
Coupled Transformation of
Schemas, Data, and Queries

Joost Visser

Joint work with

Pablo Berdaguer Alcino Cunha José Nuno Oliveira Hugo Pacheco

Universidade do Minho, Portugal
CIC 2006

What?

A two-level data transformation consists of:

a type-level transformation of a data format

coupled with

value-level transformations of data instances

and

program transformations of data operations

What?

A two-level data transformation consists of:

a type-level transformation of a data format

coupled with

value-level transformations of data instances

and

program transformations of data operations

Examples:
XML schema evolution + document, query migration
SQL schema evolution + data, query migration
Data mappings (e.g. hierarchical-relational)

Challenge 1/2

A BB

Transform format A into format B
 T : Type → Type

T

Challenge 1/2

to

from

Format transformation T
 induces / is witnessed by
instance conversions:
 to :: A → B
 from :: B → A

A BB

Transform format A into format B
 T : Type → Type

T

Challenge 1/2

to

from

Format transformation T
 induces / is witnessed by
instance conversions:
 to :: A → B
 from :: B → A

Challenge: capture type-changing
transformations in a type-safe
rewrite system (types and rewrite
steps are unknown statically!).

A BB

Transform format A into format B
 T : Type → Type

T

Challenge 2/2

A BB

to

from

T

Challenge 2/2

A BB

to

from

Y

X

p

q

query q : A → Y
producer p : X → A

T

Challenge 2/2

A BB

to

from

Y

X

p

q

query q : A → Y
producer p : X → A

Challenge:
From the composition q.from
or to.p compute optimized queries
and producers not involving type A
and original p or q.

T

Challenge 2/2

A BB

to

from

Y

X

p

q

query q : A → Y
producer p : X → A

Challenge:
From the composition q.from
or to.p compute optimized queries
and producers not involving type A
and original p or q.

Apply program calculus laws for
fusion, deforestation, specialization,
generalization.

T

Ingredients

Data refinement
Generalized
algebraic datatypes

Point-free program
transformation

Strategic term
rewriting

Data refinement

A BB≤

to

from

Data refinement

A BB≤

to

from

injective
total

Data refinement

A BB≤

to

from surjective
can be partial

injective
total

Data refinement

A BB≤

to

from surjective
can be partial

injective
total

from . to = idA

Data refinement

A AA××BB≤

λx.(x,b)

!1

addField(B,b) Format evolution
(user-driven)

Data refinement

A→(B×(C→D) (A→B)×(A×C→D)≤

un-nested-join

nested-join

Hierarchical-relational data mapping
(automatic)

Data refinement

A BB≤

to

from

B CC≤

to’

from’

A CC≤

to’.to

from.from’

A BB≤

to

from

FA FBFB≤

F to

F from

if and then

thenif

GADTs

Traditional algebraic data type (ADT):

 data F = Id | Comp F F | …

In syntax of generalized ADT:

 data F where
 Id :: F
 Comp :: F → F → F

Exploiting generalization:

 data F f where
 Id :: F (a→a)
 Comp :: F (b→c) → F (a→b) → F (a→c)

GADTs
Proof-carrying code:

 data Equal a b where
 Eq :: Equal a a

Type-safe value-level type representations:

 data Type a where
 Int :: Type Int
 List :: Type a -> Type [a]
 .><. :: Type a -> Type b -> Type (a,b)
 .--\. :: Type a -> Type b -> Type (Map a b)

Type-safe dynamics:

 data Dynamic where
 Dyn :: Type a -> a -> Dynamic

Data refinement in Haskell

Masquerade changes as views:

 data Rep a b = Rep { to :: a→b, from :: b→a }

 data View a where
 View :: Rep a b → Type b → View (Type a)

 type RULE = ∀a . Type a → Maybe (View (Type a))

A BB≤

to

from

Data refinement in Haskell

Strategic combinators:

 nop :: RULE
 () :: RULE → RULE → RULE
 (⊕) :: RULE → RULE → RULE
 everywhere :: RULE → RULE etc.

Basic type-changing rewrite steps:

 addField :: Type b → b → RULE
 addField b y a = return (View (Rep (λx.(x,y)) fst) (a,b))

 etc.

Data refinement in Haskell

Compose basic rules and combinators to obtain a full
rewrite system for two-level data transformation.

Hierarchical-relational mapping:
 toDB :: RULE
 toDB = …

Evolution:

 addTracks :: RULE
 addTracks = …

Data refinement in Haskell

Compose basic rules and combinators to obtain a full
rewrite system for two-level data transformation.

Hierarchical-relational mapping:
 toDB :: RULE
 toDB = …

Evolution:

 addTracks :: RULE
 addTracks = …

Helpers for staged application:

showType :: View (Type a) → String
unView :: View (Type a) → Type b → Maybe (a→b, b→a)

Two-Level Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Two-Level Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Two-Level Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Query migration

 getArtists . from . from2

Two-Level Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Two-Level Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Compute concrete data migration from abstract migration

 to2 . to . from1

Challenge 2/2

A BB

to

from

Y

X

p

q

query q : A → Y
producer p : X → A

Challenge:
From the composition q.from
or to.p compute optimized queries
and producers not involving type A
and original p or q.

Apply program calculus laws for
fusion, deforestation, specialization,
generalization.

T

Program transformation

Not functions:

 data Rep a b = Rep { to :: a→b, from :: b→a }

data F f where
 Id :: F (a→a)
 Comp :: Type b → F (b→c) → F (a→b) → F (a → c)
 Split :: F (a→b) → F (a→c) → F (a→(b,c))
 Fst :: F ((a,b)→a)
 …

eval :: F f -> f
eval Id = id
eval (Comp b f g) = f . g
eval …

Program transformation

Not functions, but function representations:

 data Rep a b = Rep { to :: F (a→b), from :: F (b→a) }

A BB≤

to

from

Program transformation

Type-directed, type-safe rewriting of point-free functions:

 type Rule = ∀a . Type a → F a → M (F a)

Strategic combinators:

 nop :: Rule
 () :: Rule → Rule → Rule
 (⊕) :: Rule → Rule → Rule
 everywhere :: Rule → Rule etc.

Basic rewrite steps, e.g. associativity of composition:

 f . (g . h) = (f . g) . h

 comp_assocr :: Rule
 comp_assocr _ (Comp a (Comp b f g) h)
 = return (Comp b f (Comp a g h))
 comp_assocr _ _ = mzero

Program transformation

Compose basic rules and combinators to obtain a full
rewrite system for simplification / optimization of point-
free functions.

 optimize :: Rule
 optimize = many (prods ⊕ maps ⊕ sums)
 where
 prods :: Rule
 prods = … (everywhere comp_assocr) …
 …

For example:

 > rewrite optimize (Comp Albums getArtists from)
 ListMap (Comp .. Fst (Comp .. Snd Snd))

Coupled Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Coupled Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Coupled Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Query migration

 getArtists . from . from2

Coupled Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Query migration

 getArtists . from . from2

Coupled Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Coupled Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Compute concrete data migration from abstract migration

 to2 . to . from1

Coupled Transformation

Album

to

from

addTracks Album’

toDBfrom2 to2

DB’

toDBfrom2 to2

DB

Artists
getArtists

Compute concrete data migration from abstract migration

 to2 . to . from1

More (1/2)

Front-ends (schemas+data) for:
XML Schema, SQL, Haskell itself (done)
VDM (underway)

Type-directed optimization of structure-shy programs,
such as XML queries and transformations, or functional
strategic programs (SYB,Strafunski).

Transformation of types with invariants. Carrying
constructive proofs through rewrite steps.

Front-ends (programs) for:
XPath, SYB, SQL

More (2/2)

Generalize to lenses, a.k.a. bi-directional programming,
applicable to the classical view-update problem, data
synchronization.

Model transformation -- think UML, etc.
Object-relational data mappings.
Refinements with effects (time, mutable state).

Schema/grammar matching.
Data synchronization. Interoperability.

Reverse direction: abstraction rather than refinement.

Papers

Type-safe Two-level Data Transformation. FM 2006.
Alcino Cunha, José Nuno Oliveira, Joost Visser.

Strongly Typed Rewriting For Coupled Software
Transformation. RULE 2006.
Alcino Cunha, Joost Visser.

Coupled Schema Transformation and Data Conversion
For XML and SQL. PADL 2007
Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, Joost Visser.

http://wiki.di.uminho.pt/wiki/bin/view/PURe/2LT

