2}\right) \leftarrow R_{2}\right) \\
& =\{(12)\} \\
& \left(\left(\mathrm{F} R_{1} \cup \mathrm{~F} R_{2}\right) \leftarrow\left(R_{1} \cup R_{2}\right)\right. \\
& =\{\text { relators }\} \\
& \left(\mathrm{F}\left(R_{1} \cup R_{2}\right) \leftarrow\left(R_{1} \cup R_{2}\right)\right.
\end{aligned}
$$

Reasoning about Bisimulations

Behavioural equivalence is a bisimulation

$$
\begin{aligned}
u R v \equiv & {[(c)] u=[(d)] v \quad R \text { is a bisimulation } } \\
& c\left(F\left([(c)]^{\circ} \cdot[(d)]\right) \leftarrow[(c)]^{\circ} \cdot[(d)]\right) d \\
\equiv & \{\text { definition }\} \\
& {[(c)]^{\circ} \cdot[(d)] \subseteq c^{\circ} \cdot F\left([(c)]^{\circ} \cdot[(d)]\right) \cdot d } \\
\equiv & \{\text { relators }\} \\
\equiv & {[(c)]^{\circ} \cdot[(d)] \subseteq c^{\circ} \cdot \mathrm{F}[(c)]^{\circ} \cdot \mathrm{F}[(d)] \cdot d } \\
& \{(c)]^{\circ} \cdot[(d)] \subseteq(\mathrm{F}[(c)] \cdot c)^{\circ} \cdot \mathrm{F}[(d)] \cdot d
\end{aligned}
$$

Reasoning about Bisimulations

Behavioural equivalence is a bisimulation

$$
\begin{aligned}
& {[(c)]^{\circ} \cdot[(d)] \subseteq(F[(c)] \cdot c)^{\circ} \cdot F[(d)] \cdot d } \\
& \equiv\{\text { universal property of coinductive extension }\} \\
& \equiv {[(c)]^{\circ} \cdot[(d)] \subseteq(\omega \cdot[(c)])^{\circ} \cdot \omega \cdot[(d)] } \\
&\{\text { converse }\} \\
& \equiv {[(c)]^{\circ} \cdot[(d)] \subseteq[(c)]^{\circ} \cdot \omega^{\circ} \cdot \omega \cdot[(d)] } \\
& \text { true }
\end{aligned}
$$

Reasoning about Invariants

Invariants are coreflexive coalgebras

$$
c(F \Phi \leftarrow \Phi) c
$$

Get for free:

- id (everywhere true predicate) is largest invariant
- \perp (everywhere false) is the least one
- Invariants are closed by disjunction (ie. union), ...

Reasoning about Invariants

The next (O) combinator

[Jacobs,06] definition:

$$
x^{\prime} \bigcirc \Phi x \equiv c x^{\prime} F \Phi c x
$$

PF-converts to

$$
O \Phi=c^{\circ} \cdot \mathrm{F} \Phi C
$$

ϕ invariant $\equiv \phi \subseteq O \phi$

$$
\begin{aligned}
c(\mathrm{~F} \Phi \leftarrow \Phi) c & \equiv c \cdot \Phi \subseteq \mathrm{~F} \Phi \cdot c \\
& \equiv \Phi \subseteq c^{\circ} \mathrm{F} \Phi \cdot c \\
& \equiv \Phi \subseteq \bigcirc \Phi
\end{aligned}
$$

Reasoning about Invariants

The henceforth (ㅁ) combinator

[Jacobs,06] definition 4.2.8:

$$
\square \Phi(x) \equiv(\exists Q \in X: Q \operatorname{inv} \wedge Q \in \Phi \wedge Q(x))
$$

'hides' a supremum:

$$
(\bigcup Q: Q \operatorname{inv} \wedge Q \in \Phi: Q)
$$

Reasoning about Invariants

The henceforth (ㅁ) combinator

$$
\begin{aligned}
& (\bigcup Q: Q \text { inv } \wedge Q \in \Phi: Q) \\
\equiv & \{\text { invariant definition }\} \\
& (\bigcup Q: Q \subseteq \circ Q \wedge Q \in \Phi: Q) \\
\equiv & \{\cap \text {-universal }\} \\
& (\bigcup Q: Q \subseteq \Phi \cap \circ Q: Q) \\
\equiv & \{\cap \text { is } \cdot \text { for coreflexives }\} \\
& (\bigcup Q: Q \subseteq \Phi \cdot \circ Q: Q)
\end{aligned}
$$

Reasoning about Invariants

The henceforth (ㅁ) combinator

which means $\quad \square \Phi=\left(v_{X}: \Phi \cdot \bigcirc X\right)$

Reasoning about Invariants

$\square \phi=\Phi \equiv \Phi$ inv
(cf, [Jacobs,06] Lemma 4.2.6, pg 109)
$\square \Phi \subseteq \Phi$ is obvious from the definition, but
Φ inv
$\equiv \quad\{$ just proved \}
$\Phi \subseteq O \Phi$
$\equiv \quad\{\Phi \cdot$ monotonic; composition of coreflexives is involutive \}
$\Phi \subseteq \Phi . \circ \Phi$
$\Rightarrow \quad\{$ greatest fixed point induction: $x \leq f x \Rightarrow x \leq v f\}$
$\Phi \subseteq \square \Phi$

Reasoning about Invariants

$$
\square \phi=\Phi \equiv \Phi \text { inv }
$$

$$
\begin{aligned}
& \Phi \subseteq \square \Phi \\
& \Rightarrow \quad\left\{\square \Phi \subseteq f(\square \Phi) \text { for } f x=\Phi . \circ x \text { and gfp induction: } v_{f} \leq f v_{f}\right\} \\
& \Phi \subseteq \Phi \cdot \circ(\square \Phi) \\
& \equiv \quad\{\text { shunting of coreflexives: \}} \\
& \Phi \subseteq O(\square \Phi) \\
& \Rightarrow \quad\{\text { monotony; } \square \Phi \subseteq \Phi\} \\
& \phi \subseteq O \Phi \\
& \equiv \quad\{\text { definition \}} \\
& \text { Ф inv }
\end{aligned}
$$

Reasoning about Invariants

$\square \Phi \subseteq \square \square \Phi$

$$
\begin{aligned}
& \square \Phi \subseteq \square \square Ф \\
& \equiv \quad\{\text { definition }\} \\
& \square \Phi \subseteq\left(v_{X}:: \square \Phi \cdot \bigcirc X\right) \\
& \Leftarrow \quad\{\text { gfp induction }\} \\
& \square \Phi \subseteq \square Ф \cdot \bigcirc(\square \Phi) \\
& \equiv \quad\{\square \Phi \cdot \Phi=\square \Phi \text { because } \cap \text { is composition and } \square \Phi \subseteq \Phi\} \\
& \square \Phi \subseteq \square Ф \cdot \Phi \cdot \bigcirc(\square \Phi) \\
& \equiv \quad\{\text { shunting of coreflexives }\} \\
& \square \Phi \subseteq \Phi \cdot \bigcirc(\square \Phi)
\end{aligned}
$$

Jacobs \equiv Aczel \& Mendler

- It pays to have both around: compare in both settings the proof that coalgebra morphisms entail bisimulation

Coalgebra morphisms entail bisimulation

In the relational setting

Immediate, since inclusion of functions is equality:

$$
\begin{equation*}
c(F h \leftarrow h) d \equiv c \cdot h=(F h) \cdot d \tag{16}
\end{equation*}
$$

Coalgebra morphisms entail bisimulation

In the Aczel \& Mendler setting
Let $h: d \longleftarrow c$ a coalgebra morphism and conjecture $\gamma: \mathrm{F} h \longleftarrow h$

$$
\begin{equation*}
\gamma=\mathrm{F}\left(\pi_{2}\right)^{\circ} \cdot d \cdot \pi_{2} \tag{17}
\end{equation*}
$$

Now prove the diagram commutes: i.e., both π_{1} and π_{2} are coalgebra morphisms, i.e.,

$$
\begin{equation*}
\mathrm{F} \pi_{1} \cdot \gamma=c \cdot \pi_{1} \quad \mathrm{~F} \pi_{2} \cdot \gamma=d \cdot \pi_{2} \tag{18}
\end{equation*}
$$

Clearly, π_{2} is a coalgebra isomorphism. Then, prove that π_{1} is also a colagebra morphism, i.e.,

$$
\begin{equation*}
c \cdot \pi_{1}=\mathrm{F} \pi_{1} \cdot \gamma \tag{19}
\end{equation*}
$$

Coalgebra morphisms entail bisimulation

In the Aczel \& Mendler setting

$$
\begin{aligned}
& c \cdot \pi_{1}=\mathrm{F} \pi_{1} \cdot \gamma \\
& \equiv \quad\{\text { conjecture on } \gamma \text {; functors }\} \\
& c \cdot \pi_{1}=\mathrm{F}\left(\pi_{1} \cdot\left(\pi_{2}\right)^{\circ} \cdot d \cdot \pi_{2}\right. \\
& \equiv \quad\left\{h=\pi_{1} \cdot\left(\pi_{2}\right)^{\circ}\right\} \\
& c \cdot \pi_{1}=F h \cdot d \cdot \pi_{2} \\
& \equiv \quad\{h \text { morphism }\} \\
& c \cdot \pi_{1}=c \cdot h \cdot \pi_{2} \\
& \equiv \quad\left\{\pi_{2} \text { iso, } h=\pi_{1} \cdot\left(\pi_{2}\right)^{\circ}\right\} \\
& c \cdot \pi_{1}=c \cdot \pi_{1}
\end{aligned}
$$

Coalgebra morphisms entail bisimulation

In the Aczel \& Mendler setting

Now the converse direction: if h is a function st the diagram commutes, h is a coalgebra morphism.

$$
\begin{aligned}
& c \cdot h=F h \cdot d \\
& \equiv \quad\left\{h=\pi_{1} \cdot\left(\pi_{2}\right)^{\circ} \text {, functors }\right\} \\
& c \cdot \pi_{1} \cdot\left(\pi_{2}\right)^{\circ}=F \pi_{1} \cdot F\left(\pi_{2}\right)^{\circ} \cdot d \\
& \equiv \quad\{\text { hyp: (18) \}} \\
& \mathrm{F} \pi_{1} \cdot \gamma \cdot\left(\pi_{2}\right)^{\circ}=\mathrm{F} \pi_{1} \cdot \mathrm{~F}\left(\pi_{2}\right)^{\circ} \cdot d \\
& \equiv \quad\left\{\gamma \text { definition and } \pi_{2} \text { is iso }\right\} \\
& \mathrm{F} \pi_{1} \cdot \gamma=\mathrm{F} \pi_{1} \cdot \gamma
\end{aligned}
$$

Jacobs = Aczel \& Mendler

- ...
- Equivalence was proved in this morning talk, resorting to a basic (new) result (law 15):

$$
\left(r \cdot s^{\circ}\right) \leftarrow\left(f \cdot g^{\circ}\right)=(r \leftarrow f) \cdot(s \leftarrow g)^{\circ}
$$

if pair r, s is a tabulation.

Jacobs = Aczel \& Mendler

$$
\left(r \cdot s^{\circ}\right) \leftarrow\left(f \cdot g^{\circ}\right) \subseteq(r \leftarrow f) \cdot(s \leftarrow g)^{\circ}
$$

which equivales

$$
\begin{array}{ll}
c \cdot f \cdot g^{\circ} \subseteq r \cdot s^{\circ} \cdot d \Rightarrow & \Rightarrow \exists k:: c(r \leftarrow f) k \wedge d(s \leftarrow g) k\rangle \\
\equiv & \{\text { shunting and (??) }\} \\
& c \cdot f \subseteq r \cdot s^{\circ} \cdot d \cdot g \Rightarrow\langle\exists k:: c \cdot f=r \cdot k \wedge d \cdot g=s \cdot k\rangle
\end{array}
$$

This, in turn, is an instance of

$$
x \subseteq r \cdot s^{\circ} \cdot y \Rightarrow\langle\exists k:: x=r \cdot k \wedge y=s \cdot k\rangle
$$

$\equiv \quad$ \{ shunting and split-universal, followed by split-fusion \}

$$
\begin{equation*}
x \cdot y^{\circ} \subseteq r \cdot s^{\circ} \Rightarrow\langle\exists k::\langle x, y\rangle=\langle r, s\rangle \cdot k\rangle \tag{20}
\end{equation*}
$$

for $x \cdot v:=c \cdot f \cdot d \cdot a$

Jacobs \equiv Aczel \& Mendler

The righthand side of (20) is an assertion of split-fission.

- image of $\langle x, y\rangle$ must be be at most image of $\langle r, s\rangle$ which is exactly the antecendent of (20):

$$
\equiv \begin{aligned}
& \operatorname{img}\langle x, y\rangle \subseteq \operatorname{img}\langle r, s\rangle \\
& \quad\{\text { split image transform, see (??) below }\} \\
& \\
& x \cdot y^{\circ} \subseteq r \cdot s^{\circ}
\end{aligned}
$$

- $\langle r, s\rangle$ must be injective within the range of $\langle x, y\rangle$. Here we go stronger than required in forcing $\langle r, s\rangle$ to be everywhere-injective:

$$
\operatorname{ker}\langle r, s\rangle \subseteq i d
$$

$\equiv \quad$ \{ kernels of splits ; functions kernels of reflexive \}
$\operatorname{ker} r \cap \operatorname{ker} s=i d$

Function fission

Given f and g, find a functional solution k to equation

$$
g=f \cdot k
$$

Clearly, a relational upperbound for k always exists, $f \backslash g=f^{\circ} \cdot g$, cf.

$$
\begin{array}{cc}
& g=f \cdot k \\
\equiv & \{\text { equality of functions }\} \\
& f \cdot k \subseteq g \\
\equiv & \{\text { shunting }\} \\
& k \subseteq f^{\circ} \cdot g
\end{array}
$$

Function fission

Conditions for such a (maximal) solution $f^{\circ} \cdot g$ to be a function:

- it must be entire

$$
\begin{aligned}
& \quad i d \subseteq\left(f^{\circ} \cdot g\right)^{\circ} \cdot f^{\circ} \cdot g \\
& \equiv \quad\{\text { shunting and definition of image \}} \\
& \quad \operatorname{img} g \subseteq \operatorname{img} f
\end{aligned}
$$

- and simple:

$$
\equiv \begin{gathered}
f^{\circ} \cdot g \cdot\left(f^{\circ} \cdot g\right)^{\circ} \subseteq i d \\
\{\text { converses }\} \\
f^{\circ} \cdot g \cdot g^{\circ} \cdot f \subseteq i d
\end{gathered}
$$

So, for f more surjective than g and f injective within the image (range) of g, equation $f \cdot k=g$ has $k=f^{\circ} \cdot g$ as maximal (in fact, unique) functional solution.

Function fission

Summing up, we proved
$\langle\exists k:: g=f \cdot k\rangle \equiv k=f^{\circ} \cdot g \Leftarrow \operatorname{img} g \subseteq \operatorname{img} f \wedge f^{\circ} \cdot g \cdot g^{\circ} \cdot f \subseteq i d$

Images of splits

$$
\begin{aligned}
& \operatorname{img}\langle R, S\rangle \subseteq \text { img }\langle U, V\rangle \\
\equiv & \{\text { switch to conditions }\} \\
\equiv & \langle R, S\rangle \cdot!^{\circ} \subseteq\langle U, V\rangle \cdot!^{\circ} \\
& \{\text { "split twist" rule (21) \}}
\end{aligned} \quad \begin{gathered}
\langle R,!\rangle \cdot S^{\circ} \subseteq\langle U,!\rangle \cdot V^{\circ} \\
\equiv
\end{gathered} \quad\{\text { (22) thanks to !-natural \}}\}
$$

Images of splits

The "split twist" rule

$$
\begin{equation*}
\langle R, S\rangle \cdot T \subseteq\langle U, V\rangle \cdot X \equiv\left\langle R, T^{\circ}\right\rangle \cdot S^{\circ} \subseteq\left\langle U, X^{\circ}\right\rangle \cdot V^{\circ} \tag{21}
\end{equation*}
$$

is proved in [Oliveira,06], as is

$$
\langle R, S\rangle \cdot T=\langle R \cdot T, S \cdot T\rangle \Leftarrow R \cdot(\mathrm{img} T) \subseteq R \vee S \cdot(\operatorname{img} T) \subseteq S
$$

as a consequence of fusion results given in [Backhouse,04].

Conclusions \& Current Work

- Towards an "agile" theory for bisimulation?
- The powerset case:

$$
\begin{aligned}
& (\wedge S)(\mathcal{P} R \leftarrow R)(\wedge U) \\
\equiv & \{\ldots\} \\
& \quad \ldots \quad \\
\equiv & \{\ldots\} \\
& S \cdot R \subseteq R \cdot U \wedge U \cdot R^{\circ} \subseteq R^{\circ} \cdot S
\end{aligned}
$$

vs recent work on weak bisimulation for generic process algebra [Ribeiro thesis]

- Revisiting modal logic for coalgebras.
- Simulations vs. current work on coalgebraic refinement

$$
c(\sqsubseteq \cdot F R \cdot \sqsubseteq \leftarrow R) d
$$

