Why point-freeness matters

J.N. Oliveira

Departamento de Informática, Escola de Engenharia Universidade do Minho

CIC'06 — U. Minho, Braga, Oct. 11-13

(日) (四) (분) (분) (분) 분

Three institutions

- CWI
- UM
- UNL

Three towns

- Amsterdam
- Braga
- Lisbon

Three "cultures"?

Workshop "motto"

Share R&D experiences and learn more about each other

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Who and how

- TFM TEORY AND FORMAL METHODS GROUP
- Emphasis on "correct by construction"
- So-called pointfree (PF) flavour ...

When and why

- John Backus pointed the way (1978) FP and parallelism
- JNO's PhD thesis (1984) FP for dataflow reasoning
- JMV's f-NDP notation (1987) nondeterministic FP for software design
- Bird-Meertens-Backhouse approach (now) do it by calculation in the PF-style

However

• Pointfree? functions? relations? monads? coalgebras?

A notation conflict

Purpose of formal modelling

Identify properties of real-world situations which, once expressed in maths, become abstract *models* which can be gueried and reasoned about.

This often raises a kind of

Notation conflict

between

- descriptiveness ie., adequacy to describe domain-specific objects and properties, and
- compactness as required by algebraic reasoning and solution calculation.

Well-known throughout the history of maths — a kind of "natural language **implosion**" — particularly visible in the syncopated phase (16c), eg.

.40. p.2. ce. son yguales a .20. co

(P. Nunes, Coimbra, 1567) for nowadays $40 + 2x^2 = 20x$, or

B 3 in A quad - D plano in A + A cubo æquatur Z solido

(F. Viète, Paris, 1591) for nowadays $3BA^2 - DA + A^3 = Z$

Bisimulations

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへぐ

Back to the school desk

(where it all started for any of us...)

The problem

My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

Back to the school desk

(where it all started for any of us...)

The problem

My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

The model

$$x + (x + 3) + (x + 6) = 48$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Back to the school desk

(where it all started for any of us...)

The problem

My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

The model

$$x + (x + 3) + (x + 6) = 48$$

The calculation

$$3x + 9 = 48$$

$$\equiv \{ \text{ "al-djabr" rule} \}$$

$$3x = 48 - 9$$

$$\equiv \{ \text{ "al-hatt" rule} \}$$

$$x = 16 - 3$$

Bisimulation

ulations Reyr

Reynolds arrow

Summar

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Back to the school desk

The solution	
x = 13	
x + 3 = 16	
x + 6 = 19	

Comments

- Simple problem
- Simple notation
- Questions: "al-djabr" rule ? "al-hatt" rule ?

Bisimulations

s Reynolds arrow

variants Su

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Summary

Back to the school desk

The solution	
x = 13	
x + 3 = 16	
x + 6 = 19	

Comments

- Simple problem
- Simple notation
- Questions: "al-djabr" rule ? "al-hatt" rule ?

Have a look at Pedro Nunes (1502-1578) *Libro de Algebra en Arithmetica y Geometria* (published in The Netherlands in 1567) Libro de Algebra

Bisimulations

Revnolds arrow

Invariants

Libro de Algebra en Arithmetica y Geometria (1567)

(...) ho inuêtor desta arte foy hum Mathematico Mouro, cujo nome era Gebre, & ha em alguãs Liuarias hum pequeno tractado Arauigo, que contem os capitulos de q usamos (fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala¹ by Abû Abd Allâh Muhamad B. Mûsâ Al-Huwârizmî, a famous 9c Persian mathematician.

¹Original title: *Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala*. < ∃→

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Calculus of al-gabr and al-muqâbala

al-djabr

$$x-z \le y \equiv x \le y+z$$

Libro de Algebra

ebra Bis

Bisimulations

Reynolds arrow

ivariants S

Summary

Calculus of al-gabr and al-muqâbala

al-dja<u>br</u>

$$x-z \le y \equiv x \le y+z$$

al-hatt

$$x * z \le y \equiv x \le y * z^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Libro de Algebra

Algebra

Bisimulations

ions Reynolds arrow

Invariants

Summary

Calculus of al-gabr and al-muqâbala

al-djabr

$$x-z \le y \equiv x \le y+z$$

al-hatt

$$x * z \le y \equiv x \le y * z^{-1}$$

al-muqâbala

Ex:

$$4x^2 + 3 = 2x^2 + 2x + 6 \equiv 2x^2 = 2x + 3$$

Pedro Nunes libro de algebra, 1567, fol 270r.

(...) De manera, que quien sabe por Algebra, sabe <u>scientificamente</u>.

(in this way, who knows by Algebra knows scientifically)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Thus — already in the 16c —

e = m + c

engineering = <u>model</u> first, then <u>calculate</u>

More demanding problems, eg. electrical circuits:

$$\begin{array}{lll} v(t) &=& Ri(t) + \frac{1}{C} \int_0^t i(\tau) d\tau \\ v(t) &=& V_0(u(t-a) - u(t-b)) \end{array} (b > a) \end{array}$$

The solution

Calculation?

Physicists and engineers overcome difficulties in calculating integral/differential equations by changing the "mathematical space", for instance by moving (temporarily) from the time-space to the *s*-space in the *Laplace transformation*.

Laplace transform

f(t) is transformed into $(\mathcal{L} f)s = \int_0^\infty e^{-st} f(t) dt$

Invariants

High-school example

Laplace-transformed RC-circuit model

$$RI(s) + \frac{I(s)}{sC} = \frac{V_0}{s}(e^{-as} - e^{-bs})$$

Algebraic solution for I(s)

$$V(s) = rac{V_0}{R}(e^{-as} - e^{-bs})$$

Back to the *t*-space

$$i(t) = \begin{cases} 0 & if \quad t < a \\ (\frac{V_0 e^{-\frac{a}{RC}}}{R})e^{-\frac{t}{RC}} & if \quad a < t < b \\ (\frac{V_0 e^{-\frac{a}{RC}}}{R} - \frac{V_0 e^{-\frac{b}{RC}}}{R})e^{-\frac{t}{RC}} & if \quad t > b \end{cases}$$

(after some algebraic manipulation)

Quoting Kreyszig's book, p.242

"(...) The Laplace transformation is a method for solving differential equations (...) [which] consists of three main steps:

- 1st step. The given "hard" problem is transformed into a "simple" equation (subsidiary equation).
- 2nd step. The subsidiary equation is solved by purely algebraic manipulations.
- 3rd step. The solution of the subsidiary equation is transformed back to obtain the solution of the given problem.

In this way the Laplace transformation reduces the problem of solving a differential equation to an algebraic problem".

Rendez vous		Libro de Algebra	Bisimulations	Reynolds arrow	Summary
Question	n				

Notations and calculi used to describe software artifacts include

- Naive set theory
- Predicate calculus
- Temporal/modal logic calculi
- Lambda calculus

Is there a "Laplace transform" applicable to these?

Perhaps there is, cf. syntactic analogy

$$\langle \int x : 0 < x < 10 : x^2 - x \rangle$$

$$\langle \forall x : 0 < x < 10 : x^2 \ge x \rangle$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Laplace transform: *t*-space \longleftrightarrow *s*-space

$$(\mathcal{L} f)s = \int_0^\infty e^{-st}f(t)dt$$
, eg.

$$\begin{array}{c|c} f(t) & \mathcal{L}(f) \\ \hline 1 & \frac{1}{s} \\ t & \frac{1}{s^2} \\ t^n & \frac{n!}{s^{n+1}} \\ e^{at} & \frac{1}{s-a} \\ etc & \dots \end{array}$$

An "s-space equivalent" for logical quantification

The pointfree (\mathcal{PF}) transform		
ϕ	$\mathcal{PF} \ \phi$	
$\langle \exists a :: b R a \land a S c \rangle$	$b(\mathbf{R} \cdot \mathbf{S})c$	
$\langle \forall a, b : b R a : b S a \rangle$	$R \subseteq S$	
$\langle orall a : : a \mathrel{R} a angle$	$id \subseteq R$	
$\langle \forall x : x R b : x S a \rangle$	b(R ∖ S)a	
$\langle \forall \ c \ : \ b \ R \ c \ : \ a \ S \ c \rangle$	a(<mark>S / R</mark>)b	
$b \mathrel{R} a \wedge c \mathrel{S} a$	$(b,c)\langle R,S\rangle$ a	
$b \ R \ a \wedge d \ S \ c$	$(b,d)(R \times S)(a,c)$	
$b \mathrel{R} a \wedge b \mathrel{S} a$	b (<mark>R ∩ S</mark>) a	
$b \ R \ a \lor b \ S \ a$	b (<mark>R ∪ S</mark>) a	
(f b) R (g a)	b(f° · R · g)a	
TRUE	b 🕇 a	
False	b⊥a	

What are *R*, *S*, *id* ?

Invariants

A transform for logic and set-theory

An old idea

 $\mathcal{PF}(\text{sets, predicates}) = \text{pointfree binary relations}$

Calculus of binary relations

- 1860 introduced by De Morgan, embryonic
- 1870 Peirce finds interesting equational laws
- 1941 Tarski's school, cf. A Formalization of Set Theory without Variables
- 1980's coreflexive models of sets (Freyd and Scedrov, Eindhoven MPC group and others)

Unifying approach

Everything is a (binary) relation

Arrow notation

Arrow
$$B \stackrel{R}{\longleftarrow} A$$
 denotes a binary relation to B (target) from A (source).

Identity of composition

id such that $R \cdot id = id \cdot R = R$

Converse

Converse of $R - R^{\circ}$ such that $a(R^{\circ})b$ iff b R a.

Ordering

" $R \subseteq S$ — the "R is at most S" — the obvious $R \subseteq S$ ordering.

Rendez vous		Libro de Algebra	Bisimulations	Reynolds arrow	Summary
Binary	Relations	5			

Pointwise meaning

b R **a** means that pair $\langle b, a \rangle$ is in R, eg.

 $1 \leq 2$ John *IsFatherOf* Mary 3 = (1+) 2

Reflexive and coreflexive relations

٩	Reflexive relation:	$id \subseteq R$
٩	Coreflexive relation:	$R \subseteq id$

Sets

Are represented by coreflexives, eg. set $\{0,1\}$ is

Back to "quien sabe por Algebra, sabe scientificamente"

Useful "al-djabr" rules, as those (nowadays) christened as ${\bf Galois}$ connections

$$f \cdot R \subseteq S \equiv R \subseteq f^{\circ} \cdot S$$
$$R \cdot f^{\circ} \subseteq S \equiv R \subseteq S \cdot f$$
$$T \cdot R \subseteq S \equiv R \subseteq T \setminus S$$

or **closure** rules, eg. (for Φ coreflexive),

$$\Phi \cdot R \subseteq S \equiv \Phi \cdot R \subseteq \Phi \cdot S$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Which areas of computing have nowadays well-established, widespread theories taught in undergraduate courses ?

- Parsers and compilers
- Relational databases
- Automata, labelled transition systems

Let us see examples of *Why point-freeness matters* in these areas.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Example: Bisimulations

Definition 1 (orig. Milner, as in the Wikipedia):

A bisimulation is a simulation between two LTS such that its converse is also a simulation, where a simulation between two LTS $(X, \Lambda, \rightarrow_X)$ and $(Y, \Lambda, \rightarrow_Y)$ is a relation $R \subseteq X \times Y$ such that, if $(p,q) \in R$, then for all α in Λ , and for all $p' \in S$, $p \xrightarrow{\alpha} p'$ implies that there is a q' such that $q \xrightarrow{\alpha} q'$ and $(p',q') \in R$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Typical example of classical, descriptive definition.

Invariants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Example: Bisimulations

Definition 2 (by Aczel & Mendler):

Given two coalgebras $c : X \to F(X)$ and $d : Y \to F(Y)$ an F-bisimulation is a relation $R \subseteq X \times Y$ which can be extended to a coalgebra ρ such that projections π_1 and π_2 lift to F-comorphisms, as expressed by

Simpler and generic (coalgebraic)

Definition 3 (by Bart Jacobs):

A bisimulation for coalgebras $c: X \to F(X)$ and $d: Y \to F(Y)$ is a relation $R \subseteq X \times Y$ which is "closed under c and d":

$$(x,y) \in R \Rightarrow (c(x),d(y)) \in Rel(F)(R).$$

for all $x \in X$ and $y \in Y$.

Coalgebraic, even simpler

Question: are these "the same" definition?

We will check the equivalence of these definitions by PF-transformation and (kind of) PF-pattern matching **Bisimulations PF-transformed**

Let us implode the outermost \forall in Jacobs definition by PF-transformation:

> $\langle \forall x, y :: x R y \Rightarrow (c x) Rel(F)(R) (d y) \rangle$ { PF-transform rule $(f \ b)R(g \ a) \equiv b(f^{\circ} \cdot R \cdot g)a$ } \equiv $\langle \forall x, y :: x R y \Rightarrow x(c^{\circ} \cdot Rel(F)(R) \cdot d)y) \rangle$ { drop variables (PF-transform of inclusion) } = $R \subseteq c^{\circ} \cdot Rel(F)(R) \cdot d$ { introduce relator ; "al-djabr" rule } \equiv $c \cdot R \subset (FR) \cdot d$ { introduce Reynolds combinator } \equiv $c(FR \leftarrow R)d$

> > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

About Reynolds arrow

"Reynolds arrow combinator" is a relation on functions

$$f(R \leftarrow S)g \equiv f \cdot S \subseteq R \cdot g \quad \text{cf. diagram} \quad B \xleftarrow{S} A$$
$$f \downarrow \subseteq \qquad \downarrow g$$
$$C \xleftarrow{R} D$$

useful in expressing properties of functions — namely *monotonicity* $B \xleftarrow{f} A$ is monotonic $\equiv f(\leq_B \leftarrow \leq_A)f$ lifting

$$f \leq g \equiv f(\leq \leftarrow id)f$$

polymorphism (free theorem):

$$\mathsf{G} A \xleftarrow{f} \mathsf{F} A \text{ is polymorphic } \equiv \langle \forall R :: f(\mathsf{G} R \leftarrow \mathsf{F} R) f \rangle$$

etc

Bisimulations

Reynolds arrow

Invariants Su

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Why Reynolds arrow matters?

Useful and manageable PF-properties

For example

$$id \leftarrow id = id$$
 (1)

$$[R \leftarrow S)^{\circ} = R^{\circ} \leftarrow S^{\circ}$$
(2)

$$\begin{array}{rcl} R \leftarrow S &\subseteq & V \leftarrow U &\Leftarrow & R \subseteq V \land U \subseteq S \\ (R \leftarrow V) \cdot (S \leftarrow U) &\subseteq & (R \cdot S) \leftarrow (V \cdot U) \end{array} \tag{3}$$

recalled from Roland's "On a relation on functions" (1990)

Immediately useful, eg. (1) ensures *id* as bisimulation between a given coalgebra and itself (next slide):

Calculation

 $c(F id \leftarrow id)d$ $\equiv \{ \text{ relator F preserves the identity } \}$ $c(id \leftarrow id)d$ $\equiv \{ (1) \}$ c(id) d $\equiv \{ id x = x \}$ c = d

Too simple and obvious, even *without* Reynolds arrow in the play. What about the equivalence between Jacobs and Aczel-Mendler's definition?

Roland and Kevin Backhouse (2004) developed a number of properties of $S \leftarrow R$ to which we add the following:

pair
$$(r, s)$$
 is a tabulation

$$\downarrow \qquad (5)$$
 $(r \cdot s^{\circ}) \leftarrow (f \cdot g^{\circ}) = (r \leftarrow f) \cdot (s \leftarrow g)^{\circ}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Tabulations

A pair of functions $\underset{A}{\overset{r_{\not r}}{B}} C_{\swarrow s}$ is a tabulation iff $r^{\circ} \cdot r \cap s^{\circ} \cdot s = id$.

Example: π_1 and π_2 form a tabulation, as we very easily check: (next slide)

Why Reynolds arrow matters

$$\pi_1^{\circ} \cdot \pi_1 \cap \pi_2^{\circ} \cdot \pi_2 = id$$

$$\equiv \{ \text{go pointwise, where } \cap \text{ is conjunction } \}$$

$$(b, a)(\pi_1^{\circ} \cdot \pi_1)(y, x) \land (b, a)(\pi_2^{\circ} \cdot \pi_2)(y, x) \equiv (b, a) = (y, x) \}$$

$$\equiv \{ \text{rule } (f \ b)R(g \ a) \equiv b(f^{\circ} \cdot R \cdot g)a \text{ twice } \}$$

$$\pi_1(b, a) = \pi_1(y, x) \land \pi_2(b, a) = \pi_2(y, x) \equiv (b, a) = (y, x) \}$$

$$\equiv \{ \text{ trivia } \}$$

$$b = y \land a = x \equiv (b, a) = (y, x) \}$$

NB: it is a standard result that every R can be factored in a tabulation $R = f \cdot g^{\circ}$, eg. $R = \pi_1 \cdot \pi_2^{\circ}$.

Rendez vous Reynolds arrow

$Jacobs \equiv Aczel \& Mendler$

$$c(F R \leftarrow R)d$$

$$\equiv \{ \text{ tabulate } R = \pi_1 \cdot \pi_2^\circ \}$$

$$c(F(\pi_1 \cdot \pi_2^\circ) \leftarrow (\pi_1 \cdot \pi_2^\circ))d$$

$$\equiv \{ \text{ relator commutes with composition and converse} \}$$

$$c(((F \pi_1) \cdot (F \pi_2)^\circ) \leftarrow (\pi_1 \cdot \pi_2^\circ))d$$

$$\equiv \{ (5) \} \qquad \text{cf.} \qquad X \xleftarrow{R} \qquad Y$$

$$c((F \pi_1 \leftarrow \pi_1) \cdot ((F \pi_2)^\circ \leftarrow \pi_2^\circ))d$$

$$\equiv \{ (2) \} \qquad c((F \pi_1 \leftarrow \pi_1) \cdot (F \pi_2 \leftarrow \pi_2)^\circ)d$$

$$\equiv \{ \text{ go pointwise (composition)} \} \qquad FX \xleftarrow{FR} \qquad FY$$

$$\langle \exists a :: c(F \pi_1 \leftarrow \pi_1)a \land d(F \pi_2 \leftarrow \pi_2)a \rangle$$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Meaning of $\langle \exists a :: c(F \pi_1 \leftarrow \pi_1)a \land d(F \pi_2 \leftarrow \pi_2)a \rangle$:

there exists a coalgebra *a* whose carrier is the "graph" of bisimulation *R* and which is such that projections π_1 and π_2 lift to the corresponding coalgebra morphisms.

Comments:

- One-slide-long proofs are easier to grasp for a (longer) bi-implication proof of the above see Backhouse & Hoogendijk's paper on *dialgebras* (1999)
- Elegance of the calculation lies in the synergy brought about by Reynolds arrow (to the best of our knowledge, such a synergy is new in the literature)
- Rule (5) does most of the work its proof is an example of generic, stepwise PF-reasoning (cf. last talk this afternoon)

Invariants

Fact $c(F id \leftarrow id)c$ above already tells us that id is a (trivial) F-invariant for coalgebra c. In general:

F-invariants

An F-invariant Φ is a *coreflexive* bisimulation between a coalgebra and itself: $c(F \Phi \leftarrow \Phi)c$ (6)

Invariants bring about modalities:

$$c(\mathsf{F} \Phi \leftarrow \Phi)c \equiv c \cdot \Phi \subseteq \mathsf{F} \Phi \cdot c$$
$$\equiv \{ \text{ "al-djabr" rule } \}$$
$$\Phi \subseteq \underbrace{c^{\circ} \cdot (\mathsf{F} \Phi) \cdot c}_{\bigcirc c \Phi}$$

since we define the "next time X holds" modal operator as

$$\bigcirc_{c} X \stackrel{\text{def}}{=} c^{\circ} \cdot (\mathsf{F} X) \cdot c$$

Elsewhere we have derived Galois connection

$$\pi_{g,f}R \subseteq S \equiv R \subseteq g^{\circ} \cdot S \cdot f \tag{7}$$

in order to get (for free) properties of lower adjoint $\pi_{g,f}$ in the context of multi-valued dependency reasoning (database theory).

Interesting enough, this time we reuse an instance of such a connection, ie. *"al-djabr" rule*

$$\pi_{c} \Phi \subseteq \Psi \equiv \Phi \subseteq \bigcirc_{c} \Psi$$
(8)

(within coreflexives) to obtain (again for free) properties — now — of the upper adjoint \bigcirc_c :

As as upper adjoint in a Galois connection,

• \bigcirc_c is **monotonic** — thus simple proofs such as

 $\Phi \text{ is an invariant}$ $\equiv \{ PF\text{-definition of invariant } \}$ $\Phi \subseteq \bigcirc_c \Phi$ $\Rightarrow \{ \text{ monotonicity } \}$ $\bigcirc_c \Phi \subseteq \bigcirc_c (\bigcirc_c \Phi)$ $\equiv \{ PF\text{-definition of invariant } \}$ $\bigcirc_c \Phi \text{ is an invariant}$

• \bigcirc_c distributes over conjunction, that is PF-equality

$$\bigcirc_c (\Phi \cdot \Psi) = (\bigcirc_c \Phi) \cdot (\bigcirc_c \Psi)$$

holds, etc

Rendez vous e = m + c Libro de Algebra Bisimulations Reynolds arrow Invariants Summary

What about Milner's original definition?

Milner's definition is recovered via

• the power-transpose relating binaru relations and set-valued functions,

$$f = \Lambda R \equiv R = \in \cdot f \tag{9}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

where $A \stackrel{\leftarrow}{\longleftarrow} \mathcal{P}A$ is the membership relation.

• the powerset relator:

$$\mathcal{P}R = (\in \backslash (R \cdot \in)) \cap ((\in^{\circ} \cdot R)/(\in^{\circ}))$$
(10)

which unfolds to an elaborate pointwise formula:

$$Y(\mathcal{P}R)X \equiv \langle \forall a : a \in Y : \langle \exists b : b \in X : a R b \rangle \rangle \land \dots etc$$

Further modal operators, for instance □Ψ — henceforth Ψ — usually defined as the largest invariant at most Ψ:

$$\Box \Psi = \langle \bigcup \Phi :: \Phi \subseteq \Psi \cap \bigcirc_c \Phi \rangle$$

which shrinks to a greatest (post)fix-point

$$\Box \Psi = \langle \nu \Phi :: \Psi \cdot \bigcirc_c \Phi \rangle$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

where meet (of coreflexives) is replaced by composition, as this paves the way to agile reasoning

- Properties calculated by PF-fixpoint calculation
- etc

Rendez vous		Libro de Algebra	Bisimulations	Reynolds arrow	Summary
Summar	ſу				

- Pointfree / pointwise dichotomy: PF is for reasoning in-the-large, PW is for the small
- As in the 9c and 16c, "al-djabr" rules are forever
- Back to basics: need for computer science theory "refactoring"
- Rôle of PF-patterns: clear-cut expression of complex logic structures once expressed in less symbols
- Rôle of PF-patterns: much easier to spot synergies among different theories
- Coalgebraic approach in a relational setting: a win-win approach while putting together coalgebras (functions) + relators (relations).
- Other exercises refinement and database theories