
A Type Level Approach
to

Component Prototyping
Jácome Miguel Cunha

jacome@di.uminho.pt

Universidade do Minho
CIC 2006

A Type Level ApproachtoComponent Prototyping – p.1/20

Outline

Motivation
Type-Level Programing
PURECAMILA

Components and Coalgebras
Constructing a Folder
Conclusions and Future Work

A Type Level ApproachtoComponent Prototyping – p.2/20

Motivation

The theoretical component model involves n-ary
products and sums
These are not commonly found as programming
language constructs
The type-system of Haskell allows to encode them
This should bring the implementation closer to the
theory

A Type Level ApproachtoComponent Prototyping – p.3/20

Type-Level Programming

The base rules:

Typel-level predicate: class P x

Type-level relation: class R x y

Type-level function: class F x y z | x y -> z
where f :: x -> y -> z

(with value-level function f)

Classes work on the type level and its functions on the
value level.

A Type Level ApproachtoComponent Prototyping – p.4/20

Example

Consider the following example:

data Zero; zero = undefined :: Zero
data Succ n; succ = undefined :: n -> Succ n

This data types are only labels.

class Nat n
instance Nat Zero
instance Nat n => Nat (Succ n)

With this class and the respective instances, we have a
naturals representation.

A Type Level ApproachtoComponent Prototyping – p.5/20

Another Example

class Add a b c | a b -> c
where add :: a -> b -> c

instance Add Zero b b
where add a b = b

instance (Add a b c) =>
Add (Succ a) b (Succ c)

where add a b = succ (add (pred a) b)

pred :: Succ n -> n
pred = undefined

A Type Level ApproachtoComponent Prototyping – p.6/20

PURECAMILA

Some features of PURECAMILA

Improvement of CAMILA, a prototyping system
Implemented in HASKELL

It has pre and post conditions, invariants and OO
classes

A Type Level ApproachtoComponent Prototyping – p.7/20

Components

Let’s look at this “stack”:

push : U × P −→ U
pop : U −→ P × U
top : U −→ P

encapsulate
−→

push : P −→ 1
pop : 1 −→ P
top : 1 −→ P

•

��	�
��

Stack

1 + P + P

P + 1 + 1

A Type Level ApproachtoComponent Prototyping – p.8/20

A Coalgebra?

Doing two renamings

I = P + 1 + 1

O = 1 + P + P

The stack can be represented by

Stack : U × I −→ (U ×O + 1) ≡ Stack : U −→ (U ×O + 1)I

Which is a coalgebra U −→ T U for the functor

T X = ((X × O) + 1)I

A Type Level ApproachtoComponent Prototyping – p.9/20

The Input Type

The component input interface:

type Input = (PUSH, Int) :++: (POP, ()) :++:
(TOP, ()) :++: HVoid

The function names are type-level labels, and the :++: and
HVoid combinators build type-labeled n-ary sums.

class Sum l s x | l s -> x

where select :: l -> s -> Maybe x
inject :: l -> x -> s

A Type Level ApproachtoComponent Prototyping – p.10/20

The Output Type

The component output interface:
type Output s m = m (s, (PUSH, ()) :++: (POP, Int)

:++: (TOP, Int) :++: HVoid)

The output is parameterized in the state (s) and in the
monad (m).

These two types (Input and Output) are easily manipulated
with the injection and selection functions:
in = inject pop () :: Input
out = select pop in :: Maybe ()

A Type Level ApproachtoComponent Prototyping – p.11/20

The Stack Type

The stack type

type Stack s m = s -> (PUSH, Int -> m (s, ()))
(POP, () -> m (s, Int)) :*:
(TOP, () -> m (s, Int)) :*: HNil

The stack type is also parameterized in the state and in the
monad.
The :*: represents the arbitrary-length tuple construction.

A Type Level ApproachtoComponent Prototyping – p.12/20

The Stack Component

The components must be constructed based on this stack
model:

stack = \s -> (push, pushf s) .*. (pop, popf s) .*.
(top, topf s) .*. HNil

where
pushf xs x = return (x:xs, ())
popf [] () = mzero
popf (x:xs) () = return (xs, x)
topf l () = return (l, head l)

A Type Level ApproachtoComponent Prototyping – p.13/20

The PassMessage

The hard work is done here:
class PassMessage s p s’ | s p -> s’

where passMessage :: s -> p -> s’

instance => PassMessage
(HEither (l,e) is)
(st -> (HCons (l’, e -> m (st, r)) fs), st)
(m (st, HEither (l’, r) os))

It receives the input, the component itself paired with the
state and returns a monadic pair with the new state and
the output.

A Type Level ApproachtoComponent Prototyping – p.14/20

The Application Operator

The @. operator signature
(@.) :: (CamilaMonad m, Sum l o1 o, Sum l it i,

PassMessage it (cp, st) (m (st, o1)))
=> cp -> it -> o1 -> st -> l -> i -> m (st, (l, o))

The PassaMessage is used here:
(@.) cp (_::int) (_::o) st l i = do

let input = inject l i :: int
(st’, output) <- passMessage input (cp, st)
let (Just out’) = select l output
return (st’, (l, out’))

A Type Level ApproachtoComponent Prototyping – p.15/20

The Choice Operator – �

Choice: allows to choose between two components

(|+|) :: (s1->l1) -> (s2->l2) -> ((s1, s2) -> lf)

c1 |+| c2 = \(s1, s2) -> toLeftLst c1 (s1, s2)
‘hAppend‘ toRightLst c2 (s1, s2)

where
hAppend is the n-ary product concatenation
toLeftLst is a function which transforms a simple
component into a component that receives a pair of
states and “LEFT labels” (toRightLst is it’s dual)

A Type Level ApproachtoComponent Prototyping – p.16/20

The Hook Operator – �

This operator uses the component output to feed it back:

class Hook ls s lf i o m | ls s lf m -> i o
where
hook :: ls -> cp -> s -> lf -> i -> m (s, (lf, o))

In the next slide I’ll show how to use it.

A Type Level ApproachtoComponent Prototyping – p.17/20

A Folder from two Stacks

folder =

hook ((tl, RIGHT top .*. LEFT push .*. HNil)

.*. (tr, LEFT pop .*. RIGHT push .*. HNil).*.HNil)

(stack |+| stack)

The user needs to specify the rules to the new operations.

A Type Level ApproachtoComponent Prototyping – p.18/20

Conclusions

With this approach

We create a coalgebraic component implementation
A suitable component algebra was/will be
implemented
It is now possible to construct new software
components from old ones

A Type Level ApproachtoComponent Prototyping – p.19/20

Future Work

To be useful, there’s much more to do:

Finish the operators implementation (wrap, parallel,
etc.)
Animate components
Add concurrency
Add sockets
. . .

A Type Level ApproachtoComponent Prototyping – p.20/20

	Outline
	Motivation
	Type-Level Programming
	Example
	Another Example
	camila
	Components
	A Coalgebra?
	The Input Type
	The Output Type
	The Stack Type
	The Stack Component
	The PassMessage
	The Application Operator
	The Choice Operator -- $�oxplus $
	The Hook Operator -- $Lsh $
	A Folder from two Stacks
	Conclusions
	Future Work

