
DRAFT 15 February 2007

SdfMetz: Extraction of Metrics and Graphs
From Syntax Definitions
— Tool Demonstration —

Tiago L. Alves 1

European Space Agency - ESOC, Darmstadt, Germany

Joost Visser 2

DI-CCTC, Universidade do Minho, Braga, Portugal

Abstract

We developed SdfMetz, a tool for the extraction of metrics and graphs from syntax
descriptions. SdfMetz supports various input languages, such as SDF, and the input
formalisms of DMS, ANTLR, and Yacc. Among the extracted metrics are size and
complexity metrics, feature metrics, and structure metrics. Some metrics are ex-
tracted directly from grammars, such as adaptations of the NPath and Cyclomatic
Complexity metrics. Several structure metrics, such as tree impurity and recursive-
ness, are based on various kinds of grammar dependency graphs. The metrics and
graphs can be emitted in several formats to allow their subsequent visualization and
(statistical) analysis. We present the functionality of the tool, its implementation,
and its use for grammar analysis and comparison.

Key words: Metrics, Graphs, Syntax definition.

1 Introduction

Grammars play a central role in language tool development. Their primary
purpose is definition of surface syntax and parser generation, but they are
likewise used to generate other language processing ingredients, such as AST
traversal support and pretty-printers. Currently, renewed interest in domain-
specific languages [7] (DSLs), e.g. in the context of model-driven engineering
(MDE), again emphasises grammars as primary software artifacts.

Grammar engineering [4] aims to apply solid software engineering tech-
niques to grammars. Such techniques include version control, static analysis,

1 Email: tiago.alves@esa.int
2 Email: joost.visser@di.uminho.pt

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Alves and Visser

and testing. Through their adoption, the notoriously erratic and unpredictable
process of developing and maintaining large grammars can become more ef-
ficient and effective, and can lead to results of higher-quality. In grammar
engineering, quantification is an important instrument for understanding and
controlling grammar evolution as well as for specifying and improving gram-
mar quality attributes, just as for software artifacts and evolution in general.

Though grammars have been used in software engineering for decades, the
systematic definition and application of grammar metrics is a more recent de-
velopment. Power and Malloy [9] have defined a suite of metrics for attributes
of grammars, such as size, complexity, and structure. Their definitions are
given for grammars written in BNF, EBNF, or Yacc-style BNF dialects.

We have implemented a tool for grammar quantification and visualization,
named SdfMetz. The suite of metrics calculated by SdfMetz is a significant
extension of those defined by Power and Malloy, and apart from Yacc-like
BNF dialects, the tool accepts ANTLR, SDF [3], and DMS [2] grammars. We
also implemented disambiguation metrics, relevant for SDF only. The graphs
constructed by SdfMetz for calculation of various metrics can also be exported
and used for grammar visualization.

Elsewhere, we report on the use of SdfMetz for monitoring the development
of an industrial strength grammar of the VDM-SL language [1].

2 Tool functionality

SdfMetz is a command line tool that accepts various grammar formalisms as
input and emits either a metrics report or a graph. Currently the accepted
input includes SDF, ANTLR, Yacc, Bison, and DMS grammars. A wide range
of metrics can be emitted:

• All the metrics defined in [9]: the counts of terminals, non-terminals, and
production rules; cyclomatic complexity; average size of right-hand side;
Halstead effort; tree impurity; number of grammatical levels, and nor-
malised count of levels; count of non-singleton levels; and count of non-
terminals in the largest grammatical level.

• The Halstead Effort metric of [9], as well as futher Halstead metrics: the
underlying count of operators and distinct operands, distinct and total; and
other derived metrics such as length, volume, difficulty, level, and time.

• The tree impurity metric, applied to the transitive closure of the successor
graph [9], as well as tree impurity on the successor graph itself

• An adaptation to grammars of the NPath metric [8], which, like cyclometric
complexity measures possible paths, but gives more weight to nested choices.

• Ambiguity metrics, specific to SDF: counts of follow restrictions, associa-
tivity and preference attributes, reject and prioritized productions.

2



Alves and Visser

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200 220

0

1

2

3

4

5

6

7

8

(a) Scatter plot of non-terminals
(x-axis), tree impurity without tran-
sitive closure (left y-axis, circles),
and NPath (right y-axis, squares)
for 42 grammars.

"additiveExpr" "argExprList"
"assignExpr" "bitAndExpr" "castExpr"

"conditionalExpr" "constExpr"
"declSpecifiers" "declarator"
"enumList" "enumSpecifier"
"enumerator" "equalityExpr"

"exclusiveOrExpr" "expr"
"functionCall" "inclusiveOrExpr"
"logicalAndExpr" "logicalOrExpr"

"multExpr"
"nonemptyAbstractDeclarator"

"parameterDeclaration"
"parameterTypeList" "postfixExpr"

"postfixSuffix" "primaryExpr"
"relationalExpr" "shiftExpr"

"specifierQualifierList"
"structDeclaration"

"structDeclarationList"
"structDeclarator"

"structDeclaratorList"
"structOrUnionSpecifier" "typeName"

"typeSpecifier" "unaryExpr"

"assignOperator" "charConst""floatConst" "idList" "intConst" "pointerGroup""storageClassSpecifier" "stringConst" "structOrUnion"

"typeQualifier"

"typedefName" "unaryOperator"

"asm_expr"
"compoundStatement"

"statement"
"statementList"

"declarationList"

"declaration"

"initDeclList"

"externalDef"

"functionDef"

"externalList"

"functionDeclSpecifiers"

"functionStorageClassSpecifier"

"initDecl"

"initializer"
"initializerList"

"declarationPredictor"

"translationUnit"

(b) Strong connected component
graph for an ANTLR grammar of
the C language.

Fig. 1. Examples of output processed with (a) Excel and (b) dot.

These metrics can be emitted either as nicely formatted textual reports for
human consumption, or as comma-separated value files for further processing
by spreadsheet or statistical tools. Figure 1a gives an example.

The calculation of several metrics requires the construction of a grammar
successor graph, its transitive closure, or its corresponding strong connected
component graph. SdfMetz can emit these graphs in the format of dot [5].
An example is given in Figure 1b.

3 Tool implementation

SdfMetz was developed in Haskell and SDF, making essential use of the Stra-
funski bundle [6] for generating Haskell code from SDF grammars and for
generic AST traversal. From the SDF grammar of each input language we
generated AST, serialization, traversal, and pretty-printer components.

After parsing an input grammar, it is first translated to SDF, which is thus
used as a universal syntax definition language. This allows all metrics to have
a single implementation. Some metrics were defined directly over the AST.
Other metrics require the construction of a successor graph, and subsequent
calculation of its transitive closure or strong components. We used a graph
library based on finite maps for the representation and manipulation of such
graphs. Further librares were used, such as datatype libraries for sets, bags
and graphs and for exporting to dot format. The tool was extensively unit
tested using the HUnit framework.

4 Tool demonstration

The demonstration of the tool will consist of the following elements.

3



Alves and Visser

Run We will show how to invoke SdfMetz on various different input for-
malisms, and how to configure it to obtain different kinds of output.

Graphs By means of instructive examples, we will explain which kinds of
graphs are emitted, and how they can be visualized and interpreted.

Metrics Using grammars of well-known languages as examples, we will ex-
plain the various metrics emitted by SdfMetz. We will explain how these
metrics can be visualized and interpreted.

Census We will present the result of running SdfMetz on a large suite of syn-
tax definitions, of various sizes and written in various grammar formalisms.
We will explain how simple statistical instruments can be used to interpret
the huge amount of resulting measurement data.

Availability The SdfMetz tool is developed as open source software and is
available from: http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz.

References

[1] T. Alves and J. Visser. Development of an industrial strength grammar for
VDM. Technical Report DI-PURe-05.04.29, Universidade do Minho, 2005.

[2] I. Baxter, P. Pidgeon, and M. Mehlich. DMS: Program transformations
for practical scalable software evolution. In Proceedings of the International
Conference on Software Engineering. IEEE Press, 2004.

[3] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF — Reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

[4] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering discipline for
grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, 2005.

[5] E. Koutsofios. Drawing graphs with dot. Technical report, AT&T Bell
Laboratories, Murray Hill, NJ, USA, November 1996.

[6] R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl
and P. Wadler, editors, Proc. of Practical Aspects of Declarative Programming
(PADL’03), volume 2562 of LNCS, pages 357–375. Springer-Verlag, 2003.

[7] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

[8] B.A. Nejmeh. NPATH: a measure of execution path complexity and its
applications. Commun. ACM, 31(2):188–200, 1988.

[9] J.F. Power and B.A. Malloy. A metrics suite for grammar-based software. In
Journal of Software Maintenance and Evolution, volume 16, pages 405–426.
Wiley, November 2004.

4

http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz

	Introduction
	Tool functionality
	Tool implementation
	Tool demonstration
	References

