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Motivation

Providers use components and services from 
multiple vendors to compose new offerings.
How to model, analyze, and ensure end-to-end 
QoS in large-scale distributed systems?
o Requirements:

Wide range of quality attributes
Expressiveness/coverage
Architectural fidelity
Compositional 
Consistent treatment of all components, services, and 
connectors.
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Quality of Service

Definition:
o QoS of a system is a measure of comparing 

the expected values with the experienced 
values of a set of attributes of that 
system.

Expected value?
Experienced value?
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QoS for Behavioral Models

Behavioral abstraction proposed in Reo offers a 
suitable model for composition of components/actors 
and connectors into a system.
o Computational expressiveness
o Architectural fidelity
o Compositional
o Consistent treatment of components, services, and 

connector.
Can this model be extended to accommodate QoS
concerns?
o How?
o Preserve compositionality?  
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TDS Semantics

The TDS semantics of Reo is too fine-
grained.
o Actual time-stamp values often do not matter.
o Precise relations among specific time-stamp values 

in different streams:
Sometimes intended
Sometimes coincidental

o Atomicity conveyed as equality of real numbers:
Too restrictive
Unrealistic, especially in distributed systems 
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Constraint Automata Semantics

Abstracts away the time-stamp values.
Focuses directly on atomicity and order.
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Timed Constraint Automata

Extension of Constraint Automata with time, 
analogous to Timed Automata.
States have local clocks that are reset by 
transitions.
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Experience vs. Expectation

Both TDS and CA models use successful 
interaction as the fundamental tick of 
progress.
We need new vocabulary to talk about 
attempt vs. completion of an interaction.
Completion can be due to
o Success (i.e., “the tick” for TDS and CA)
o Time-out
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Intermittent Operation Stream

An Intermittent Operations Stream (IOS) is a twin 
pair of streams represented as
The operation stream
The interval stream
The clock offset of the interval stream k is 
For convenience, we define
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Plugging of an IOS onto a TDS
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Example – 1/5

Consider plugging

Derive requests time stream r (item 3):

Constraints C yield completion time stream t (item 4):
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Example – 2/5

We obtain               from the following table by 
dropping every column whose data value is “_”: 

where
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Example – 3/5

Consider plugging

Derive requests time stream r (item 3):

Constraints C yield interaction time stream t (item 4):
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Example – 4/5

We obtain               from the following table by 
dropping every column whose data value is “_”: 

where



© F. Arbab 2006 16

Example – 5/5

If a producer P and a consumer Q are connected by a 
Sync channel, we have:

In theory, Sync channel means a=b.  But in practice, 
we may want to impose:

P Q
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Connector Imposed Delays

The exclusion of a(i)=b(j) by the merger 
affects the completion times of the 
operations as much as the IOSs do.
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Performance

Fixing specific values for k and l, we can quantify P’s 
experience in a specific run of the system:
o Average delay between request and completion.
o Frequency of timeouts versus successful completion.

To properly characterize system performance, we 
need stochastic variables instead of exact values. 

P Q
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Stochastic Constraint Automata

Constraint Automata with stochastic (Markov chain) 
transitions as well as interactive transitions.

CA product is extended to allow composition of SCA
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SCA Model of a Dining Philosopher

Stochastic Constraint Automaton for a 
dining philosopher.

think

rls Chp1

get Chp1 get Chp2

eat

rls Chp2

λ

µ

{LT} {RT}

{RF}{LF}
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Q-Algebra

We define a general purpose framework for QoS 
measures: Q-Algebra.

“Constraint Semirings” have been used to model QoS 
values in the past.

Q-Algebras extend Constraint Semirings with a 
composition operator.

We can add these costs to automata models or 
process calculi to make compositional models of 
concurrent systems.
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Constraint Semirings

Constraint semirings model QoS values with a domain and two 
operations:
o + picks between values.
o *   combines them.

both operations are associative and have identities,  *  is 
communicative, + distributes over *, etc.

Examples:
o Memory assigned: 

Domain: Z U { ∞ }, Choose: min, Combine: +
o Access control

Domain: 2principals, Choose: union, Combine: intersect    
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Composition Operators
With concurrent processes there are two ways to 
combine values: sequentially * and concurrently |

We define a QoS Algebra: (D,+,*,|,0,1) such that 
(D,+,*,0,1) and (D,+,|,0,1) are constraint semirings. 

% of CPU needed: 
o Domain: {1,..,100}          Choose: max,
o Combine concurrent: +  Combine sequential: max 

Memory assignment:
o Domain: Z U {∞} Choose: max
o Combine concurrent: +   Combine sequential: +
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Overview of Q-Algebra

Q-Algebra is a framework that can be used to model 
many kinds of QoS value.

We distinguish between the concurrent and 
sequential combination of QoS values.

Q-Algebra costs can be added to a range of 
formalisms. 

We have defined an automata model with these costs 
that can be model checked for cost based properties.
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Quantified Constraint Automata
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Product of Q-Constraint Automata

Analogous to product of Constraint Automata, but 
costs are (parallel-) composed on synchronizing 
transitions.
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Example – 1/3

QoS for basic Reo channels:

QCA for 4 basic Reo channels:
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Example – 2/3

Consider the alternator circuit and its QCA

The total cost of the connector is:
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Example – 3/3

Two available providers:

Requirements:
o Cost no more than 15
o Reliability greater than 90%

Alternatives:
o All provider 1: t=1.5, c=9, p=0.7696
o All provider 2: t=2, c=20, p=0.9801
o Sync by provider 1; SyncDrain and FIFO1 by provider 2: t=2, c=14, p=0.9405
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Example: Discriminator Circuit

Composed QCA after hiding
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Example: Alternative Deployments

Composed cost values:

All provider 1:

All provider 2:
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Stochastic Q-Constraint Automata

Example: Triple modular redundancy system
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Composed SQCA for TMR System

How to hide internal states involving 
stochastic transition?
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Summary

Reo offers a powerful structural framework 
for composition of QoS properties.
QCA (stochastic or otherwise) serve as good 
models for both Reo circuits and 
components/subsystems with QoS properties.
Choices of actual composition operators for 
Q-algebras in some domains is non-trivial.
Hiding of intermediate states/transitions of 
composed SQCA?


