Braga, 12 October 2006

Coalgebraic logic for name-passing processes

Marcello Bonsangue

Coalgebras and their logics

Coalgebras for names-passing processes

Modal logic for name-passing processes

Coalgebraic logic for name passing processes

16 October 2006

Le

Dynamic systems via coalgebras

Slide 3

Coalgebraic logic for name passing processes

16 October 2006

Logics via algebras

PX = predicates over XMA = models of A

K	L	Logic	
Stone	BA	Propositional logic	
Spec	DL	Intuitionist propositional logic	
Set	CABA	Infinitary propositional logic	

16 October 2006

Coalgebraic logic

Coalgebraic logic = study of logical systems associated with coalgebraic structures

Coalgebraic logic for name passing processes

16 October 2006

Leiden Institute of Advanced Computer Science

Slide 5

Abstract coalgebraic logic

■ $\phi =_A \psi$ iff $[[\phi]]_{\xi} = [[\psi]]_{\xi}$ for all coalgebras $\xi: X \to FX$ ■ The logic is expressive w.r.t. F-bisimulation

Coalgebraic logic for name passing processes

16 October 2006

Leiden Institute of

Example: modal logic

• Coalgebras $\xi : X \to HX$ are transition systems $\Box x \to y$ iff $y \in \xi(x)$

GA generated by - a, a ∈ A
 relations - preserves all meets

Slide 7

Concrete coalgebraic logic

• If $L = Alg(\Sigma, E)$ and $Alg(G) = Alg(\Sigma + \Omega, E+I)$ then

□ We have terms for the initial G-algebra (formulae)

We can inherit a concrete proof system from the equations of the initial G-algebra

Slide 8

Coalgebraic logic for name passing processes

Example: modal logic – II

■ Coalgebras $\xi : X \to HX$ are transition systems □ x → y iff y ∈ ξ(x)

- GA generated by a, a ∈ A
 relations preserves all meets
- Formulae
- Semantics
- Proof system

Slide 9

Coalgebraic logic for name passing processes

16 October 2006

Coalgebras and their logics

Coalgebras for names-passing processes

Modal logic for name-passing processes

Slide 10

Coalgebraic logic for name passing processes

16 October 2006

Communicating processes

- Communication by synchronization on channel names
 - □ Input: a?
 - Output: a!
- Internal activity τ

16 October 2006

Value passing processes

- Communication by exchanging values on channels
 - □ Input: a?x
 - □ Output: a!v
- Internal activity τ

Name passing processes

- Communication by exchanging channel names
 Input: a?b
 - Output: a!b
- Names are private, but may be shared by communicating it
 - □ Bound output: a!vb

Internal activity τ

Some coalgebras

A coalgebra for communicating processes

$\xi: X \to H(X +$	silent step	$x \xrightarrow{\tau} y$
A × X +	input	x <u>a?</u> → y
A × X)	output	$x \xrightarrow{a!} y$

A coalgebra for name passing processes

$\xi: X \rightarrow H(X +$	silent step	$x \xrightarrow{\tau} y$
$N \times (N \Rightarrow X) +$	input	$x \xrightarrow{a?} f$
$N \times N \times X +$	output	x <u>a!b</u> → y
Ν × δ Χ)	bound output	x <u>a!∨b</u> → y
Coalgebraic logic for name passing processes	16 October 2006	All mention
Slide 14	Leiden Institute of Advanced Computer Science	

The functor category Set^A [FMS96,Sta96]

We need a structure that vary according to the free names available for interaction

■ A functor F:A → Set specifies for each set of names i a process F(i) using names in i for interaction. It also takes into account possible renaming.

Coalgebraic logic for name passing processes

Constuctors on Set^A

Names N

 \square The inclusion functor I \rightarrow Set

- Product × and sum +
 - Defined pointwise
- Powerspace H-

Defined pointwise and including the emptyset

Name exponentiation F^N

□ Defined on objects by $F^{N}(i) = F(i)^{i} \times F(i \oplus 1)$

- Dynamic allocation δF
 - □ Defined by $\delta F(i) = F(i \oplus 1)$

Coalgebras and their logics

Coalgebras for names-passing processes

Modal logic for name-passing processes

Coalgebraic logic for name passing processes

16 October 2006

The dual of Set^A

- The duality between Set and CABA can be lifted in a pointwise manner to a duality between Set^A and CABA^{A°P}
- Its objects are many-sorted algebras with sorts in A and operators
 - $\Box f : i \quad \neg: i \rightarrow i \qquad \land_{\mathsf{K}}: i^{\mathsf{K}} \rightarrow i \qquad \text{for each } i \text{ in } \mathsf{A}$
 - obeying the Booleans laws
 - □ [ı]:j →i

for each $\iota: i \rightarrow j$ in A

 obeying the functorial laws and distributing on all finite meets and joins.

Coalgebraic logic for name passing processes

16 October 2006

A modal logic

```
Two tiers logic
  One tier for processes
         \phi:i ::= f :i | \neg \phi:i | \wedge_{\mathsf{K}} \phi_{\mathsf{k}}:i | [1]\phi:j
                                                         structural formulas
                | - (\psi:i)
                                                         necessity
  and another for capabilities
         \psi:i ::= f :i | \neg \psi:i | \psi:i \land \psi:i | [1]\psi:j
                                                         structural formulas
                                                         silent step
                    0:İ
                                                         input old name
                    a(b) \rightarrow \phi:i
                    a(-) \rightarrow \phi:i+1
                                                         input new name
                | ab ← φ:i
                                                        output
                   bound output
```

with $a,b \in i$ and $\iota:i \rightarrow j$

Coalgebraic logic for name passing processes

16 October 2006

Reasoning about names: an example

It is possible that a process receives a fresh name, say b, along the channel a, and if this is the case then it must output the name a on the newly received channel b.

 $(vb) \rightarrow (-ba \leftarrow f)$: with $a \in i$ but $b \notin i$

This is a shorthand for

$$\neg \neg \neg (a() \rightarrow ([vb](\neg ba \leftarrow f))):i$$

where vb:i+1 \rightarrow i \cup {b},

Slide 20

Coalgebraic logic for name passing processes

Conclusion

Other equivalences

□ Late bisimulation $H(N \times X^N)$ first choose - then receive vs. early bisimulation $N \Rightarrow H(X)^N$ first receive - then choose

Weak bisimulation

 $- - \phi$:i = $- \phi$:i silent steps are transitive

Trace equivalences: may and must testing

Other logics

Without negation and/or with finite conjunctions

Model checking?

Coalgebraic logic for name passing processes

16 October 2006