

Marcello Bonsangue

Leiden Institute of Advanced Computer Science

Overview

- Coalgebras and their logics
- Coalgebras for names-passing processes
- Modal logic for name-passing processes

Dynamic systems via coalgebras

FX	$\mathrm{X} \rightarrow \mathrm{FX}$
AxX	Streams
$2 \times$ X $^{\text {A }}$	Deterministic automata
$H(X)$	Kripke structures
$H(A \times X)$	Labelled transition systems

Logics via algebras

$■ P X=$ predicates over X
$■ M A=$ models of A

K	L	Logic
Stone	BA	Propositional logic
Spec	DL	Intuitionist propositional logic
Set	CABA	Infinitary propositional logic

Coalgebraic logic

- Coalgebraic logic = study of logical systems associated with coalgebraic structures

Abstract coalgebraic logic

Algebra of formulas
$X \xrightarrow{\xi} F X$

- $\phi={ }_{A} \psi$ iff $[[\phi]]_{\xi}=[[\psi]]_{\xi}$ for all coalgebras $\xi: X \rightarrow F X$
- The logic is expressive w.r.t. F-bisimulation

Example: modal logic

- Coalgebras $\xi: X \rightarrow H X$ are transition systems
$\square x \rightarrow y$ iff $y \in \xi(x)$
- GA generated by $-\mathrm{a}, \mathrm{a} \in \mathrm{A}$ relations - preserves all meets

Concrete coalgebraic logic

Coalg $(\mathrm{F}) \quad \cong{ }^{\mathrm{op}} \quad \mathrm{Alg}(\mathrm{G})$

- If $\mathrm{L}=\operatorname{Alg}(\Sigma, \mathrm{E})$ and $\operatorname{Alg}(\mathrm{G})=\operatorname{Alg}(\Sigma+\Omega, \mathrm{E}+\mathrm{I})$ then
\square We have terms for the initial G-algebra (formulae)
\square We can inherit a concrete proof system from the equations of the initial G-algebra

Example: modal logic - II

- Coalgebras $\xi: X \rightarrow H X$ are transition systems
$\square x \rightarrow y$ iff $y \in \xi(x)$
- GA generated by $-\mathrm{a}, \mathrm{a} \in \mathrm{A}$ relations
- preserves all meets
- Formulae
$\phi::=\mathrm{f}|\neg \phi| \Lambda_{\mathrm{I}} \phi_{\mathrm{i}} \mid-\phi$
- Semantics
e.g.: $\quad \mathrm{xb}-\phi$ iff $\forall \mathrm{x} \rightarrow \mathrm{y} . \mathrm{yb} \phi$
- Proof system
e.g.: if a $\phi_{1}=\phi_{2}$ then $a-\phi_{1}=-\phi_{2}$

Overview

- Coalgebras and their logics
- Coalgebras for names-passing processes
- Modal logic for name-passing processes

Communicating processes

- Communication by synchronization on channel names
\square Input: a?
\square Output: a!

■ Internal activity τ

Value passing processes

- Communication by exchanging values on channels
\square Input: a?x
\square Output: a!v
- Internal activity τ

Name passing processes

- Communication by exchanging channel names
\square Input: a?b
\square Output: a!b
- Names are private, but may be shared by communicating it
\square Bound output: a!vb
- Internal activity τ

Some coalgebras

- A coalgebra for communicating processes
$\xi: X \rightarrow H(X+$
$A \times X+$
$A \times X)$
silent step
$\mathrm{x} \xrightarrow{\tau} \mathrm{y}$
input
$x \xrightarrow{a ?} y$
$x \xrightarrow{a!} y$
- A coalgebra for name passing processes
$\xi: X \rightarrow H(X+$
$N \times(N \Rightarrow X)+$
$N \times N \times X+$
$N \times \delta X)$
silent step
input
output
bound output
$\mathrm{x} \xrightarrow{\tau} \mathrm{y}$
$x \xrightarrow{a ?} f$
$x \xrightarrow{a!b} y$
$x \xrightarrow{a!v b} y$

The functor category Set ${ }^{A}$

- We need a structure that vary according to the free names available for interaction

A

Set

- A functor $F: A \rightarrow$ Set specifies for each set of names i a process $F(i)$ using names in i for interaction. It also takes into account possible renaming.

Constuctors on Set ${ }^{\text {A }}$

- Names N
\square The inclusion functor I \rightarrow Set
- Product \times and sum +
\square Defined pointwise
- Powerspace H-
\square Defined pointwise and including the emptyset
- Name exponentiation F^{N}
\square Defined on objects by $\mathrm{F}^{\mathrm{N}}(\mathrm{i})=\mathrm{F}(\mathrm{i})^{\mathrm{i}} \times \mathrm{F}(\mathrm{i} \oplus 1)$
- Dynamic allocation δF
\square Defined by $\delta F(\mathrm{i})=\mathrm{F}(\mathrm{i} \oplus 1)$

Overview

- Coalgebras and their logics
- Coalgebras for names-passing processes
- Modal logic for name-passing processes

The dual of Set ${ }^{A}$

- The duality between Set and CABA can be lifted in a pointwise manner to a duality between Set ${ }^{A}$ and CABA ${ }^{\text {ap }}$
- Its objects are many-sorted algebras with sorts in A and operators
$\square \mathrm{f}: \mathrm{i} \quad \neg: \mathrm{i} \rightarrow \mathrm{i} \quad \wedge_{k}: \mathrm{ik}^{\mathrm{K}} \rightarrow \mathrm{i}$
for each i in A
- obeying the Booleans laws
$\square[\mathrm{l}]: \mathrm{j} \rightarrow \mathrm{i}$
for each $t: i \rightarrow j$ in A
- obeying the functorial laws and distributing on all finite meets and joins.

A modal logic

- Two tiers logic
\square One tier for processes

$$
\begin{array}{rll}
\phi: i & ::= & \mathrm{f}: \mathrm{i}|\neg \phi: \mathrm{i}| \Lambda_{\mathrm{K}} \phi_{\mathrm{K}}: \mathrm{i} \mid[1] \phi: \mathrm{j} \\
& & \text { structural formulas } \\
& -(\psi: i) & \text { necessity }
\end{array}
$$

\square and another for capabilities

$$
\begin{array}{rlrl}
\psi: \mathrm{i}::= & \mathrm{f}: \mathrm{i}|\neg \psi: \mathrm{i}| \psi: \mathrm{i} \wedge \psi: \mathrm{i} \mid[1] \psi: \mathrm{j} & & \text { structural formulas } \\
\mid & \text { silent step } \\
\mid & \mathrm{a}(\mathrm{~b}) \rightarrow \phi: \mathrm{i} & & \text { input old name } \\
& \mathrm{a}(-) \rightarrow \phi: \mathrm{i}+1 & & \text { input new name } \\
& \mathrm{ab} \leftarrow \phi: \mathrm{i} & \text { output } \\
& \mathrm{a}-\leftarrow \delta \phi: \mathrm{i}+1 & & \text { bound output }
\end{array}
$$

with $a, b \in i$ and $t: i \rightarrow j$

Reasoning about names: an example

It is possible that a process receives a fresh name, say b, along the channel a, and if this is the case then it must output the name a on the newly received channel b.

$$
\diamond a(v b) \rightarrow(-b a \leftarrow f): i \quad \text { with } a \in i \text { but } b \notin i
$$

This is a shorthand for

$$
\neg^{-} \neg(a() \rightarrow([v b](-\mathrm{ba} \leftarrow \mathrm{f}))): \mathrm{i}
$$

where $v b: i+1 \rightarrow i \cup\{b\}$,

Conclusion

■ Other equivalences

\square Late bisimulation VS.
early bisimulation

$$
H\left(N x X^{N}\right) \quad \text { first choose - then receive }
$$

$N \Rightarrow H(X)^{\mathbf{N}} \quad$ first receive - then choose
\square Weak bisimulation

- - $\phi: i=-\phi: i \quad$ silent steps are transitive
\square Trace equivalences: may and must testing
- Other logics
\square Without negation and/or with finite conjunctions
- Model checking?

