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What?

A two-level data transformation consists of:

a type-level transformation of a data format

coupled with

value-level transformations of data instances

and

program transformations of data operations
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A two-level data transformation consists of:

a type-level transformation of a data format

coupled with

value-level transformations of data instances

and

program transformations of data operations

Examples:
XML schema evolution + document, query migration
SQL schema evolution + data, query migration
Data mappings (e.g. hierarchical-relational)
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Format transformation T
      induces / is witnessed by
instance conversions:
      to :: A → B
      from :: B → A

Challenge:   capture type-changing
transformations in a type-safe
rewrite system (types and rewrite
steps are unknown statically!).
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query q : A → Y
producer p : X → A

Challenge:
From the composition q.from
or to.p compute optimized queries
and producers not involving type A
and original p or q.

Apply program calculus laws for
fusion, deforestation, specialization,
generalization.
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Ingredients

Data refinement
Generalized
algebraic datatypes

Point-free program
transformation

Strategic term
rewriting
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Data refinement

A AA××BB≤

λx.(x,b)

!1

addField(B,b) Format evolution
(user-driven)



Data refinement

A→(B×(C→D) (A→B)×(A×C→D)≤

un-nested-join

nested-join

Hierarchical-relational data mapping
(automatic)



Data refinement
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GADTs

Traditional algebraic data type (ADT):

   data F = Id | Comp F F | …

In syntax of generalized ADT:

   data F where
     Id :: F
     Comp :: F → F → F

Exploiting generalization:

   data F f where
     Id :: F (a→a)
     Comp :: F (b→c) → F (a→b) → F (a→c)



GADTs
Proof-carrying code:

   data Equal a b where
        Eq :: Equal a a

Type-safe value-level type representations:

   data Type a where
         Int :: Type Int
         List :: Type a -> Type [a]
         .><. :: Type a -> Type b -> Type (a,b)
         .--\. :: Type a -> Type b -> Type (Map a b)

Type-safe dynamics:

   data Dynamic where
          Dyn :: Type a -> a -> Dynamic



Data refinement in Haskell

Masquerade changes as views:

  data Rep a b = Rep { to :: a→b, from :: b→a }

  data View a where
      View :: Rep a b → Type b → View (Type a)

  type RULE = ∀a . Type a → Maybe (View (Type a))

A BB≤

to

from



Data refinement in Haskell

Strategic combinators:

   nop :: RULE
   ()  :: RULE → RULE → RULE
   (⊕)   :: RULE → RULE → RULE
   everywhere :: RULE → RULE  etc.

Basic type-changing rewrite steps:

  addField :: Type b → b → RULE
  addField b y a = return (View (Rep (λx.(x,y)) fst) (a,b))

  etc.



Data refinement in Haskell

Compose basic rules and combinators to obtain a full
rewrite system for two-level data transformation.

Hierarchical-relational mapping:
  toDB :: RULE
  toDB = …

Evolution:

   addTracks :: RULE
   addTracks = …



Data refinement in Haskell

Compose basic rules and combinators to obtain a full
rewrite system for two-level data transformation.

Hierarchical-relational mapping:
  toDB :: RULE
  toDB = …

Evolution:

   addTracks :: RULE
   addTracks = …

Helpers for staged application:

showType :: View (Type a) → String
unView :: View (Type a) → Type b → Maybe (a→b, b→a)
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Program transformation

Not functions:

  data Rep a b = Rep { to :: a→b, from :: b→a }



data F f where
   Id :: F (a→a)
   Comp :: Type b → F (b→c) → F (a→b) → F (a → c)
   Split :: F (a→b) → F (a→c) → F (a→(b,c))
   Fst :: F ((a,b)→a)
   …

eval :: F f -> f
eval Id = id
eval (Comp b f g) = f . g
eval …

Program transformation

Not functions, but function representations:

  data Rep a b = Rep { to :: F (a→b), from :: F (b→a) }

A BB≤

to

from



Program transformation

Type-directed, type-safe rewriting of point-free functions:

    type Rule = ∀a . Type a → F a → M (F a)

Strategic combinators:

   nop :: Rule
   ()  :: Rule → Rule → Rule
   (⊕)   :: Rule → Rule → Rule
   everywhere :: Rule → Rule                   etc.

Basic rewrite steps, e.g. associativity of composition:

   f . (g . h) = (f . g) . h

   comp_assocr :: Rule
   comp_assocr _ (Comp a (Comp b f g) h)
                              = return (Comp b f (Comp a g h))
   comp_assocr _ _ = mzero



Program transformation

Compose basic rules and combinators to obtain a full
rewrite system for simplification / optimization of point-
free functions.

  optimize :: Rule
  optimize = many (prods ⊕ maps ⊕ sums)
    where
       prods :: Rule
       prods = … (everywhere comp_assocr) …
       …

For example:

   > rewrite optimize (Comp Albums getArtists from)
   ListMap (Comp .. Fst (Comp .. Snd Snd))
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More (1/2)

Front-ends (schemas+data) for:
XML Schema, SQL, Haskell itself (done)
VDM (underway)

Type-directed optimization of structure-shy programs,
such as XML queries and transformations, or functional
strategic programs (SYB,Strafunski).

Transformation of types with invariants. Carrying
constructive proofs through rewrite steps.

Front-ends (programs) for:
XPath, SYB, SQL



More (2/2)

Generalize to lenses, a.k.a. bi-directional programming,
applicable to the classical view-update problem, data
synchronization.

Model transformation -- think UML, etc.
Object-relational data mappings.
Refinements with effects (time, mutable state).

Schema/grammar matching.
Data synchronization. Interoperability.

Reverse direction: abstraction rather than refinement.
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