
Type-safe Two-level Data Transformation
with derecursivation and dynamic typing

Alcino Cunha, José Nuno Oliveira, and Joost Visser

Techn. Report DI-PURe-06.03.01
2006, March

PURE
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)

Departamento de Informática da Universidade do Minho
Campus de Gualtar — Braga — Portugal

DI-PURe-06.03.01
Type-safe Two-level Data Transformation – with derecursivation and dynamic
typing by Alcino Cunha, José Nuno Oliveira, and Joost Visser

Abstract

A two-level data transformation consists of a type-level transformation of a data
format coupled with value-level transformations of data instances correspond-
ing to that format. Examples of two-level data transformations include XML
schema evolution coupled with document migration, and data mappings used
for interoperability and persistence.

We provide a formal treatment of two-level data transformations that is type-
safe in the sense that the well-formedness of the value-level transformations
with respect to the type-level transformation is guarded by a strong type system.
We rely on various techniques for generic functional programming to opera-
tionalize the formalization in Haskell.

The formalization addresses various two-level transformation scenarios, cov-
ering fully automated as well as user-driven transformations, and allowing trans-
formations that are information-preserving or not. In each case, two-level trans-
formations are disciplined by one-step transformation rules and type-level trans-
formations induce value-level transformations. We demonstrate an example hier-
archical-relational mapping and subsequent migration of relational data induced
by hierarchical format evolution.

An appendix is included with additional detail on the representation and
handling of recursive types, and on the use of dynamic types in value-level func-
tion application.

Type-safe Two-level Data Transformation
with derecursivation and dynamic typing

Alcino Cunha, José Nuno Oliveira, and Joost Visser

Departamento de Informática, Universidade do Minho
Campus de Gualtar, 4710-057 Braga, Portugal

Abstract. A two-level data transformation consists of a type-level transforma-
tion of a data format coupled with value-level transformations of data instances
corresponding to that format. Examples of two-level data transformations include
XML schema evolution coupled with document migration, and data mappings
used for interoperability and persistence.
We provide a formal treatment of two-level data transformations that is type-
safe in the sense that the well-formedness of the value-level transformations with
respect to the type-level transformation is guarded by a strong type system. We
rely on various techniques for generic functional programming to operationalize
the formalization in Haskell.
The formalization addresses various two-level transformation scenarios, covering
fully automated as well as user-driven transformations, and allowing transforma-
tions that are information-preserving or not. In each case, two-level transforma-
tions are disciplined by one-step transformation rules and type-level transforma-
tions induce value-level transformations. We demonstrate an example hierarchical-
relational mapping and subsequent migration of relational data induced by hier-
archical format evolution.
Keywords: Two-level transformation, Program calculation, Refinement calculus,
Strategic term rewriting, Generalized abstract datatypes, Generic programming,
Coupled transformation, Format evolution, Data mappings.

1 Introduction

Changes in data types call for corresponding changes in data values. For in-
stance, when a database schema is adapted in the context of system mainte-
nance, the persistent data residing in the system’s database needs to be migrated
to conform to the adapted schema. Or, when the grammar of a programming lan-
guage is modified, the source code of existing applications and libraries written
in that language must be upgraded to the new language version. These scenarios
are examples of format evolution [12] where a data structure and corresponding
data instances are transformed in small, infrequent, steps, interactively driven
during system maintenance.

Similar coupled transformation of data types and corresponding data in-
stances are involved in data mappings [13]. Such mappings generally occur

2 Cunha, Oliveira, Visser

on the boundaries between programming paradigms, where for example object
models, relational schemas, and XML schemas need to be mapped onto each
other for purposes of interoperability or persistence. Data mappings tend not
to be evolutionary, but rather involve fully automatic translation of entire data
structures, carried out during system operation.

Both format evolution and data mappings are instances of what we call two-
level transformations, where a type-level transformation (of the data type) de-
termines or constrains value-level transformations (of the data instances).

When developing a two-level data transformation system, a challenge arises
regarding the degree of type-safety that can be achieved. Conceptually, the in-
put type, intermediate types, and target types of a two-level transformation are
all distinct. As a consequence, it seems infeasible to assign precise types to the
atomic transformation steps that must be repeatedly applied to different data
elements at various stages of the transformation. Two approaches to deal with
this challenge are common: (i) define a universal representation in which any
data can be encoded, or (ii) merge the input, output, and intermediate types into
a single union type. Transformation steps can then be implemented as type-
preserving transformations on either the universal representation or the union
type. The first approach is simple, but practically abandons all typing. The sec-
ond approach maintains a certain degree of typing at the cost of the effort of
defining the union type. In either case, defensive programming and extensive
testing are required to ensure that the transformation is well-behaved.

In this paper, we show how two-level data transformation systems can be
developed in a type-safe manner. In this approach, value-level transformations
are statically checked to be well-typed with respect to the type-level transfor-
mations to which they are associated, and well-typed composition of type-level
transformation steps induces well-typed compositions of value-level transfor-
mation steps.

In Section 2 we present a formalization of two-level transformations based
on a theory of data refinement. Apart from some general laws for any transfor-
mation system, we present two groups of laws that cater for data mapping and
format evolution scenarios, respectively. In Section 3, we operationalize our for-
malization in the functional programming language Haskell. We rely on various
techniques for data-generic functional programming with strong mathematical
foundations. In Section 4 we return to the data mapping and format evolution
scenarios and demonstrate them by example. Section 5 discusses related work,
and Section 6 discusses future extensions and applications.

Type-safe Two-level Data Transformations 3

2 Data refinement calculus

The theory which underlies our approach to two-level transformations finds its
roots in a “data refinement” calculus which originated in [19, 20]. This calculus
has been applied to relational database design [22, 23] reverse engineering of
legacy databases [18].

2.1 Abstraction and representation

Two-level transformation steps are modeled by inequations between datatypes
and accompanying functions of the following form:

A

to

''
6 B

from

gg

Here, the inequation A 6 B models a type-level transformation where datatype
A gets transformed into datatype B, and abbreviates the fact that there is an
injective, total relation to (the representation relation) and a surjective, possibly
partial function from (the abstraction relation) such that

from · to = idA (1)

where idA is the identity function on datatype A. Though in general to can be
a relation, it is usually a function as well, and functions to and from model the
value-level transformations that accompany the type-level transformation.

Since the equality of two relations is a bi-inclusion we have two readings of
equation (1): idA ⊆ from · to, which ensures that every inhabitant of datatype
A has a representation in datatype B; and from · to ⊆ idA, which prevents
“confusion” in the transformation process, in the sense that only one inhabitant
of the datatype A will be transformed to a given representative in datatype B.

In a situation where the abstraction is also a representation and vice-versa
we have an isomorphism A ∼= B, a special case of 6-law which works in both
directions.

Thus, type-level transformations are not arbitrary. They arise from the ex-
istence of value-level transformations whose properties preclude data mixup.
When applied left-to-right, an inequation A 6 B will preserve or enrich in-
formation content, while applied in the right-to-left direction it will preserve or
restrict information content.

Below we will present a series of general laws for composition of two-level
transformations that form a framework for any two-level transformation sys-
tem. This framework can be instantiated with sets of problem-specific two-level

4 Cunha, Oliveira, Visser

transformations steps to obtain a two-level transformation system for a specific
purpose. We will show sets of rules for data mapping and for format evolution.

2.2 Sequential and structural composition laws

Individual two-level transformation steps can be chained by sequentially com-
posing abstractions and representations:

if A

to

''
6 B

from

gg and B

to′

''
6 C

from′

gg then A

to′·to
''

6 C

from·from ′

gg

Such transitivity, together with the fact that any datatype can be transformed to
itself (reflexivity), witnessed by identity value-level transformations (from =
to = id), means that 6 is a preorder.

Two-level transformation steps can be applied, not only at the top-level of
a datatype, but also at deeper levels. Such transformations on locally nested
datatypes must then be propagated to the global datatype in which they are em-
bedded. For example, a transformation on a local XML element must induce a
transformation on the level of a complete XML document. The following law
captures such upward propagation:

if A

to

''
6 B

from

gg then F A

F to
((

6 F B

F from

hh (2)

Here F is a functor that models the context in which a transformation step is
performed. Recall that a functor F from categories C to D is a mapping that (i)
associates to each object X in C an object FX in D, and (ii) associates to each
morphism f : X → Y in C a morphism Ff : FX → FY in D such that identity
morphisms and composition of morphisms are preserved. When modeling two-
level transformations, the objects X and Y are data types, and the morphism f
and g are value-level transformations.

Thus, a functor F captures (i) the embedding of local datatypes A or B inside
global datatypes, and (ii) the lifting of value-level transformations to and from
on the local datatypes to value-level transformations on the global datatypes, in
a way such that the preorder (transitivity and reflexivity) on local datatypes is
preserved on the global datatypes. Generally, a functor that mediates between a
global datatype and a local datatype is constructed from primitive functors, such
as products A×B, sums A+B, finite maps A ⇀ B, sequences A?, sets 2A, etc.

Type-safe Two-level Data Transformations 5

By modeling the context of a local datatype by a composition of such functors,
the propagation of two-level transformations from local to global datatype can
be derived.

2.3 Rules for data mapping and format evolution

In [2] we presented a set of two-level transformation rules that can be combined
with the general laws presented above into a calculator that automatically con-
verts a hierarchic, possibly recursive data structure to a flat, relational represen-
tation. These rules are summarized in Figure 1. They are designed for step-wise
elimination of sums, sets, optionals, lists, recursion, and such, in favor of finite
maps and products. When applied according to an appropriate strategy, they will
lead to a normal form that consists of a product of basic types and maps, which
is readily translatable to a relational database schema in SQL. There are rules
for elimination and distribution, and a particularly challenging rule for recursion
elimination, which introduces pointers in the locations of recursive occurrences.

While data mappings rely on a automatic and fully systematic strategy for
applying individual transformation rules, format evolution assumes more sur-
gical and adhoc modifications. For instance, new requirements might call for
the introduction of a new data field, or for the possible omission of a previously
mandatory field. Figure 2 shows a set of two-level transformation rules that cater
for these scenarios. These rules formalize co-evolution of XML documents and
their DTDs as discussed by Lämmel et al [12]. Note that the rule for adding a
field assumes that a new value x for that field is somehow supplied. This may
be done through a generic default for type B, through interaction with a user or
some other oracle, or by querying another part of the data.

3 Two-level Transformations in Haskell

Our solution to modeling two-level data transformations in Haskell consists of
four components. Firstly, we will define a datatype to represent the types that
are subject to rewriting. Secondly, we will extend that datatype with a view
constructor that can encapsulate the result of a type-level rewrite step together
with the corresponding value-level functions. Such encapsulation will allow
type-changing rewrite steps to masquerade as type-preserving ones. Thirdly,
we define combinators that allow us to fuse local, single-step transformations
into a single global transformation. Finally, we provide functions to release
these transformations out of their type-preserving shell, thus obtaining the cor-
responding type-changing, bi-directional data migration functions.

6 Cunha, Oliveira, Visser

Elimination and introduction

A?

seq2index

))
6 IN ⇀ A

list

hh (3) 2A

set2fm

))
∼= A ⇀ 1

dom

hh (4)

A + 1

opt-intro
))

∼= 1 ⇀ A

opt-elim

ii (5)

Distribution

A ⇀ (B + C)

uncojoin

,,
6 (A ⇀ B)× (A ⇀ C)

cojoin

ll (6)

A× (B + C)

distr
++

∼= (A×B) + (A× C)

undistr

kk (7)

(B + C) ⇀ A

unpeither
,,

∼= (B ⇀ A)× (C ⇀ A)

peither

ll (8)

Split, join, recursion

A ⇀ (B × (C ⇀ D))

unnjoin
,,

6 (A ⇀ B)× (A× C ⇀ D)

njoin

ll (9)

µF

rec-elim
++

6 (K ⇀ F K)×K

rec-intro

ii (10)

Fig. 1. One-step rules for a two-level transformation system that maps hierarchic, recursive data
structures to flat relational mappings. Only the names of type-level functions are given. More
details can be found elsewhere [20, 22, 23, 2].

We will illustrate the Haskell encoding with the following example transfor-
mation sequence:

(A + B)? 6 IN ⇀ (A + B) 6 (IN ⇀ A)× (IN ⇀ B)

This is a valid sequence according to rules (3) and (6) presented in Figure 1.

3.1 Representation of Types

Assume that IN will be represented by Haskell type Int , A ⇀ B by the data
type Map a b, and A + B by data Either a b = Left a | Right b. We would

Type-safe Two-level Data Transformations 7

Enrichment and removal
add field

A

pairwith(b)

))
6 A×B

project

gg (11)

Generalization and restriction
add alternative

A

inject

))
6 A + B

uninject(a)

gg (12)

add optional

1

inject

))
6 1 + A

const1

gg (13)

allow empty list

A+

list2nelist

((
6 A∗

nelist2list

hh (14)

allow repetition

A + 1

opt2seq

((
6 A∗

seq2opt

ii (15)

allow non-empty repetition

A

singleton

((
6 A+

nehead

gg (16)

Fig. 2. One-step rules for a two-level transformation system for format evolution. These rules
formalize the discussion of XML format evolution of Lämmel et al [12].

.

like now to define a rewriting strategy that converts the type [Either a b] into
the type (Map Int a,Map Int b), building at the same time a function of type
[Either a b]→ (Map Int a,Map Int b) to perform the data migration.

Both type-level and value-level components of this transformation will be
performed on the Haskell term-level, and to this end we need to represent types
by terms. Rather than resorting to an untyped universal representation of types,
we define the following type-safe representation:

data Type a where
Int :: Type Int
Bool :: Type Bool
Char :: Type Char
String :: Type String
One :: Type ()
List :: Type a → Type [a]
Set :: Type a → Type (Set a)
Map :: Type a → Type b → Type (Map a b)
Either :: Type a → Type b → Type (Either a b)

8 Cunha, Oliveira, Visser

Prod :: Type a → Type b → Type (a, b)
Tag :: String → Type a → Type a

This definition ensures that Type t can only be inhabited by representations of
type t . For example, the pre-defined type Int of integers will be represented
by the data constructor Int of type Type Int , and the type [Int] of lists of
integers will be represented by the value List Int of type Type [Int]. The Tag
constructor allows us to tag types with names.

The datatype Type , adapted from [9], is an example of a generalized al-
gebraic data type (GADT) [24], a recent Haskell extension that allows to as-
sign more precise types to data constructors by restricting the variables of the
datatype in the constructors’ result types. Note also that the argument a of the
Type datatype is a so-called phantom type [8], since no value of type a needs
to be provided when building a value of type Type a . Using a phantom type we
can represent a type at the term level without building any term of that type.

Going back to our example, we can now assign a precise type List (Either a b)→
Prod (Map Int a) (Map Int b) to our intended transformation.

3.2 Encapsulation of type-changing rewrites

Whenever single-step rewrite rules are intended to be applied repeatedly and
at arbitrary depths inside terms, it is essential that they are type-preserving [5,
16]. Otherwise, ill-typed terms would be created as intermediate or even as fi-
nal results. But two-level data transformations are type-changing in general. To
resolve this tension, type-changing transformations will masquerade as type-
preserving ones.

The solution for masquerading type-changing transformation steps as type-
preserving ones is simple, but ingenious. When rewriting a type representation,
we do not replace it, but augment it with the target type and with a pair of value-
level functions that allow conversion between values of the source and target
type.

data Rep a b = Rep{to :: a → b, from :: b → a }
data View a where

View :: Rep a b → Type b → View (Type a)
showType :: View a → String

The View constructor expresses that a type a can be represented as a type b,
denoted as Rep a b, if there are functions to :: a → b and from :: b → a that
allow data conversion between one and the other. Note that only the source type
a escapes from the View constructor, while the target type b remains encap-
sulated — it is implicitly existentially quantified. The function showType just
allows us to obtain a string representation of the target type.

Type-safe Two-level Data Transformations 9

Now the type of type-preserving transformation steps is defined as follows1:
type Rule = ∀a.Type a → Maybe (View (Type a))

Note that the explicit quantification of the type variable a will allow us to ap-
ply the same argument of type Rule of a given rule combinator to various dif-
ferent subterms of a given type representation, e.g. to both Int and String in
Prod Int String . Thus, when rewriting a type representation we will not change
its type, but just signal that it can also be viewed as a different type.

We can now start encoding some transformation rules of the refinement cal-
culus. For instance, given value-level functions (see Figure 1):

list :: Map Int a → [a]
seq2index :: [a]→ Map Int a
uncojoin :: Map a (Either b c)→ (Map a b,Map a c)
cojoin :: (Map a b,Map a c)→ Map a (Either b c)

the rule (3) that convert a list into a map, and the rule (6) that converts a map of
sums into a pair of maps can be defined as follows:

listmap :: Rule
listmap (List a) = Just (View rep (Map Int a))

where rep = Rep{to = seq2index , from = list }
listmap = Nothing
mapsum :: Rule
mapsum (Map a (Either b c)) = Just (View rep (Prod (Map a b) (Map a c)))

where rep = Rep{to = uncojoin, from = cojoin }
mapsum = Nothing

The remaining rules of Figure 1 can be implemented in a similar way.
The only rule that poses a significant technical challenge is rule (16) for re-

cursion elimination. We will only present an outline of our solution, which uses
the Haskell class mechanism and monadic programming. Firstly, we represent
the fixpoint operator µ as follows:

newtype Mu f = In{out :: f (Mu f)}
data Type a where

...
Mu :: Dist f ⇒ (∀a.Type a → Type (f a))→ Type (Mu f)

Here f is a functor2, and the class constraint Dist f expresses that we require
functors to commute with monads. Rule (16) can now be implemented:

type Table f = (Map Int (f Int), Int)
fixastable :: Rule
fixastable (Mu f) = Just (View rep (Prod (Map Int (f Int)) Int))

1 We model partiality with data Maybe a = Nothing | Just a .
2 Functors are instances of: class Functor f where fmap :: (a → b) → f a → f b.

10 Cunha, Oliveira, Visser

where rep = Rep{to = recelim, from = recintro}
fixastable = Nothing
recelim :: Dist f ⇒ Mu f → Table f
recintro :: Functor f ⇒ Table f → Mu f

Internally, recelim incrementally builds a table while traversing over a recursive
data instance. It uses monadic code to thread the growing table through the
recursion pattern.

3.3 Strategy combinators for two-level transformation

To build a full two-level transformation system, we must be able to apply two-
level transformation steps sequentially, alternatively, repetitively, and at arbi-
trary levels inside type representations. For this we introduce strategy combina-
tors for two-level term rewriting. They are similar to strategy combinators for
ordinary single-level term rewriting [16], except that they simultaneously fuse
the type-level steps and the value-level steps. As we will see, the joint effect
of two-level strategy combinators is to combine the view introduced locally by
individual steps into a single view around the root of the representation of the
target type.

Let us begin by supplying combinators for identity, sequential composition,
and structural composition of pairs of value-level functions:

idrep :: Rep a a
idrep = Rep{to = id , from = id }
comprep :: Rep a b → Rep b c → Rep a c
comprep f g = Rep{from = (from f).(from g), to = (to g).(to f)}
maprep :: Functor f ⇒ Rep a b → Rep (f a) (f b)
maprep r = Rep{to = fmap (to r), from = fmap (from r)}

Using these combinators for pairs of value-level functions, we can define the
two-level combinators. Sequential composition is defined as follows3:

(.) :: Rule → Rule → Rule
(f . g) a = do View r b ← f a

View s c ← g b
return (View (comprep r s) c)

We further define combinators for left-biased choice (f �g tries f , and if it fails,
tries g instead), a “do nothing” combinator, and repetitive application of a rule
until it fails4:

3 For composing partial functions we use the monadic do-notation, exploiting the fact that
Maybe is an instance of a Monad [25].

4 mplus :: Maybe a → Maybe a → Maybe a returns the first argument if it is constructed
with Just or the second argument otherwise.

Type-safe Two-level Data Transformations 11

(�) :: Rule → Rule → Rule
(f � g) x = f x ‘mplus‘ g x
nop :: Rule
nop x = Just (View idrep x)
many :: Rule → Rule
many r = (r . many r)� nop

These combinators suffice for combining transformations at a single level inside
a term.

Two-level combinators that descend into terms are more challenging to de-
fine. They rely on the functorial structure of type representations and use maprep
defined above to push pairs of value-level functions up through functors. An ex-
ample is the once combinator that applies a given rule exactly once somewhere
inside a type representation:

once :: Rule → Rule
once r Int = r Int
once r (List a) = r (List a) ‘mplus‘

(do View s b ← once r a
return (View (maprep s) (List b)))

...

Note that once performs a pre-order which stops as soon as its argument rule is
applied successfully. Other strategy combinators can be defined similarly.

It is now possible to combine individual two-level transformation rules into
the following rewrite system:

flatten :: Rule
flatten = many (once (listmap �mapsum � ...))

which can be successfully applied to our running example, as the following
interaction with the Haskell interpreter shows:

> flatten (List (Either Int Bool))
Just (View (Rep <to> <from>) (Prod (Map Int Int) (Map Int Bool)))

Note that the result shown by the interpreter is a String representation of a value
of type Maybe (View (Type (List (Either Int Bool)))). Placeholders <to>
and <from> are shown in place of function objects, which are not printable.
Thus, the existentially qualified result type of the transformation is not available
statically, though its string representation is available dynamically.

3.4 Unleashing composed data migration functions

So far, we have developed techniques to implement rewrite strategies on types,
building at the same time functions for data migration between the original and
the resulting type. Unfortunately, it is still not possible to use such functions

12 Cunha, Oliveira, Visser

within the machinery developed so far. The problem is that the target type is en-
capsulated as an existentially quantified type variable inside the View construc-
tor. This was necessary to make the type-changing transformation masquerade
as a type-preserving one.

We can access the hidden data migration functions in two ways. If we hap-
pen to know what the target type is, we can simply take them out as follows:

forth :: View (Type a)→ Type b → a → Maybe b
forth (View rep tb′) tb a = do {Eq ← teq tb tb′; return (to rep a)}
back :: View (Type a)→ Type b → b → Maybe a
back (View rep tb′) tb b = do {Eq ← teq tb tb′; return (from rep b)}

Again, GADTs are of great help in defining a data type that provides evidence
to the type-checker that two types are equal:

data Equal a b where
Eq :: Equal a a

Notice that a value Eq of type Equal a b is a witness that types a and b are
indeed equal. A function that provides such a witness based on the structural
equality of type representations is then fairly easy to implement.

teq :: Type a → Type b → Maybe (Equal a b)
teq Int Int = return Eq
teq (List a) (List b) = do Eq ← teq a b

return Eq
...

In the format evolution scenario, where a transformation is specified manually
at system design or maintenance time, the static availability of the target type is
realistic.

But in general, and in particular in the data mapping scenario, we should
expect the target type to be statically unknown, and only available dynamically.
In that case we can access the result type via a staged approach. In the first
stage, we apply the transformation to obtain its result type dynamically, using
showType , in the form of its string representation. In the second stage, that
string representation is incorporated in our source code, and gets parsed and
compiled and becomes statically available after all. Below, we will use such
staging in Haskell interpreter sessions.

4 Application Scenarios

To demonstrate the two-level transformations, we will develop two small, but
representative examples.

Type-safe Two-level Data Transformations 13

4.1 Evolution of a music album format

Suppose rudimentary music album information is kept in XML files that con-
form to the following XML Schema fragment:

<element name="Album" type="AlbumType"/>
<complexType name="AlbumType"/>

<attribute name="ASIN" type="string"/>
<attribute name="Title" type="string"/>
<attribute name="Artist" type="string"/>
<attribute name="Format"><simpleType base="string">

<enumeration value="LP"/><enumeration value="CD"/>
</simpleType></attribute>

</complexType>

In a first evolution step, we would like to allow an additional media type beyond
CDs and LPs, namely DVDs. In a second step, we want to add a list of track
names to the format.

We can represent the album schema and an example album document as
follows:

albumFormat = Tag "Album" (
Prod (Tag "ASIN" String) (
Prod (Tag "Title" String) (
Prod (Tag "Artist" String)

(Tag "Format" (Either (Tag "LP" One) (Tag "CD" One))))))
lp = ("B000002UB2", ("Abbey Road", ("The Beatles",Left ())))

With a generic show function gshow ::Type a → a → String , we can print the
album with tag information included:

> putStrLn $ gshow albumFormat lp
Album = (ASIN = "B000002UB2", (Title = "Abbey Road", (

Artist = "The Beatles",Format = Left (LP = ()))))
This also ensures us that the album is actually well-typed with respect to the
format.

To enable evolution, we define the following additional combinators for
adding alternatives, adding fields, and triggering rules inside tagged types:

addalt :: Type b → Rule
addalt b a = Just (View rep (Either a b))

where rep = Rep{to = Left , from = λ(Left x)→ x }
type Query b = ∀a.Type a → a → b
addfield :: Type b → Query b → Rule
addfield b f a = Just (View rep (Prod a b))

where rep = Rep{to = λy → (y , f a y), from = fst }
inside :: String → Rule → Rule

14 Cunha, Oliveira, Visser

inside n r (Tag m a)
| n ≡ m = do {View r b ← r a; return (View r (Tag m b))}

inside = Nothing
Note that the addalt combinator inserts and removes Left constructors on the
data level. The addfield combinator takes as additional argument a query that
gets applied to the argument of to to come up with a value of type b, which gets
inserted into the new field.

With these combinators in place, we can specify the desired evolution steps:
addDvd = once (inside "Format" (addalt (Tag "DVD" One)))
addTracks = once (inside "Album" (addfield (List (Tag "Title" String)) q))

where q :: Query [String]
q (Prod (Tag "ASIN" String)) (asin,) = ...
q = []

The query q uses the album identifier to lookup from another data source, e.g.
via a query over the internet5. Subsequently, we can run the type-level transfor-
mation, and print the result type:

> let (Just vw) = (addTracks . addDvd) albumFormat
> showType vw
Tag "Album" (Prod (Prod (

Tag "ASIN" String) (Prod (
Tag "Title" String)(Prod (
Tag "Artist" String)(
Tag "Format" (Either (Either (

Tag "LP" One)(Tag "CD" One)) (Tag "DVD" One))))) (
List (Tag "Title" String))))

The value-level transformation is executed in forward direction as follows:
> let targetFormat = Tag "Album" (Prod (Prod (...
> let (Just targetAlbum) = forth vw targetFormat lp
> putStrLn $ gshow targetFormat targetAlbum
Album = ((ASIN = "B000002UB2", (Title = "Abbey Road", (

Artist = "The Beatles",Format = Left (Left (LP = ())))),
[Title = "Come Together", ...,]))

In backward direction, we can recover the original LP:
> let (Just originalAlbum) = back vw targetFormat targetAlbum
> lp ≡ originalAlbum
True

Any attempt to execute the backward value-level transformation on a DVD, i.e.
on an album that uses a newly added alternative, will fail.

5 For such a side effect, an impure function is needed.

Type-safe Two-level Data Transformations 15

4.2 Mapping album data to relational tables

We pursue our music album example to demonstrate data mappings. In this case,
we are interested in mapping the hierarchical album format, which models the
XML schema, onto a flat schema, which could be stored in a relational database.
This data mapping is performed by the flatten transformation defined above,
but before applying it, we need to prepare the format in two respects. Firstly,
we want the enumeration type for formats to be stored as integers. Secondly,
we need to remove the tags from our datatype, since the flatten transformation
assumes their absence. For brevity we omit the definitions of enum2int and
removetags; they are easy to define.

Our relational mapping for music albums is now defined and applied to both
our original and our evolved formats as follows:

> let toRDB = once enum2int . removetags . flatten
> let (Just vw0) = toRDB (List albumFormat)
> showType vw0
Map Int (Prod (Prod (Prod String String) String) Int)
> let (Just vw1) = toRDB (List targetFormat)
> showType vw1
Prod (Map Int (Prod (Prod (Prod String String) String) Int)) (

Map (Prod Int Int) String)
Note that we apply the transformations to the type of lists of albums – we want
to store a collection of them. The original format is mapped to a single table,
which maps album numbers to 4-tuples of ASIN, title, name, and an integer that
represents the format. The target format is mapped to two tables, where the extra
table maps compound keys of album and track numbers to track names.

Let’s store our first two albums in relational form:
> let dbs0 = Map Int (Prod (Prod (Prod String String) String) Int)
> let (Just db) = forth vw0 dbs0 [lp, cd]
> db
{0 := ((("B000002UB2","Abbey Road"),"The Beatles"), 0),
1 := ((("B000002HCO","Debut"),"Bjork"), 1)}

As expected, two records are produced with different keys. The last 1 indicates
that the second album is a CD.

The reverse value-level transformation restores the flattened data to hier-
archical form. By composing the value-level transformations induced by data
mappings with those induced by format evolution, we can migrate from and old
database to an update one.

> let (Just lvw) = (addTracks . addDvd) (List albumFormat)
> let dbs1 = Prod (Map ...) (Map (Prod Int Int) String)
> let (Just x) = back vw0 dbs0 db

16 Cunha, Oliveira, Visser

> let (Just y) = forth lvw (List targetFormat) x
> let (Just z) = forth vw1 dbs1 y
> z
({0 := ((("B000002UB2","Abbey Road"),"The Beatles"), 0),

1 := ((("B000002HCO","Debut"),"Bjork"), 1)},
{(0, 0) := "Come Together", ...})

In this simple example, the migration amounts to adding a single table with
track names retrieved from another data source. In the general case, however, the
induced value-level data transformations can augment, reorganize, and discard
relational data in customizable ways.

5 Related work

We will compare our contributions with related work in software transformation
and in generic programming.

Software transformation Lämmel et al [12] propose a systematic approach
to evolution of XML-based formats, where DTDs are transformed in a well-
defined, step-wise fashion, and migration of corresponding documents can largely
be induced from the DTD-level transformations. They discuss properties of
transformations and identify categories of transformation steps, such as renam-
ing, introduction and elimination, folding and unfolding, generalization and re-
striction, enrichment and removal, taking into account many XML-specific is-
sues, but they stop short of formalization and operationalization of two-level
transformations. In fact, they identify the following ‘challenge’:

We have examined typeful functional XML transformation languages,
term rewriting systems, combinator libraries, and logic programming.
However, the coupled treatment of DTD transformations and induced
XML transformations in a typeful and generic manner, poses a challenge
for formal reasoning, type systems, and language design.

We have taken up this challenge by showing that formalization and operational-
ization are feasible. A fully worked out application of our approach in the XML
domain can now be attempted.

Lämmel et al [13] have identified data mappings as a challenging problem
that permeates software engineering practice, and data-processing application
development in particular. An overview is provided over examples of data map-
pings and of existing approaches in various paradigms and domains. Some key
ingredients are described for an emerging conceptual framework for mapping
approaches, and ‘cross-paradigm impedance mismatches’ are identified as im-
portant mapping challenges. According to the authors, better understanding and

Type-safe Two-level Data Transformations 17

mastery of mappings is crucial, and they identify the need for “general and scal-
able foundations” for mappings. Our formalization of two-level data transfor-
mation provides such foundations.

Generic functional programming Type-safe combinators for strategic rewrit-
ing were introduced by Lämmel et al in [16], after which several simplified
and generalized approaches were proposed [15, 14, 9]. These approaches cover
type-preserving transformations (input and output types are the same), and type-
unifying ones (all input types mapped to a single output type), but not type-
changing ones.

Atannassow et al show how canonical isomorphisms (corresponding to laws
for zeros, units, and associativity) between types can induce the value-level
conversion functions [3]. They provide an encoding in the polytypic program-
ming language Generic Haskell involving a universal representation of types,
and demonstrate how it can be applied to mappings between XML Schema
and Haskell datatypes. Recursive datatypes are not addressed. Beyond canon-
ical isomorphisms, a few limited forms of refinement are also addressed, but
these induce single-directional conversion functions only. A fixed strategy for
normalization of types is used to discover isomorphisms and generate their
corresponding conversion functions. By contrast, our type-changing two-level
transformations encompass a larger class of isomorphism and refinements, and
their compositions are not fixed, but programmable with two-level strategy com-
binators. This allows us to address more scenarios such as format evolution,
data cleansing, hierarchical-relational mappings, and database re-engineering.
We stay within Haskell rather than resorting to Generic Haskell, and avoid the
use of a universal representation.

6 Future work

We have provided a type-safe formalization of two-level data transformations,
and we have shown its operationalization in Haskell, using various generic pro-
gramming techniques. We discuss some current limitations and future efforts to
remove them.

Co-transformation Cleve et al use the term ‘co-transformation’ for the process
of re-engineering three kinds of artifacts simultaneously: a database schema,
database contents, and application programs linked to the database [6]. Cur-
rently, our can formalizes the use of wrappers for this purpose, where the appli-
cation program gets pre- and post-fixed by induced value-level data migration
functions. We intend to extend our approach to formalize induction of actual
application program transformations, without resorting to wrappers.

18 Cunha, Oliveira, Visser

Coupled transformations Lämmel [11, 10] identifies coupled transformation,
where ‘nets’ of software artifacts are transformed simultaneously, as an impor-
tant research challenge. Format evolution, data-mapping, and co-transformations
are instances where two or three transformations are coupled. We believe that
our formalization provides an important step towards a better grasp of this chal-
lenge.

References

1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed lan-
guage. In POPL ’89: Proc. 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 213–227, New York, NY, USA, 1989. ACM Press.

2. T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira. Strategic term rewriting and its application
to a VDM-SL to SQL conversion. In J. Fitzgerald, IJ. Hayes, and A. Tarlecki, editors, FM,
volume 3582 of LNCS, pages 399–414. Springer, 2005.

3. F. Atanassow and J. Jeuring. Inferring type isomorphisms generically. In Mathematics of
Program Construction, 7th International Conference, MPC 2004, Stirling, Scotland, UK,
July 12-14, 2004, Proceedings, volume 3125, pages 32–53, 2004.

4. Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In ICFP ’02: Proc. 7th
ACM SIGPLAN international conference on Functional programming, pages 157–166, New
York, NY, USA, 2002. ACM Press.

5. M.v.d Brand, P. Klint, and J. Vinju. Term rewriting with type-safe traversal functions.
In B. Gramlich and S. Lucas, editors, Proc. 2nd Int. Workshop on Reduction Strategies in
Rewriting and Programming, volume 70 of ENTCS. Elsevier, 2002.

6. A. Cleve, J. Henrard, and J.-L. Hainaut. Co-transformations in information system reengi-
neering. Electr. Notes Theor. Comput. Sci., 137(3):5–15, 2005.

7. Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In Proc. 3rd ACM SIG-
PLAN International Conference on Functional Programming (ICFP’98), pages 273–279.
ACM Press, 1998.

8. R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor, editors, The Fun of
Programming, pages 245–262. Palgrave, 2003.

9. R. Hinze, A. Löh, and B.C.d.S. Oliveira. ”Scrap your boilerplate” reloaded. In Proc. 8th Int.
Symposium on Functional and Logic Programming (FLOPS), 2006. To appear.

10. R. Lämmel. Coupled Software Transformations (Extended Abstract). In First International
Workshop on Software Evolution Transformations, November 2004.

11. R. Lämmel. Transformations everywhere. Sci. Comput. Program., 52:1–8, 2004. Guest
editor’s introduction to special issue on program transformation.

12. R. Lämmel and W. Lohmann. Format Evolution. In Proc. 7th International Conference on
Reverse Engineering for Information Systems (RETIS 2001), volume 155 of books@ocg.at,
pages 113–134. OCG, 2001.

13. R. Lämmel and E. Meijer. Mappings make data processing go ’round. In R. Lämmel,
J. Saraiva, and J. Visser, editors, Proc. Int. Summer School on Generative and Transfor-
mational Techniques in Software Engineering, Braga, Portugal, July 4–8, 2005, LNCS.
Springer-Verlag, 2006. To appear.

14. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for generic
programming. ACM SIGPLAN Notices, 38(3):26–37, March 2003. Proc. ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI 2003).

Type-safe Two-level Data Transformations 19

15. R. Lämmel and J. Visser. Strategic polymorphism requires just two combinators! Techni-
cal Report cs.PL/0212048, arXiv, December 2002. An early version was published in the
informal preproceedings IFL 2002.

16. R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In Proc. Practical
Aspects of Declarative Programming PADL 2002, volume 2257 of LNCS, pages 137–154.
Springer-Verlag, January 2002.

17. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In J. Hughes, editor, Proc. 5th ACM Conference on
Functional Programming Languages and Computer Architecture (FPCA’91), volume 523
of LNCS. Springer-Verlag, 1991.

18. F.L. Neves, J.C. Silva, and J.N. Oliveira. Converting Informal Meta-data to VDM-SL: A
Reverse Calculation Approach . In VDM in Practice! A Workshop co-located with FM’99:
The World Congress on Formal Methods, Toulouse, France, September 1999.

19. J.N. Oliveira. A reification calculus for model-oriented software specification. Formal As-
pects of Computing, 2(1):1–23, April 1990.

20. J.N. Oliveira. Software reification using the SETS calculus. In Tim Denvir, Cliff B. Jones,
and Roger C. Shaw, editors, Proc. of the BCS FACS 5th Refinement Workshop, Theory and
Practice of Formal Software Development, London, UK, pages 140–171. ISBN 0387197524,
Springer-Verlag, 8–10 January 1992. (Invited paper).

21. J.N. Oliveira. ‘Explosive’ Programming Controlled by Calculation . Technical Report
UMDITR02/98, DI, University of Minho, September 1998. Presented at AFP’98 (3rd In-
tern. Summer School on Advanced Functional Programming), Braga, Portugal.

22. J.N. Oliveira. Data processing by calculation, 2001. 108 pages. Lecture Notes for the 6th
Estonian Winter School in Computer Science, 4-9 March 2001, Palmse, Estonia.

23. J.N. Oliveira. Calculate databases with ‘simplicity’, September 2004. Presentation at the
IFIP WG 2.1 #59 Meeting, Nottingham, UK.

24. S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-based type
inference for GADTs. Submitted to PLDI’06, November 2005.

25. P. Wadler. The essence of functional programming. In Conference record of POPL’92, pages
1–14. ACM Press, 1992.

A Handling recursion

In Section 3.2 we presented an outline of a solution for representing recursive
types and implementing the recursion-elimination rule (16). Here we give the
complete solution.

A.1 Representation of recursive types with explicit fixpoints

To represent recursive types, we introduced an explicit fixpoint operator Mu:
newtype Mu f = In{out :: f (Mu f)}

Here f is intended to be a functor.
Suppose now we want to express a recursive type such as µX.(A × X?).

Unfortunately, Haskell does not provide lambda abstraction at the type level. We
can form the type expression (A, [X]), for some type X , and even ∀x .(A, [x]),

20 Cunha, Oliveira, Visser

but neither expression will do to instantiate f in Mu f . The solution lies in the
introduction of a minimal set of lifted functors:

newtype ID x = Id{unId :: x }
newtype K b x = Const{unConst :: b}
data (g :+:h) x = Inl (g x) | Inr (h x)
data (g :∗:h) x = Pair (g x) (h x)
newtype (g :@:h) x = Comp{unComp :: g (h x)}

Each of these is parameterized with a type argument x that stands for a re-
cursive occurrence. The lifted sum, product, and application functors trans-
port this argument to their argument functors. The identity functor has a con-
structor Id that holds a recursive occurrence. The constant functor has a con-
structor Constr that ignores x . Now we can express our example functor as
Mu ((K A):∗:([]:@:ID)), where A is some constant type.

Using these lifted functors, we can create a generalized abstract datatype
that represents them at the term-level in a type-safe way:

data Fctr f where
ID :: Fctr ID
K :: Type a → Fctr (K a)
(:+:) :: Fctr g → Fctr h → Fctr (g :+:h)
(:∗:) :: Fctr g → Fctr h → Fctr (g :∗:h)
(:@:) :: Functor g ⇒ (∀a.Type a → Type (g a))→ Fctr h → Fctr (g :@:h)

And finally, we can extend the type of type representations Type a with an
additional constructor:

data Type a where
...
Mu :: Dist f ⇒ Fctr f → Type (Mu f)

The class constraint Dist f expresses that we require monads to distribute over
functors — below we will explain Dist in more detail. This additional construc-
tor Mu allows us to represent recursive types at the term level in a type-safe
manner, just as we were already able to do for non-recursive types. For exam-
ple, we can ask the Haskell interpreter to infer the type of a term-level recursive
type6:

> :t Mu ((K Int):∗:(List :@:ID))
Mu ((K Int):∗:(List :@:ID)) :: Type (Mu ((K Int):∗:([]:@:ID)))

The answer tells us that the term indeed represents the intended type.
Finally, we will need a function for applying a functor representation to a

type representation, to obtain a type representation in which the corresponding
non-lifted functor is applied to the represented type:

6 In the actual output infix type constructors are printed as prefix ones.

Type-safe Two-level Data Transformations 21

applyF :: Fctr f → Type a → Maybe (View (Type (f a)))
applyF ID x = return (View (Rep{to = unId , from = Id }) x)
applyF (K a) x = return (View (Rep{to = unConst , from = Const }) a)
applyF (g :∗:h) x = do

(View (Rep g2gx gx2g) gx)← applyF g x
(View (Rep h2hx hx2h) hx)← applyF h x
let rep = Rep (λ(Pair x y)→ (g2gx x , h2hx y))

(λ(x , y)→ Pair (gx2g x) (hx2h y))
return (View rep (Prod gx hx))

applyF (g :+:h) x = do
(View (Rep g2gx gx2g) gx)← applyF g x
(View (Rep h2hx hx2h) hx)← applyF h x
let rep = Rep{to = (g2gx♦h2hx).aux , from = xua.(gx2g♦hx2h)}
return (View rep (Either gx hx))

where
aux (Inl x) = Left x
aux (Inr x) = Right x
xua (Left x) = Inl x
xua (Right x) = Inr x

applyF (g :@:h) x = do
(View (Rep to from) hx)← applyF h x
let rep = Rep (fmap to.unComp) (Comp.fmap from)
return (View rep (g hx))

(f ♦g) (Left x) = Left (f x)
(f ♦g) (Right x) = Right (g x)

Note that the result is not a representation of Type (f a) as such, but a view
on such a type. In this view, the value-level functions are recorded that perform
lifting and unlifting of the functors.

We must point out that our representation of recursive types implies an im-
portant limitation. Note that the functor f in the type representation Mu f is
a function, on which our rules of type Rule have no effect. The once combi-
nator, for instance, does not descend under Mu . In other words, fixpoint types
are opaque for two-level transformation, until the moment that they are instanti-
ated with a particular type using applyF . In practical terms, this means we need
to do de-recursivation before applying other data mapping or format evolution
steps, which is actually common practise in data refinement [20]. Lifting this
limitation is the subject of ongoing work.

22 Cunha, Oliveira, Visser

A.2 Recursion patterns

For data types defined with Mu it is possible to give generic definitions for
the operators fold and unfold , that encode the standard recursion patterns of
iteration and co-iteration [17].

fold :: Functor f ⇒ (f a → a)→ Mu f → a
fold g = g .fmap (fold g).out
unfold :: Functor f ⇒ (a → f a)→ a → Mu f
unfold h = In.fmap (unfold h).h

In the fold definition, parameter g is used to combine the result of the recursive
invocations in order to compute the output of the function. The dual operator
unfold is much less known [7], but is very useful when building values of a
recursive type. The parameter function h is applied to the input and, depending
on the functor, dictates if the generation of the result stops or proceeds. In the
later case it will also output the seeds to be used in the generation of the recursive
substructures of the result.

To define the value-level transformation that takes recursive structures as in-
put, and generates a table representation of it, we will want to perform a stateful
recursive computation. As usual in pure functional programming, we will use a
monad to carry the state information. Therefore, we are interested in a special
kind of fold that returns a monadic computation instead of a pure value.

Given a monad m and a functor f , if it is possible to distribute one over the
other, then it is possible to generically define a recursion operator mfold that
given a value of type Mu f produces a computation of type m a .

class Functor f ⇒ Dist f where
dist :: Monad m ⇒ f (m a)→ m (f a)

instance (Dist f ,Dist g)⇒ Dist (f :∗:g) where
dist (Pair l r) = do {x ← dist l ; y ← dist r ; return (Pair x y)}

...

mfold :: (Monad m,Dist f)⇒ (f a → m a)→ Mu f → m a
mfold g = fold (λx → do {y ← dist x ; g y })

The type class Dist is used to capture the needed distributive property. Note
that this class can easily be instantiated for most functors — the instance for
products is given as example. The implementation of the monadic fold uses
dist to combine all recursive computations into a single computation containing
the pure recursive results. This computation is then passed to the parameter g in
order to produce the final monadic result.

Type-safe Two-level Data Transformations 23

A.3 Two-level hierarchical-relational mapping

Earlier, we introduced the following type synonym for the target structure of
recursion elimination:

type Table f = (Map Int (f Int), Int)
Thus, our implementation of rule (16) refines a type Mu f to a type Table f ,
which stores a map from pointers to representations of substructures, and a
pointer to the root structure.

In the forward-value level function, we will use the folklore state monad,
denoted State s for a give state s , to carry the table that is being generated
during recursion. The following functions on state monads are relevant:

get :: State s s
put :: s → State s ()
execState :: State s a → s → s

Function get reads the current state, and put replaces the state by the given
parameter. Given an initial state, execState executes a stateful computation and
outputs the final state.

Using the state monad, and the recursion patterns defined earlier, we imple-
ment the forward value-level function recelim as follows:

recelim :: Dist f ⇒ Mu f → Table f
recelim mu = execState (mfold aux mu) (Map.empty ,−1)

where
aux :: f Int → State (Table f) Int
aux i = do

(t , k)← get
put (Map.insert (k + 1) i t , k + 1)
return (k + 1)

The initial state of our computation is a table containing an empty map, and
the initial key is set to −1. Every time a new key is needed to store an entry,
this component of the state is incremented in order to guarantee key uniqueness.
The computation that produces the final table is an mfold which, at each node,
performs the following operations: first it reads the state in order to get the
current table; then a new entry with the current node is added to the table using
a fresh key; finally the fresh key is returned in order to replace this node in its
enclosing term.

The converse operation recintro builds a recursive structure from a table7.
It is defined using unfold :

recintro :: Functor f ⇒ Table f → Mu f
recintro = unfold aux

7 Notice that this operation may diverge if there are lost keys or circularity.

24 Cunha, Oliveira, Visser

where
aux :: Functor f ⇒ Table f → f (Table f)
aux (t , k) = fmap (λk → (t , k)) (fromJust $ Map.lookup k t)

Thus, in order to rebuild a node of the original recursive type, we first lookup
its corresponding value in the table. Function lookup returns a Maybe value,
and since we assume that all keys exist, function fromJust :: Maybe a → a
is used to remove the Just constructor. Remember that each original node is
stored in the table with its recursive substructures replaced by the keys that
point to the respective entries in the table. As such, it suffices to use the same
table to progress with the generation of a particular substructure, provided that
the original entry key k is first replaced with the key r that points to the entry
containing that substructure.

With these value-level functions in place, we can define the rule for recur-
sion elimination itself:

fixastable :: Rule
fixastable (Mu f) = do

(View (Rep to fr) fInt)← applyF f Int
let rep = Rep ((Map.map to on id).recelim)

(recintro.(Map.map fr on id))
return (View rep (Prod (Map Int (fInt)) Int))

fixastable = Nothing
(f on g) (x , y) = (f x , g y)

Note that the functor f of the recursive structure Mu f gets applied to the type
Int to obtain the type of values in the pointer-value map.

With the fixastable rule, we can augment the toRDB rule, used in the data
mapping example of Section 4.2, to handle also recursive types:

toRDB :: Rule
toRDB = many (once fixastable) .

many (once enum2int) . removetags . flatten
The toRDB rule will remove fixpoints, then convert enumeration types to inte-
gers, remove tags, and apply the remaining data mapping rules, as captured in
flatten .

A.4 Application scenario: derecursivation of employee hierarchy

Suppose a hierarchy of employees, specifying their names, jobs, and subordina-
tion relationships is stored in XML files that conform to the following schema8:

8 This example schema was adapted from the online .NET Framework Developer’s Guide
(http://msdn.microsoft.com/library/).

Type-safe Two-level Data Transformations 25

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Emp" type="EmployeeType" />
<xs:complexType name="EmployeeType">

<xs:sequence>
<xs:element name="Emp" type="EmployeeType" />

</xs:sequence>
<xs:attribute name="Job" type="xs:string" />
<xs:attribute name="FirstName" type="xs:string"/>
<xs:attribute name="LastName" type="xs:string"/>

</xs:complexType>
</xs:schema>

Note that this schema is recursive in the complex type EmployeeType. We
can capture this schema with the following nominal Haskell types:

data Emp = Emp EmployeeType
data EmployeeType = EmployeeType{

emp seq :: [EmployeeType],
job :: String ,
firstName :: String ,
lastName :: String }

As an example, we can represent (the tip of) the European Commission hierar-
chy as a value of type Emp9:

ec :: Emp
ec = Emp $ EmployeeType{

emp seq = [
EmployeeType{

emp seq = [
EmployeeType [] "Driver" "Asdren" "Juniku",
EmployeeType [] "Head of Cabinet" "Ben" "Smulders"],

job = "Competition",
firstName = "Neelie",
lastName = "Kroes"},

EmployeeType [] "Trade" "Peter" "Mandelson"],
job = "President",
firstName = "Durao",
lastName = "Barroso"}

In the example we mix Haskell’s record constructor syntax (with braces and
field names) and its plain constructor syntax.

With our structural representation of types, the same schema is captured as
follows:

9 See http://europa.eu.int/comm/commission barroso/index en.htm.

26 Cunha, Oliveira, Visser

emp = Tag "Emp" employeeType
employeeType = Mu employeeTypeF
employeeTypeF =

((List .Tag "Emp"):@:ID):∗:
(K $ Tag "job" String):∗:
(K $ Tag "firstName" String):∗:
(K $ Tag "lastName" String)

Note that the Mu operator and lifted functors are used to specify the recursive
part. A conversion function from the nominal type to the structural type is read-
ily specified, using the unfold co-recursion pattern:

emp2fix (Emp et) = unfold aux et
where

aux (EmployeeType s e f l) = Pair (
Comp (map Id s))(Pair (
Const e)(Pair (
Const f)(
Const l)))

By applying the emp2fix function to a particular hierarchy such as ec it becomes
amenable to two-level transformation.

In particular, we can apply the toRDB rule to derive a relational database
representation for the European Commission. First, as usual, we perform the
type-level transformation:

> let (Just vw) = toRDB emp
> putStrLn $ showType vw
(Prod (Prod Int (

Map Int (Prod (Prod String String) String))) (
Map (Prod Int Int) Int))

Thus, the resulting type is the product of an integer (the key of the root of the
hierarchy), a table of employee attributes (mapping an integer key to a 3-tuple of
strings), and a table to represent employee subordination relationships (mapping
a compound of the boss’ key and a subordinate’s position number in his/her list
of subordinates to that subordinate’s key).

The forward value-level transformation can be carried out as follows:
> let rdbType = Prod (Prod Int (Map ...)) (Map ...)
> let (Just ecRDB) = forth vw rdbType $ emp2fix ec
> putStrLn $ gshow rdbType ecRDB
((4, {

0 := (("Driver","Asdren"),"Juniku"),
1 := (("Head of Cabinet","Ben"),"Smulders"),
2 := (("Competition","Neelie"),"Kroes"),

Type-safe Two-level Data Transformations 27

3 := (("Trade","Peter"),"Mandelson"),
4 := (("President","Durao"),"Barroso")}), {
(2, 0) := 0,
(2, 1) := 1,
(4, 0) := 2,
(4, 1) := 3})

The backward value-level transformation may be useful, for instance to dynami-
cally generate HTML pages for the European Union portal from a database with
employees. It goes as follows:

> let (Just ec′) = back vw rdbType ecDB
> putStrLn $ gshow emp ec′

Emp = (
[Emp = (

[Emp = ([], (
job = "Driver", (
firstName = "Asdren",
lastName = "Juniku"))),

Emp = ([], (
job = "Head of Cabinet", (
firstName = "Ben",
lastName = "Smulders")))], (

job = "Competition", (
firstName = "Neelie",
lastName = "Kroes"))),

Emp = ([], (
job = "Trade", (
firstName = "Peter",
lastName = "Mandelson")))], (

job = "President", (
firstName = "Durao",
lastName = "Barroso")))

Thus, after being flattened and stored into a relational database, data can be
restored into its original hierarchical form.

B Using dynamic types to unleash data migration functions

In Section 3.4 we explained a staged approach to access the data migration func-
tions encapsulated in a view: in a first stage the string representation of the target
type is obtained, and in a second stage this representation is incorporated in the
source code, and used in combination with functions forth and back . Though

28 Cunha, Oliveira, Visser

this staged approach works fine for most scenarios, one may alternatively re-
sort to dynamic types to perform type-level and value-level transformation in
a single stage. Dynamic types were introduced in statically typed language for
precisely such purposes [1].

We will rely on a type safe implementation of dynamic types in statically
typed languages [4], but strongly simplified by use of GADTs (cf [24]). Given
that Type already provides type representations it is fairly easy to define a dy-
namic type:

data Dynamic where
Dyn :: Type a → a → Dynamic

Since the type variable a is implicitly existentially quantified in the Dyn con-
structor, the Dynamic type effectively hides the type of the value it contains.
Note that we can turn any generic (type-indexed) function of type ∀a.Type a →
a → b into a function on a dynamic value:

applyDyn :: (∀a.Type a → a → b)→ Dynamic → b
applyDyn f (Dyn ta a) = f ta a

Thus, we can process a value encapsulated in Dyn without static availability of
its type, by using a function indexed by type.

We can now define variations on the statically typed forth and back func-
tions that employ dynamic types:

forthDyn :: View (Type a)→ a → Maybe Dynamic
forthDyn (View rep b) x = return (Dyn b (to rep x))
backDyn :: View (Type a)→ Dynamic → Maybe a
backDyn (View rep b) (Dyn c x) = do

Eq ← teq b c
return (from rep x)

Thus, rather than accepting/returning a value of a given target type b, these
functions accept/return that value encapsulated together with its type inside the
Dyn constructor.

The net effect of using forthDyn is to postpone the need for knowledge of
the target type until after application of the value-level transformation function.
Subsequently, we have at least two options for further processing the resulting
Dynamic. One option is to apply a type-indexed function, via applyDyn . For
instance, we can apply the generic show function:

> let (Just vw) = toRDB emp
> let (Just ecRdbDyn) = forthDyn vw $ emp2fix ec
> putStrLn $ applyDyn gshow ecRdbDyn
((4, {

0 := (("Driver","Asdren"),"Juniku"), ...)}), {
(2, 0) := 0, ...})

Type-safe Two-level Data Transformations 29

The other option is to apply a backward value-level transformation, via backDyn:
> let (Just ec′′) = backDyn vw ecRdbDyn
> ec′′ ≡ emp2fix ec
True

Here we applied the backward value-transformation from the same view vw that
we used to go forward. In general, any view with the same target type can be
used. Assume, for example, that we define a two-level transformation from a
format without subordinate relations:

> let empList = List (Prod (Tag "function" String) (Prod (
Tag "first" String)(
Tag "last" String)))

> let (Just vw ′) = (toRDB .
(addfieldl Int (−1)) .
(addfield (Map (Prod Int Int) Int) Map.empty)

) empList
Here, addfieldl is a variation on addfield that adds a new field to the left, rather
than the right. We can supply this view to backDyn to retrieve values from the
database into the list format:

> let (Just el) = backDyn vw ′ ecRdbDyn
> putStrLn $ gshow empList el
[(function = "Driver", (first = "Asdren", last = "Juniku")),
...,
(function = "President", (first = "Durao", last = "Barroso"))]

Thus, we can store hierarchies of employees (rich format) into a relational
database, and retrieve lists of names and functions (poor format), without any
static knowledge of the intermediate database schema.

Note that the rich and the poor format are different in the names of the
fields, and in the way products are nested. Since the toRDB transformation
removes tags and performs association of products to the left, the composite
value-level transformation will match formats modulo names and associativity.
This is reminiscent, but potentially more general than canonical isomorphism
calculations [3].

Note also that the conversion between the hiearchical format and the list
format is a specific case of the type of transformations discussed in [21].

