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LL(1) language recognition

Let us define a language using a context free grammar (CFG)
like the following:

S → dAd
A → aA

| BA
| ε

B → bB
| t

From this, one can conceive a function to test if a given string
belongs to the language in two common fashions:
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LL(1) language recognition
Table driven

A representation of a transition table (“large” data-structure) and
a function to consult it (“small” algorithm):

Transition table

a b t d
S error error error dAd
A aA BA BA ε
B error bB t error
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LL(1) language recognition
Table driven

Fnal program (where tt refers to the transition table):

Table driven recognizer

dss = ("abtd", "SAB", tt)

accept inp = aux dss [’S’] inp

aux _ [] [] = True

aux _ _ [] = False

aux _ [] _ = False

aux dss@(t,nt,ft) (ts:rs) (ti:ri)

| (ts ‘elem‘ t) && (ti == ts) = aux dss rs ri

| ts ‘elem‘ nt = maybe False (\rhs -> aux dss (rhs ++ rs) (ti:ri))

$ ft (ts,ti)

| otherwise = False
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LL(1) language recognition
Recursive descendant

A set of mutually recursive functions (“large” algorithm):

Recursive descendant recognizer
accept inp = let (v,ri) = recognize_S inp in if (null ri) then v else False

recognize_S inp@(’d’:ri) =

let (v1,ri1) = recognize_d inp

(v2,ri2) = recognize_A ri1

(v3,ri3) = recognize_d ri2

in if (v1 && v2) then (v3,ri3) else (False,inp)

recognize_S inp = (False,inp)

recognize_A inp@(’a’:ri) =

let (v1,ri1) = recognize_a inp

(v2,ri2) = recognize_A ri1

in if v1 then (v2,ri2) else (False,inp)

recognize_A inp@(’b’:ri) =

let (v1,ri1) = recognize_B inp

(v2,ri2) = recognize_A ri1

in if v1 then (v2,ri2) else (False,inp)

Continues. . .
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LL(1) language recognition
Recursive descendant

Recursive descendant recognizer
recognize_A inp@(’t’:ri) =

let (v1,ri1) = recognize_B inp

(v2,ri2) = recognize_A ri1

in if v1 then (v2,ri2) else (False,inp)

recognize_A inp@(’d’:ri) = recognize_ inp

recognize_A inp = (False,inp)

recognize_B inp@(’b’:ri) =

let (v1,ri1) = recognize_b inp

(v2,ri2) = recognize_B ri1

in if v1 then (v2,ri2) else (False,inp)

recognize_B inp@(’t’:ri) = recognize_t inp

recognize_B inp = (False,inp)

recognize_ inp = (True,inp)
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How to specialize a table driven parser?

One can calculate a recursive descendant recognizer from a table
driven recognizer, by the application of:

Partial evaluation

What Specialization of a program (function) with respect
to a static (known) input

Result Set of functions specialized for every possible static
input generated by the initial call
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Partial evaluation

Let’s take a look at a simple example:

Example

The following function:

power 0 x = 1

power x n = x * power (n-1) x

partially evaluated for the call power 3 x yields:

power_3 x = x * power_2 x

power_2 x = x * power_1 x

power_1 x = x * power_0 x

power_0 x = 1
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José Pedro Correia, João Saraiva, José Nuno Oliveira From Data-Oriented Designs to Algorithms and Back



Overview
Motivation

From data-structures to algorithms and back
Recursion removal

Future work

Case study
From data-structures to algorithms
From algorithms to data-structures
Generalizations

Partial evaluation

Let’s take a look at a simple example:

Example

The following function:

power 0 x = 1

power x n = x * power (n-1) x

partially evaluated for the call power 3 x yields:

power_3 x = x * power_2 x

power_2 x = x * power_1 x

power_1 x = x * power_0 x

power_0 x = 1
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José Pedro Correia, João Saraiva, José Nuno Oliveira From Data-Oriented Designs to Algorithms and Back



Overview
Motivation

From data-structures to algorithms and back
Recursion removal

Future work

Case study
From data-structures to algorithms
From algorithms to data-structures
Generalizations

How to specialize a table driven parser?
Application of partial evaluation

Returning to our case study, let’s recall our table driven
recognizer. . .
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Fnal program (where tt refers to the transition table):

Table driven recognizer

dss = ("abtd", "SAB", tt)

accept inp = aux dss [’S’] inp

aux _ [] [] = True
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aux dss@(t,nt,ft) (ts:rs) (ti:ri)

| (ts ‘elem‘ t) && (ti == ts) = aux dss rs ri
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How to specialize a table driven parser?
Application of partial evaluation

For LL(1) language recognition one can partially evaluate the
auxiliary function on dss and on the initial state of the stack

Calculated recursive descendant
accept inp = aux_dss_S inp

aux_dss_S (’d’:ri) = aux_dss_Ad ri

aux_dss_S _ = False

aux_dss_Ad (’a’:ri) = aux_dss_Ad ri

aux_dss_Ad (’b’:ri) = aux_dss_BAd ri

aux_dss_Ad (’t’:ri) = aux_dss_Ad ri

aux_dss_Ad (’d’:ri) = aux_dss_ ri

aux_dss_Ad _ = False

aux_dss_BAd (’b’:ri) = aux_dss_BAd ri

aux_dss_BAd (’t’:ri) = aux_dss_Ad ri

aux_dss_BAd _ = False

aux_dss_ [] = True

aux_dss_ _ = False
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How to specialize a table driven parser?
Application of partial evaluation

We’ve calculated a recognizer that:

Does not use auxiliary data-structures

It’s tail recursive (very efficient)

But it’s not quite like the one built “directly” from the grammar. . .
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How to go back?
Building a table

One can build a table to capture the behaviour of the calculated
recursive descendant using the following approach:

Each row represents a function

Each column represents a possible input

Each table entry in position (i , j) is the behaviour of function
i for input j . This can be either:

A constant value
A pair of a recursive reference and a non-recursive
pre-processing of the input
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José Pedro Correia, João Saraiva, José Nuno Oliveira From Data-Oriented Designs to Algorithms and Back



Overview
Motivation

From data-structures to algorithms and back
Recursion removal

Future work

Case study
From data-structures to algorithms
From algorithms to data-structures
Generalizations

How to go back?
Building a table

This technique applied to our case study yields the following:

Table

(’a’:xs) (’b’:xs) (’t’:xs) (’d’:xs) []

f0 (aux dss S) False False False (f1,tail) False
f1 (aux dss Ad) (f1,tail) (f2,tail) (f1,tail) (f3,tail) False

f2 (aux dss BAd) False (f2,tail) (f1,tail) False False
f3 (aux dss ) False False False False True
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How to go back?
Final result

Given a representation of the former table as a function (named
tt) we can write our acceptance function as:

Final program
accept inp = Just (f (tt,"f0") inp)

f (ft,k) d = aux (ft (k,d)) d

where aux (Left c) d = c

aux (Right (kr,h)) d = f (ft,kr) (h d)
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How to go back?
Discussion

We have

“Extracted” a table from the recursive structure of the
functions

Obtained, thus, a table driven recognizer

But

It’s not quite like the one built “directly” from the grammar

The function to manipulate the table is introduced ad hoc, as
we know the desired type of the table

The table contains functions that depend on the input, so it is
not completely static
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José Pedro Correia, João Saraiva, José Nuno Oliveira From Data-Oriented Designs to Algorithms and Back



Overview
Motivation

From data-structures to algorithms and back
Recursion removal

Future work

Case study
From data-structures to algorithms
From algorithms to data-structures
Generalizations

Definitions

“Inspired” by the design of the LL(1) table driven recognizer, let us
define a data-oriented design as follows:

Data-oriented design

Definition A data-oriented design (DOD) is a tuple
(ds : T , p : D → O, f : T → D → R), where:

ds is a statically known data-structure of type T
p is the top-level function of the program that
takes a dynamical input of type D
p is expressed as p = k · f (ds)
f is the function that “deals” with values of
type T
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Definitions

“Inspired” by the design of the LL(1) recursive descendant
recognizer, let us define a algorithmic-oriented design as follows:

Algorithmic-oriented design

Definition An algorithmic-oriented design (AOD) is a tuple
(p : D → O, fs : (D → R)∗)

p is the top-level function of the program that
takes a dynamical input of type D
fs is a set of mutually recursive functions
given f0 ∈ fs, p is expressed as p = k · f0
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DOD to AOD
Is partial evaluation still applicable?

Partial evaluation aims to, from f : S → D → O and a call
f (s1), obtain a function fs1 : D → O such that:

fs1(d) = f (s1)(d)

≡ fs1 = f (s1)

From our definition of a DOD, p = k · f (ds) can then be
partially evaluated yielding p = k · fds

Moreover, as we saw before, partially evaluation of
fds : D → R produces a set of, also specialized functions,
f∗ : (D → R)∗

Thus we have an AOD where f0 = fds and fs = f∗
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AOD to DOD
Building a table

Generalizing the strategy used for LL(1) recognition, one can build
a table to capture the relations between the functions in
fs : (D → R)∗ using the following criteria:

Each function fi ∈ fs yields a row identified by iden(fi )
1

The columns correspond to all the possible input patterns for
all fi ∈ fs

Each table entry in position (iden(fi ), dj) represents the
behaviour of function fi for input dj by a sequence of
references, wich are either:

A function g : D → R where g /∈ fs
A function h : D → D where h /∈ fs
A value k ∈ I for calls to fk ∈ fs such that k = iden(fk)

1where iden : (D → R)→ I
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AOD to DOD
Final program

After building the table that captures the relations in fs (let’s
name it tt), we now need a function to “work” with it:

Auxiliary function

f (ft,k) d = (composeAll . map aux) (ft (k,d)) $ d

where aux (Left g) = g

aux (Right (Left h)) = h

aux (Right (Right k1)) = f (ft,k1)

composeAll = foldr1 (.)

We then just define p = k · f (tt, iden(f0)) and we have a DOD
that corresponds to the initial AOD (no proof yet!)
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AOD to DOD
Discussion

We have a strategy for conversion, but:

It’s based on intuition by generalizing the LL(1) strategy

It imposes restrictions on the covered AOD’s, namely:

Control flow has to rely only in pattern matchings
Every function fi ∈ fs should be entire
Calls must be sequential compositions of functions applied to
the input
References to other functions from fs must be “direct”

The table contains functions that depend on the input, so it is
not completely static
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Postorder tree traversal

Let’s consider the following Haskell datatype and a postorder
traversal function over it:

Example

data T a = T1 | T2 a (T a) | T3 a (Ta) (T a) (T a)

postorder :: T a -> [a]

postorder T1 = []

postorder (T2 a t1) = postorder t1 ++ [a]

postorder (T3 a t1 t2 t3) = postorder t1 ++

postorder t2 ++

postorder t3 ++ [a]

How can we turn this function into a tail recursive equivalent by
the introduction of an auxiliary data-structure?
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Adding continuations

Continuations make the order of evaluation explicit

The objective is to obtain a defintion
postorder’ :: T a -> Cont a -> [a] such that
postorder’ t c = c (postorder t) where type Cont a = [a] -> [a]

This can be obtained by calculation
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Adding continuations

Let’s calculate the definition of postorder’ with continuations:

Case T1

postorder’ T1 c

= { specification of postorder’ }
c (postorder T1)

= { definition of postorder }
c []
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Adding continuations

Case T2 a t1

postorder’ (T2 a t1) c

= { specification of postorder’ }
c (postorder (T2 a t1))

= { definition of postorder }
c (postorder t1 ++ [a])

= { abstraction over postorder t1 }
(\x -> c (x ++ [a])) (postorder t1)

= { specification of postorder’ }
postorder’ t1 (\x -> c (x ++ [a]))
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Adding continuations

Omitting the calculation for the case T3 a t1 t2 t3, one obtains:

Result
postorder’ :: T a -> Cont a -> [a]

postorder’ T1 c = c []

postorder’ (T2 a t1) c = postorder’ t1 (\x -> c (x ++ [a]))

postorder’ (T3 a t1 t2 t3) c =

postorder’ t1

(\x -> postorder’ t2

(\y -> postorder’ t3

(\z -> c (x ++ y ++ z ++ [a]))))

postorder t = postorder’ t (\x -> x)
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Defunctionalizing

What we got

Our function is already tail-recursive, due to the passing of
extra recursive calls as continuations

Nevertheless, we would like to capture the continuations, not
by functions but by a data-structure

This can be done in three steps
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Defunctionalizing
Collect the continuations

First we collect the different forms of continuations used

Continuations
c1 :: Cont a

c1 = \x -> x

c2 :: a -> Cont a -> Cont a

c2 a c = \y -> c (y ++ [a])

c3 :: a -> [a] -> [a] -> Cont a -> Cont a

c3 a x y c = \z -> c (x ++ y ++ z ++ [a])

c4 :: a -> [a] -> T a -> Cont a -> Cont a

c4 a x t3 c = \y -> postorder’ t3 (c3 a x y c)

c5 :: a -> T a -> T a -> Cont a -> Cont a

c5 a t2 t3 c = \x -> postorder’ t2 (c4 a x t3 c)
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Defunctionalizing
Defining the datatype

Now we can define a datatype that represents all the continuations

Datatype
data CONT a =

C1

| C2 a (CONT a)

| C3 a [a] [a] (CONT a)

| C4 a [a] (T a) (CONT a)

| C5 a (T a) (T a) (CONT a)

and we can represent this, from another point of view, as

type CONT a = [INST a]

data INST a =

I1 a

| I2 a [a] [a]

| I3 a [a] (T a)

| I4 a (T a) (T a)
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Defunctionalizing
Putting things together

In order to keep correspondence to the former representation of
continuations, we need a function that applies our datatype to a
result of type [a], wich results in our final version:

Final program
postorder’ :: T a -> CONT a -> [a]

postorder’ T1 c = apply c []

postorder’ (T2 a t1) c = postorder’ t1 ((I1 a):c)

postorder’ (T3 a t1 t2 t3) c = postorder’ t1 ((I4 a t2 t3):c)

apply :: CONT a -> [a] -> [a]

apply [] r = r

apply ((I1 a):t) r = apply t (r ++ [a])

apply ((I2 a r1 r2):t) r = apply t (r1 ++ r2 ++ r ++ [a])

apply ((I3 a r1 t3):t) r = postorder’ t3 ((I2 a r1 r):t)

apply ((I4 a t2 t3):t) r = postorder’ t2 ((I3 a r t3):t)

postorder t = postorder’ t []

José Pedro Correia, João Saraiva, José Nuno Oliveira From Data-Oriented Designs to Algorithms and Back



Overview
Motivation

From data-structures to algorithms and back
Recursion removal

Future work

Case study
Introduction of a stack by calculation
Introduction of a stack by “intuition”
Discussion

Introduction of a stack by “intuition”

If we would try to write a postorder function with a stack to
“manage” the recursive calls, one could produce something like the
following:

Postorder with stack
postorder’ :: T a -> [Either (a,T a) (a,T a,T a)] -> [a]

postorder’ T1 [] = []

postorder’ T1 ((Left (a,t3)):t) = postorder’ t3 t ++ [a]

postorder’ T1 ((Right (a,t2,t3)):t) = postorder’ t2 ((Left (a,t3)):t)

postorder’ (T2 a t1) t = postorder’ t1 t ++ [a]

postorder’ (T3 a t1 t2 t3) t = postorder’ t1 ((Right (a,t2,t3)):t)

postorder t = postorder’ t []
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Comparison

The second is “partially evaluatable” to the original definition

The first has two mutually recursive function

The second is just one tail-recursive function

But

The first is obtained by calculation
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Future work

For the first section

Address the problem of termination of partial evaluation

Supply a proof for the general strategy of conversion AOD →
DOD

For recursion removal

Try to make a connection to the other subject

Determine a relation between the calculation and the
“intuition”

Analyse the relation with derivatives of containers
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