Why point－freeness matters

J．N．Oliveira
Departamento de Informática，Escola de Engenharia
Universidade do Minho
CIC＇06－U．Minho，Braga，Oct．11－13

A "rendez vous" workshop

Three institutions

- CWI
- UM
- UNL

Three towns

- Amsterdam
- Braga
- Lisbon

Three "cultures"?

Workshop "motto"

Share R\&D experiences and learn more about each other

On the UM "flavour"

Who and how

- TFM - Teory and Formal Methods Group
- Emphasis on "correct by construction"
- So-called pointfree (PF) flavour ...

When and why

- John Backus pointed the way (1978) - FP and parallelism
- JNO's PhD thesis (1984) - FP for dataflow reasoning
- JMV's f-NDP notation (1987) — nondeterministic FP for software design
- Bird-Meertens-Backhouse approach (now) - do it by calculation in the PF-style

However

- Pointfree? functions? relations? monads? coalgebras?

A notation conflict

Purpose of formal modelling

Identify properties of real-world situations which, once expressed in maths, become abstract models which can be queried and reasoned about.

This often raises a kind of

Notation conflict

between

- descriptiveness - ie., adequacy to describe domain-specific objects and properties, and
- compactness - as required by algebraic reasoning and solution calculation.

Trend for notation economy

Well-known throughout the history of maths - a kind of "natural language implosion" - particularly visible in the syncopated phase (16c), eg.
.40.p.2.ce. son yguales a .20.co
(P. Nunes, Coimbra, 1567) for nowadays $40+2 x^{2}=20 x$, or
$B 3$ in A quad - D plano in $A+A$ cubo æquatur Z solido
(F. Viète, Paris, 1591) for nowadays $3 B A^{2}-D A+A^{3}=Z$

Back to the school desk

(where it all started for any of us...)
The problem
My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

Back to the school desk

(where it all started for any of us...)
The problem
My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

The model

$$
x+(x+3)+(x+6)=48
$$

Back to the school desk

(where it all started for any of us...)

The problem

My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

The model

$$
x+(x+3)+(x+6)=48
$$

The calculation

$$
\left.\begin{array}{c}
3 x+9=48 \\
\equiv \quad\{\text { "al-djabr" rule }\} \\
3 x=48-9
\end{array}\right\} \begin{gathered}
\{\text { "al-hatt" rule }\} \\
\equiv \\
\quad x=16-3
\end{gathered}
$$

Back to the school desk

The solution

$$
\begin{aligned}
x & =13 \\
x+3 & =16 \\
x+6 & =19
\end{aligned}
$$

Comments

- Simple problem
- Simple notation
- Questions: "al-djabr" rule ? "al-hatt" rule ?

Back to the school desk

The solution

$$
\begin{aligned}
x & =13 \\
x+3 & =16 \\
x+6 & =19
\end{aligned}
$$

Comments

- Simple problem
- Simple notation
- Questions: "al-djabr" rule ? "al-hatt" rule ?

Have a look at Pedro Nunes (1502-1578) Libro de Algebra en Arithmetica y Geometria (published in The Netherlands in 1567)

Libro de Algebra en Arithmetica y Geometria (1567)

(...) ho inuẽtor desta arte foy hum Mathematico Mouro, cujo nome era Gebre, \& ha em alguãs Liuarias hum pequeno tractado Arauigo, que contem os capitulos de \tilde{q} usamos (fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala ${ }^{1}$ by Abû Abd Allâh Muhamad B. Mûsâ Al-Huwârizmî, a famous 9c Persian mathematician.

[^0]
Calculus of al-gabr and al-muqâbala

al-djabr

$$
x-z \leq y \equiv x \leq y+z
$$

Calculus of al-gabr and al-muqâbala

al-djabr

$$
x-z \leq y \equiv x \leq y+z
$$

al-hatt

$$
x * z \leq y \equiv x \leq y * z^{-1}
$$

Calculus of al-gabr and al-muqâbala

al-djabr

$$
x-z \leq y \equiv x \leq y+z
$$

al-hatt

$$
x * z \leq y \equiv x \leq y * z^{-1}
$$

al-muqâbala

Ex:

$$
4 x^{2}+3=2 x^{2}+2 x+6 \equiv 2 x^{2}=2 x+3
$$

Verdict

Pedro Nunes libro de algebra, 1567, fol 270r.

(...) De manera, que quien sabe por Algebra, sabe scientificamente.

(in this way, who knows by Algebra knows scientifically)
Thus - already in the 16c -

$$
e=m+c
$$

$$
\text { engineering }=\underline{\text { model }} \text { first, then calculate } \ldots
$$

Not enough

More demanding problems, eg. electrical circuits:

The problem

Predict $i(t)$ for RC-circuit

The model

$$
\begin{aligned}
& v(t)=\operatorname{Ri}(t)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau \\
& v(t)=V_{0}(u(t-a)-u(t-b))
\end{aligned}
$$

High-school example

The solution

Calculation?

Physicists and engineers overcome difficulties in calculating integral/differential equations by changing the "mathematical space", for instance by moving (temporarily) from the time-space to the s-space in the Laplace transformation.

Laplace transform

$f(t)$ is transformed into $(\mathcal{L} f) s=\int_{0}^{\infty} e^{-s t} f(t) d t$

High-school example

Laplace-transformed RC-circuit model

$$
R I(s)+\frac{I(s)}{s C}=\frac{V_{0}}{s}\left(e^{-a s}-e^{-b s}\right)
$$

Algebraic solution for I(s)

$$
I(s)=\frac{\frac{V_{0}}{R}}{s+\frac{1}{R C}}\left(e^{-a s}-e^{-b s}\right)
$$

Back to the t-space

$$
i(t)=\left\{\begin{array}{l}
0 \quad \text { if } t<a \\
\left(\frac{V_{0} e^{\frac{a}{R C}}}{R}\right) e^{-\frac{t}{R C}} \quad \text { if } a<t<b \\
\left(\frac{V_{0} e^{-\frac{a}{R C}}}{R}-\frac{V_{0} e^{-\frac{b}{R C}}}{R}\right) e^{-\frac{t}{R C}} \quad \text { if } t>b
\end{array}\right.
$$

(after some algebraic manipulation)

Quoting Kreyszig's book, p. 242

"(...) The Laplace transformation is a method for solving differential equations (...) [which] consists of three main steps:

1st step. The given "hard" problem is transformed into a "simple" equation (subsidiary equation).
2nd step. The subsidiary equation is solved by purely algebraic manipulations.
3rd step. The solution of the subsidiary equation is transformed back to obtain the solution of the given problem.

In this way the Laplace transformation reduces the problem of solving a differential equation to an algebraic problem".

Question

Notations and calculi used to describe software artifacts include

- Naive set theory
- Predicate calculus
- Temporal/modal logic calculi
- Lambda calculus

Is there a "Laplace transform" applicable to these?

Perhaps there is, cf. syntactic analogy

$$
\begin{aligned}
& \left\langle\int x: 0<x<10: x^{2}-x\right\rangle \\
& \left\langle\forall x: 0<x<10: x^{2} \geq x\right\rangle
\end{aligned}
$$

Laplace transform: t-space $\longleftrightarrow s$-space

$(\mathcal{L} f) s=\int_{0}^{\infty} e^{-s t} f(t) d t$, eg.

$f(t)$	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
etc	\cdots

An "s-space equivalent" for logical quantification

The pointfree $(\mathcal{P F})$ transform

ϕ	$\mathcal{P F} \phi$
$\langle\exists a:: b R a \wedge a S c\rangle$	$b(R \cdot S) c$
$\langle\forall a, b: b R a: b S a\rangle$	$R \subseteq S$
$\langle\forall a:: a R a\rangle$	$i d \subseteq R$
$\langle\forall x: x R b: x S a\rangle$	$b(R \backslash S) a$
$\langle\forall c: b R c: a S c\rangle$	$a(S / R) b$
$b R a \wedge c S a$	$(b, c)\langle R, S\rangle a$
$b R a \wedge d S c$	$(b, d)(R \times S)(a, c)$
$b R a \wedge b S a$	$b(R \cap S) a$
$b R a \vee b S a$	$b(R \cup S) a$
$(f b) R(g a)$	$b\left(f^{\circ} \cdot R \cdot g\right) a$
TRUE	$b T a$
FALSE	$b \perp a$

What are R, S, id ?

A transform for logic and set-theory

An old idea

$\mathcal{P F}$ (sets, predicates) $=$ pointfree binary relations

Calculus of binary relations

- 1860 - introduced by De Morgan, embryonic
- 1870 - Peirce finds interesting equational laws
- 1941 - Tarski's school, cf. A Formalization of Set Theory without Variables
- 1980's - coreflexive models of sets (Freyd and Scedrov, Eindhoven MPC group and others)

Unifying approach

Everything is a (binary) relation

Binary Relations

Arrow notation

Arrow $B \leftarrow^{R} A$ denotes a binary relation to B (target) from A (source).

Identity of composition

id such that $R \cdot i d=i d \cdot R=R$

Converse

Converse of $R-R^{\circ}$ such that $a\left(R^{\circ}\right) b$ iff $b R a$.

Ordering

" $R \subseteq S$ - the " R is at most S " - the obvious $R \subseteq S$ ordering.

Binary Relations

Pointwise meaning
$b R$ a means that pair $\langle b, a\rangle$ is in R, eg.

$$
1 \leq 2
$$

John IsFatherOf Mary
$3=(1+) \quad 2$

Reflexive and coreflexive relations

- Reflexive relation:
- Coreflexive relation:

Sets

Are represented by coreflexives, eg. set $\{0,1\}$ is

Back to "queen sabe por Algebra, sabe scientificamente"

Useful "al-djabr" rules, as those (nowadays) christened as Galois connections

$$
\begin{aligned}
& f \cdot R \subseteq S \equiv R \subseteq f^{\circ} \cdot S \\
& R \cdot f^{\circ} \subseteq S \equiv R \subseteq S \cdot(f \\
& T \cdot R \subseteq S \equiv R \subseteq T \backslash S
\end{aligned}
$$

or closure rules, eg. (for Φ coreflexive),

$$
\Phi \cdot R \subseteq S \equiv \Phi \cdot R \subseteq \Phi \cdot S
$$

Back to basics

Which areas of computing have nowadays well-established, widespread theories taught in undergraduate courses ?

- Parsers and compilers
- Relational databases
- Automata, labelled transition systems

Let us see examples of Why point-freeness matters in these areas.

Example: Bisimulations

Definition 1 (orig. Milner, as in the Wikipedia):

A bisimulation is a simulation between two LTS such that its converse is also a simulation, where a simulation between two LTS $\left(X, \Lambda, \rightarrow_{x}\right)$ and $\left(Y, \Lambda, \rightarrow_{Y}\right)$ is a relation $R \subseteq X \times Y$ such that, if $(p, q) \in R$, then for all α in Λ, and for all $p^{\prime} \in S, p \xrightarrow{\alpha} p^{\prime}$ implies that there is a q^{\prime} such that $q \xrightarrow{\alpha} q^{\prime}$ and $\left(p^{\prime}, q^{\prime}\right) \in R$:

Typical example of classical, descriptive definition.

Example: Bisimulations

Definition 2 (by Aczel \& Mendler):

Given two coalgebras $c: X \rightarrow F(X)$ and $d: Y \rightarrow F(Y)$ an F-bisimulation is a relation $R \subseteq X \times Y$ which can be extended to a coalgebra ρ such that projections π_{1} and π_{2} lift to F-comorphisms, as expressed by

Simpler and generic (coalgebraic)

Example: Bisimulations

Definition 3 (by Bart Jacobs):

A bisimulation for coalgebras $c: X \rightarrow F(X)$ and $d: Y \rightarrow F(Y)$ is a relation $R \subseteq X \times Y$ which is "closed under c and d ":

$$
(x, y) \in R \quad \Rightarrow \quad(c(x), d(y)) \in \operatorname{Rel}(F)(R) .
$$

for all $x \in X$ and $y \in Y$.
Coalgebraic, even simpler
Question: are these "the same" definition?
We will check the equivalence of these definitions by PF-transformation and (kind of) PF-pattern matching

Bisimulations PF-transformed

Let us implode the outermost \forall in Jacobs definition by PF-transformation:

$$
\begin{aligned}
& \langle\forall x, y:: x R y \Rightarrow(c x) \operatorname{Rel}(F)(R)(d y)\rangle \\
& \equiv \quad\left\{\text { PF-transform rule }(f b) R(g a) \equiv b\left(f^{\circ} \cdot R \cdot g\right) a\right\} \\
& \left.\left\langle\forall x, y:: x R y \Rightarrow x\left(c^{\circ} \cdot \operatorname{Rel}(F)(R) \cdot d\right) y\right)\right\rangle \\
& \equiv \quad\{\text { drop variables (PF-transform of inclusion) }\} \\
& R \subseteq c^{\circ} \cdot \operatorname{Rel}(F)(R) \cdot d \\
& \equiv \quad\{\text { introduce relator; "al-djabr" rule \}} \\
& c \cdot R \subseteq(F R) \cdot d \\
& \equiv \quad\{\text { introduce Reynolds combinator }\} \\
& c(\mathrm{~F} R \leftarrow R) d
\end{aligned}
$$

About Reynolds arrow

"Reynolds arrow combinator" is a relation on functions
useful in expressing properties of functions - namely monotonicity

$$
B \stackrel{f}{\leftarrow} A \text { is monotonic } \equiv f\left(\leq_{B} \leftarrow \leq_{A}\right) f
$$

lifting

$$
f \dot{\leq} g \equiv f(\leq \leftarrow i d) f
$$

polymorphism (free theorem):

$$
\mathrm{GA} \stackrel{f}{\leftarrow} \mathrm{~F} A \text { is polymorphic } \equiv\langle\forall R:: f(\mathrm{G} R \leftarrow \mathrm{~F} R) f\rangle
$$

etc

Why Reynolds arrow matters?

Useful and manageable PF-properties

For example

$$
\begin{align*}
i d \leftarrow i d & =i d \tag{1}\\
(R \leftarrow S)^{\circ} & =R^{\circ} \leftarrow S^{\circ} \tag{2}\\
R \leftarrow S \subseteq V \leftarrow U & \Leftarrow R \subseteq V \wedge U \subseteq S \tag{3}\\
(R \leftarrow V) \cdot(S \leftarrow U) & \subseteq(R \cdot S) \leftarrow(V \cdot U) \tag{4}
\end{align*}
$$

recalled from Roland's "On a relation on functions" (1990)
Immediately useful, eg. (1) ensures id as bisimulation between a given coalgebra and itself (next slide):

Why Reynolds arrow matters

Calculation

$$
\begin{aligned}
& \quad \begin{array}{c}
c(\mathrm{~F} \text { id } \leftarrow i d) d \\
\equiv \\
\quad\{\text { relator } \mathrm{F} \text { preserves the identity }\}
\end{array} \\
& \equiv \begin{array}{c}
c(i d \leftarrow i d) d
\end{array} \\
& \equiv \begin{array}{c}
\{(1)\}
\end{array} \\
& \equiv \begin{array}{c}
c(i d) d
\end{array} \\
& c=d
\end{aligned}
$$

Too simple and obvious, even without Reynolds arrow in the play. What about the equivalence between Jacobs and Aczel-Mendler's definition?

Why Reynolds arrow matters

Roland and Kevin Backhouse (2004) developed a number of properties of $S \leftarrow R$ to which we add the following:
pair (r, s) is a tabulation
\Downarrow

$$
\begin{equation*}
\left(r \cdot s^{\circ}\right) \leftarrow\left(f \cdot g^{\circ}\right)=(r \leftarrow f) \cdot(s \leftarrow g)^{\circ} \tag{5}
\end{equation*}
$$

Tabulations

A pair of functions $A_{r^{\circ}} C_{B}^{s}$ is a tabulation iff $r^{\circ} \cdot r \cap s^{\circ} \cdot s=i d$.
Example: π_{1} and π_{2} form a tabulation, as we very easily check: (next slide)

Why Reynolds arrow matters

$$
\begin{aligned}
& \pi_{1}^{\circ} \cdot \pi_{1} \cap \pi_{2}^{\circ} \cdot \pi_{2}=i d \\
& \equiv \quad\{\text { go pointwise, where } \cap \text { is conjunction }\} \\
& (b, a)\left(\pi_{1}^{\circ} \cdot \pi_{1}\right)(y, x) \wedge(b, a)\left(\pi_{2}^{\circ} \cdot \pi_{2}\right)(y, x) \equiv(b, a)=(y, x) \\
& \equiv \quad\left\{\text { rule }(f b) R(g \text { a }) \equiv b\left(f^{\circ} \cdot R \cdot g\right) a \text { twice }\right\} \\
& \pi_{1}(b, a)=\pi_{1}(y, x) \wedge \pi_{2}(b, a)=\pi_{2}(y, x) \equiv(b, a)=(y, x) \\
& \equiv \quad\{\text { trivia }\} \\
& b=y \wedge a=x \equiv(b, a)=(y, x)
\end{aligned}
$$

NB: it is a standard result that every R can be factored in a tabulation $R=f \cdot g^{\circ}$, eg. $R=\pi_{1} \cdot \pi_{2}^{\circ}$.

Jacobs \equiv Aczel \& Mendler

$c(\mathrm{~F} R \leftarrow R) d$
$\equiv \quad\left\{\right.$ tabulate $\left.R=\pi_{1} \cdot \pi_{2}^{\circ}\right\}$
$c\left(\mathrm{~F}\left(\pi_{1} \cdot \pi_{2}^{\circ}\right) \leftarrow\left(\pi_{1} \cdot \pi_{2}^{\circ}\right)\right) d$
$\equiv \quad\{$ relator commutes with composition and converse \}
$c\left(\left(\left(\mathrm{~F} \pi_{1}\right) \cdot\left(\mathrm{F} \pi_{2}\right)^{\circ}\right) \leftarrow\left(\pi_{1} \cdot \pi_{2}^{\circ}\right)\right) d$
$\equiv \quad\{(5)\}$
$c\left(\left(\mathrm{~F} \pi_{1} \leftarrow \pi_{1}\right) \cdot\left(\left(\mathrm{F} \pi_{2}\right)^{\circ} \leftarrow \pi_{2}^{\circ}\right)\right) d$
$\equiv \quad\{(2)\}$
$c\left(\left(\mathrm{~F} \pi_{1} \leftarrow \pi_{1}\right) \cdot\left(\mathrm{F} \pi_{2} \leftarrow \pi_{2}\right)^{\circ}\right) d$
$\equiv \quad\{$ go pointwise (composition) \}

$\left\langle\exists a:: c\left(\mathrm{~F} \pi_{1} \leftarrow \pi_{1}\right) a \wedge d\left(\mathrm{~F} \pi_{2} \leftarrow \pi_{2}\right) a\right\rangle$

Why Reynolds arrow matters

Meaning of $\left\langle\exists a:: c\left(\mathrm{~F} \pi_{1} \leftarrow \pi_{1}\right) a \wedge d\left(\mathrm{~F} \pi_{2} \leftarrow \pi_{2}\right) a\right\rangle$: there exists a coalgebra a whose carrier is the "graph" of bisimulation R and which is such that projections π_{1} and π_{2} lift to the corresponding coalgebra morphisms.

Comments:

- One-slide-long proofs are easier to grasp - for a (longer) bi-implication proof of the above see Backhouse \& Hoogendijk's paper on dialgebras (1999)
- Elegance of the calculation lies in the synergy brought about by Reynolds arrow (to the best of our knowledge, such a synergy is new in the literature)
- Rule (5) does most of the work - its proof is an example of generic, stepwise PF-reasoning (cf. last talk this afternoon)

Invariants

Fact $c(\mathrm{Fid} \leftarrow i d) c$ above already tells us that id is a (trivial)
F-invariant for coalgebra c. In general:

F-invariants

An F-invariant Φ is a coreflexive bisimulation between a coalgebra and itself:

$$
\begin{equation*}
c(\mathrm{~F} \Phi \leftarrow \Phi) c \tag{6}
\end{equation*}
$$

Invariants bring about modalities:

$$
\begin{aligned}
c(\mathrm{~F} \Phi \leftarrow \Phi) c \equiv & c \cdot \Phi \subseteq \mathrm{~F} \Phi \cdot c \\
\equiv & \{\text { "al-djabr" rule \} } \\
& \Phi \subseteq \underbrace{c^{\circ} \cdot(\mathrm{F} \Phi) \cdot c}_{O_{c} \Phi}
\end{aligned}
$$

since we define the "next time X holds" modal operator as

$$
\bigcirc_{c} X \stackrel{\text { def }}{=} c^{\circ} \cdot(F X) \cdot c
$$

Invariants and projections

Elsewhere we have derived Galois connection

$$
\begin{equation*}
\pi_{g, f} R \subseteq S \equiv R \subseteq g^{\circ} \cdot S \cdot f \tag{7}
\end{equation*}
$$

in order to get (for free) properties of lower adjoint $\pi_{g, f}$ in the context of multi-valued dependency reasoning (database theory).

Interesting enough, this time we reuse an instance of such a connection, ie. "al-djabr" rule

$$
\begin{equation*}
\pi_{c} \Phi \subseteq \psi \equiv \Phi \subseteq \bigcirc_{c} \psi \tag{8}
\end{equation*}
$$

(within coreflexives) to obtain (again for free) properties - now of the upper adjoint \bigcirc_{c} :

Invariants and projections

As as upper adjoint in a Galois connection,

- \bigcirc_{c} is monotonic - thus simple proofs such as
Φ is an invariant

$$
\begin{array}{lc}
\equiv & \{\text { PF-definition of invariant }\} \\
& \Phi \subseteq \bigcirc_{c} \Phi \\
\Rightarrow & \{\text { monotonicity }\} \\
& \bigcirc_{c} \Phi \subseteq \bigcirc_{c}\left(\bigcirc_{c} \Phi\right) \\
\equiv & \{\text { PF-definition of invariant }\} \\
& \bigcirc_{c} \Phi \text { is an invariant }
\end{array}
$$

- \bigcirc_{c} distributes over conjunction, that is PF-equality

$$
\bigcirc_{c}(\Phi \cdot \Psi)=\left(\bigcirc_{c} \Phi\right) \cdot\left(\bigcirc_{c} \Psi\right)
$$

holds, etc

What about Milner's original definition?

Milner's definition is recovered via

- the power-transpose relating binaru relations and set-valued functions,

$$
\begin{equation*}
f=\Lambda R \equiv R=\epsilon \cdot f \tag{9}
\end{equation*}
$$

where $A \longleftarrow \mathcal{E} A$ is the membership relation.

- the powerset relator:

$$
\begin{equation*}
\mathcal{P} R=(\epsilon \backslash(R \cdot \epsilon)) \cap\left(\left(\epsilon^{\circ} \cdot R\right) /\left(\epsilon^{\circ}\right)\right) \tag{10}
\end{equation*}
$$

which unfolds to an elaborate pointwise formula:
$Y(\mathcal{P} R) X \equiv\langle\forall a: a \in Y:\langle\exists b: b \in X: a R b\rangle\rangle \wedge \ldots$ etc

Follow up

- Further modal operators, for instance $\square \Psi$ - henceforth Ψ usually defined as the largest invariant at most Ψ :

$$
\square \Psi=\left\langle\bigcup \Phi:: \Phi \subseteq \Psi \cap \bigcirc_{c} \Phi\right\rangle
$$

which shrinks to a greatest (post)fix-point

$$
\square \Psi=\left\langle\nu \Phi:: \Psi \cdot \bigcirc_{c} \Phi\right\rangle
$$

where meet (of coreflexives) is replaced by composition, as this paves the way to agile reasoning

- Properties calculated by PF-fixpoint calculation
- etc

Summary

- Pointfree / pointwise dichotomy: PF is for reasoning in-the-large, PW is for the small
- As in the 9c and 16c, "al-djabr" rules are forever
- Back to basics: need for computer science theory "refactoring"
- Rôle of PF-patterns: clear-cut expression of complex logic structures once expressed in less symbols
- Rôle of PF-patterns: much easier to spot synergies among different theories
- Coalgebraic approach in a relational setting: a win-win approach while putting together coalgebras (functions) + relators (relations).
- Other exercises - refinement and database theories

[^0]: ${ }^{1}$ Original title: Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala.

