Quality Assessment for Embedded SQL

Huib van den Brink
Utrecht University
The Netherlands
Email: hjbrink@cs.uu.nl

Abstract—The access of information systems to underlying
relational databases is commonly programmed using embedded
SQL queries. Such embedded queries may take the form of string
literals that are programmatically concatenated into queries to
be submitted to the DBMS, or they may be written in a mixture
of the syntax of SQL and a host programming language.

The particular ways in which embedded queries are con-
structed and intertwined with the surrounding code can have
significant impact on the understandability, testability, adapt-
ability, and other quality aspects of the overall system.

We present an approach to tool-based analysis of the quality
of systems that employ embedded SQL queries. The basis of the
approach is the identification and reconstruction of embedded
queries. These queries are then submitted to a variety of analyses.
For example, we chart the relationships of queries to the
surrounding code and, via the control and data flow of that
code, to each other. Also, we define a suite of metric extractors
for embedded queries.

Through a number of case studies, involving PL/SQL, Cobol,
and Visual Basic, we show how the results of these analyses can
be employed to make an assessment of various quality aspects
related to the use of embedded queries.

I. INTRODUCTION

Many applications depend on a database system for persis-
tent storage of data. The communication and relation with the
database system is usually expressed via the Structured Query
Language (SQL). The SQL queries are used to access and
manipulate data in the database. To integrate the SQL queries
into the program code, modern object-oriented systems tend to
make use of a some kind of object-relational mapping (ORM)
framework, such as Hibernate (for Java) or DataObjects.net
(for C#). These frameworks offer the object-oriented program-
mer a degree of abstraction over the relational data. But many
systems do not rely on the abstraction offered by an ORM
framework and instead integrate queries into host programs
by some form of embedding.

Some programming languages provide a dialect of SQL as
sublanguage, allowing queries to be embedded in designated,
keyword-marked block. For example, queries can be embedded
in COBOL programs inside the EXEC SQL and END-EXEC
keywords, as illustrated in Listing 1. Inside the query text, the
variables of the host program can be referred to when prefixed
with a colon.

Other programming languages do not provide SQL as a
sublanguage but instead queries are constructed as textual
strings in the host language, before being passed to a library
routine that executes them. A Java snippet that illustrates this

Rob van der Leek
Software Improvement Group
The Netherlands
Email: r.vanderleek @sig.nl

Joost Visser
Software Improvement Group
The Netherlands
Email: j.visser@sig.nl

MOVE WD-BEG TO WD-BEG-SER-ID.
MOVE WD-END TO WD-END-SER-ID.
EXEC SQL
SELECT COUNT (~*)
INTO :WD-COUNT
FROM TB110_SER
WHERE T110_SER_ID
BETWEEN :WD-BEG-SER-ID AND :WD-END-SER-ID
END-EXEC.
IF SQLCODE = ZERO
DISPLAY "NUMBER OF SERIES PRESENT : " WD-COUNT
END-IF.
Listing 1. Embedding of an SQL query in COBOL, using extended syntax.

String gInterest = "SELECT EFFECT_YR_INTEREST "
+ " FROM " + db.TblSavings
+ " WHERE CREDIT_LIMIT_LOW <= " + LoanSum
+ " AND CREDIT_LIMIT_HIGH > " + LoanSum;
Connection conn = db.getConnection();
Statement st conn.createStatement () ;
ResultSet rsQInterest = st.executeQuery (glnterest);

Listing 2. Embedding of an SQL query into Java, using string concatenation.

approach is shown in Listing 2. String concatenation is used
to glue query fragments together with host language variables.

With either form of embedding, data access can be coded
according to many different styles and techniques. Different
choices can be made, for instance, regarding the use of host
variables, the distribution of functionality over queries and host
programs, the variation points in pre-defined query templates,
the reuse of these templates to construct different queries,
and of course the structure of the queries themselves. These
choices may have a significant impact on the quality of the
system as a whole.

In this paper, we present an approach to tool-assisted
quality assessment of the data access aspects of systems that
employ embedded SQL. We are mainly interested in the
maintainability characteristic of software product quality [1],
but other characteristics, such as reliability and efficiency
are also touched upon. Apart from the embedded queries
themselves, we analyze the interconnections of the queries
with the surrounding code of the host programs. The tool
support has been developed as an extension to the Software
Analysis Toolkit which the Software Improvement Group
(SIG) employs for performing software risk assessments [2],
[3] and software portfolio monitoring [4].

The paper is structured as follows. In Section II we explain

the techniques we employ for distilling individual queries
from program code. In Section III, we discuss how various
relationships can be detected between host programs, embed-
ded queries, and database tables. In Section IV, we defined
measures to quantify quality aspects of embedded queries.
Section V presents the results of case studies performed on
several business critical software applications. Finally, Sec-
tion VI discusses related work, and Section VII concludes.

II. DISTILLING QUERIES FROM HOST PROGRAMS

As indicated in the introduction, two main forms of embed-
ding queries into host languages can be distinguished: queries
constructed as strings of the host language; and queries located
in designated blocks, using a syntactic extension to the host
language. For each form we will explain how we distill queries
from host programs to prepare for further processing.

A. Queries in extended syntax

To extract embedded queries from host programs written in
the syntax of the host language extended with the SQL query
syntax, two approaches can be taken: (i) merge the parsers
of host language and query language, or (ii) cut query blocks
out of host programs by lexical analysis, and apply the host
language parser and query language parser separately.

The first approach is appropriate when high-quality gram-
mars are available for both languages, in a compositional
syntax definition formalism. This is the case, for instance, for
SQLJ, which extends the Java syntax with SQL [5] and for
PL/SQL, which extends SQL with a procedural programming
language. For these languages, SIG has previously developed
full context-free grammars in ANTLR [6] and SDF [7].

For the COBOL language, on the other hand, this a
notoriously difficult precondition to satisfy. Many different
dialects of COBOL exist, and it requires preprocessing before
parsing. Efforts to recover a COBOL grammar suitable for
reverse engineering purposes from language manuals have
stopped short of dealing with preprocessor issues and do not
include the SQL language extension [8]. Therefore, reverse
engineering tools commonly rely on island grammars [9] or
on non-context free parsing to obtain a degree of independence
of dialect differences and language extensions.

For COBOL as well as Visual Basic 6 (VB6), we have
opted for the last approach. This has allowed us to reuse our
existing parsing and analysis functionality for COBOL, VB6,
and SQL. The previously developed SQL grammar covers a
variety of dialects, including DB2, PL/SQL, T-SQL, and the
ANSI-92 standard.

Our analysis tools are programmed in Java, using the
JJForester visitor generator [10] to generate syntax tree support
from SDF grammars. We have used ANTLR for tokenization
of host programs to prepare for embedded query extraction.

B. Queries constructed as strings

For the string concatenation case, when queries are con-
structed out of strings, many constructs have to be taken into
account. The issue to be addressed when gathering queries in

these situations, is the great freedom of expression. The ways
the queries are specified are limited only by the creativity of
the developer. However some constructs are more common
than other ones. Therefore a trade-off is made in our frame-
work to support the most common constructs, while allowing
addition support for more specific structures with minimal
effort.

Our query reconstruction mechanism builds up chains of
queries objects. Each query object stores the source location
from which it was distilled, the reconstructed SQL program
text and corresponding AST, and information about the names
and types of variables as far as can be reconstructed. Data and
control flow is analyzed to arrive at the appropriate chaining
of queries.

To start the reconstruction process, all strings present in
the source code are collected and inspected. We then focus
on those strings that start with one of the case insensitive
keywords: SELECT, INSERT, UPDATE, DELETE, CREATE,
ALTER, or DROP. These strings are used as seeds for a
backward flow analysis that leads us to the host program
variable to which the query string is assigned.

Subsequently, the forward flow is followed from these
variables is traced to gather all strings that represent the string
fragments that are composed to form a query template.

Our reconstruction mechanism can be configured for dif-
ferent programming languages by supplying appropriate ar-
guments for various string concatenation operators. For com-
bining two strings for instance, the operators +, | | or & are
provided for respectively Java, PL/SQL and Visual Basic. The
same holds for operators like += and &=. Also the ending of
a statement is passed as a parameter, i.e. ; for Java and _\n
for Visual Basic.

To reconstruct the types of variables, we follow use-def
chains to their declaration sites. Where available, database
schema information is also taken into account. Some amount
of constant propagation is used to discard variables that in fact
always get instantiated to the same values. When conditionals
occur in the control flow during string concatenation, several
alternative queries are constructed.

While our approach leaves room for false positives, i.e.
query parts not used as a query, in practise it turned out to be
very effective. More details on how to reconstruct queries are
given in [11].

III. DETECTING RELATIONSHIPS

Once embedded queries have been distilled from host pro-
grams, queries and programs can be analysed to detect several
relationships between tables, host program, and queries. We
discuss five kinds of relationships:

o Access: which programs access which tables?

o Duplication: how similar are queries to each other?

o Control: does the result of one query control execution

of other queries?

o References: do programs establish references between

tables (programmatic joins)?

o Deletion: do programs encode cascading deletes?

TABLE I
EXAMPLE OF A CRUD TABLE.

Create | Read | Update | Delete
DONE X
LOG X
QUEUE X X
RATES X
QUEUE <+ -
—> DONE
--
ORDERS , @ RATES
LOG

Fig. 1. Example of a CRUD graph. Dashed arrows indicate delete operations.
Arrows from tables to programs represent selection, while arrows from
programs to tables represent updates or inserts.

A. Access

A commonly used device to summarize the access of a
program to a database is by the construction of so-called
CRUD tables. CRUD describes the basic operations of a
database, and stands for Create, Read, Update and Delete.
Examples of these operations are, respectively: inserting new
rows, selecting data out of the database, updating information,
and deleting data. An simple CRUD table is shown in Table L.
Thus, the four columns of a CRUD table stand for the four
types of operation, while each row belongs to a different
database table. CRUD tables can be constructed at different
levels of abstraction: per query, per program unit (e.g. method
or procedure), or per module (e.g. class or file or package).
When data is accessed via views, the names of the underlying
table should be resolved and entered into the CRUD table.

The CRUD information can also presented in a be different
way, to give an abstract overview of the (potential) dataflow
within a system. An example is presented in Figure 1.

B. Duplication

To detect queries that are variants of each other, the distilled
queries are compared for equivalence. While some degree
of duplication among queries is acceptable [12], abundance
of (nearly) identical clones is detrimental to the system’s
maintainability.

In order to determine to what extent the same data re-
sources or properties are used, a percentage of equivalence is
computed for each pair of queries. Here equivalence means
more than syntactic equality. The objective is to measure
semantical equivalence as much as possible, for instance com-
paring the conditional parts of two queries in a commutative
way. Comparisons are made in two steps. First, aliases are
resolved to obtain a query AST that reflects the database
structure. Second, the various query parts are compared.
For instance when comparing WHERE a = b AND c = d
with WHERE a = b AND ¢ = e a 25% of inequality is
registered for the WHERE part. The comparison is commu-
tative, thus a = b is considered 100% equal to b = a. The

SELECT MH_MN_SEQ.nextval
INTO df$rec.ID
FROM DUAL;

IF df$rec.ID IS NULL THEN
BEGIN
SELECT MH_MT_HUIZ.JND_GOEDGEKEURD
INTO df$jnd.ID

FROM DUAL;
END;
END IF;
Listing 3. The result of one query controls the execution of another.
result = Database.Get ("SELECT userId FROM User" _

& " WHERE name = ’"Alice’");

Database.Get ("SELECT street FROM Address " _
& " WHERE user_id = " & result.userId)

Listing 4. A programmatic join in Visual Basic 6.

duplication percentages of query parts are propagated to the
query as a whole to obtain a single percentage per query.

C. Control

An IF statement condition relying on the result of a
query, and which is regulating the execution of another query,
imposes a relation of execution control of one query over
another. An example is given in Listing 3. First a SELECT
query is executed and the result is stored in df$rec.ID.
The IF condition then determines if another query is to be
executed or not.

Another example of one query controlling the execution of
another is when a query result is used in a loop conditional,
where the loop body contains another query. An example of
such a control relation is given in [11].

D. References

References between tables are normally declared as foreign
key relationships, which are then exploited to join multiple
tables in a query. When queries are embedded into host
programs, one can circumvent foreign key declarations and
join queries by using the result of one embedded query as a
parameter in a second embedded query. An simple instance
of such as programmatic join is shown in Listing 4. When
the result of the first query is a collection rather than a single
row, then cursors or looping constructs of the host language
are typically used to perform the join.

We detect programmatic joins and other referential relation-
ships between tables by looking for certain patterns appearing
in the query chains. The central focus for this analysis are the
query results. When query results flow as arguments into the
construction of other queries, a relationship may exist.

E. Programmatic cascading deletes

A common scenario with respect to foreign keys, is that
when the item referenced is removed, the related information
also should be removed. For example, when a user has a

—-— Retrieve the user to remove
SELECT id
INTO usr_id
FROM User
WHERE name = ’'Alice’;
—-— Remove the user
DELETE FROM User
WHERE name = 'Alice’;

—— Remove the cars the user owns
DELETE FROM Car
WHERE usr = usr_id

User UserAddress Address
id <— usr _’—> id
name adr street
number

Fig. 2. Database schema for many-to-many relationship.

Listing 5. A programmatic cascading delete.

car, and the user is removed out of the system, the related
car also should be removed. This is solved by the con-
struct of a CASCADE DELETE. When a CREATE TABLE or
ALTER TABLE defines a column as being a foreign key by
using the keyword REFERENCES, and thus referencing some
primary key, the ON DELETE CASCADE option can be set.
This option ensures that the rows referencing some primary
key are removed when that primary key itself is removed.

For our analysis, this means that DELETE queries them-
selves do not contain information about if the delete command
is cascaded or not. However, if the database scheme itself is
present, these deletes related to the cascade behaviour are in
any case being flagged as desirable situations.

Rather than relying on the CASCADE DELETE construct,
declared in the database schema, some systems encode the
same behaviour explicitly in the host programs. Our frame-
work contains a mechanism for detecting such programmatic
cascading deletes.

As an example of a typical programmatic cascading delete,
consider the situation where a User can have multiple Cars,
while a Car can only belong to one User. When the User is
being removed, the Car must also be deleted. A programmatic
way of achieving this is shown in Listing 5. As can be seen,
only three points can vary here. The first DELETE query can
reference either the id already retrieved, or state the same
criterion as the SELECT query does. The second optional
variation is the number of DELETE queries following the
SELECT query, since other items referencing the User, in the
same way the Car does, can be removed in the same way. The
last variation point is the order of the DELETE queries. They
can go in any order, as long as the SELECT precedes them.

A similar pattern can be detected in the situation where
a cascading delete is programmed for a many-to-many rela-
tionship. Assume, for example, that a User can have multiple
Addresses, while an Address can belong to multiple Users.
In a database scheme this many-to-many relation is typically
represented with a cross-reference table, as illustrated in Fig. 2.
The scheme contains a user, which exists of a name, and the
address that is a street name and the number of the house. The
usr and adr in the cross reference table UserAddress
respectively reference the id of the user and the id of the
address. When an Address is being deleted, also all related

—— Find address to delete
SELECT id

INTO adr_id

FROM Address

WHERE street = ’Great Ocen Road’
AND nr = 13;

—— Retrieve all users living at that address
FOR usr_id IN
(

SELECT usr
FROM UserAddress
WHERE adr = adr_id
)
LOOP

—-— Get the nr of addresses the user has
SELECT COUNT ()

INTO adr_amount

FROM UserAddress

WHERE usr = usr_id;

—-— Remove users only if the user
—— no longer has any address
IF adr_amount < 2 THEN
DELETE FROM User
WHERE id = usr_id
END IF;
END LOOP;

—-— Remove foreign keys
DELETE FROM UserAddress
WHERE adr = adr_id;

—— Remove address
DELETE FROM Address
WHERE id = adr_id;

Listing 6. Delete a many-to-many relation.

Users should be deleted out of the system, but only if they no
longer have any Address left.

Listing 6 shows how this cascading delete can be achieved
programmatically. First the id of the address to be removed
is obtained. Then for each user living at that address the
number of associated addresses is counted. If the user only
has one address, which is going to be removed, the user
itself is removed. Then, all references to the address are
removed. Finally the address itself is removed. ‘Thus, first
three SELECT queries are encountered placing their results in
the variables adr_id, usr_id and adr_amount. Then the
three DELETE queries use the first two parameters. The third
parameter only is used for control flow. All queries reference
only one table.

Generalizing these observations, the following pattern de-
scribes a programmatic cascade delete operation: A delete
query using data from the result of a select query, followed
or preceded by one or more other delete queries (that not

TABLE I
NUMBER OF OPERATIONS PER FILE.

1] = [F3) e e
&) [B | BB |x

5| 5] < | @ | g E A

= 0 Q|2 |=g|&e|9

£} Z 0y £} 24 = 9

% = D |lalo|<|a

TCDMUY07.COB | 14 | 11 | 25 | 6 | O | O | O

PJT_PARAM.trg | O 0 0 |0[2]0]0

necessarily use data from a select query), implies an operation
performed by the host language fulfilling the semantics of
a cascade delete. This pattern is detected in the chains of
embedded queries that have been distilled..

IV. QUANTITATIVE QUERY MEASURES

To support an objective estimation of the quality of systems
with embedded SQL queries, we have defined and imple-
mented a series of quantitative measures. We will discuss a
representative selection of these. Mapping such quantitative
measures to quality aspects as defined for example by the ISO
9126 quality model [1] is discussed elsewhere [3].

A. Occurrence measures

1) Number of queries: We count the number of distilled
embedded queries per source code file. Aggregated numbers
per package, system layer, or other group of files can also be
presented. These numbers provides a global insight into the
embedded query usage of the system.

Files situated in the persistence layer are expected to contain
queries, while for the domain and graphical user interface layer
this is highly undesirable. Another indication is being retrieved
about how centralized the handling of the queries is. Having
the queries about anywhere in the system indicates a poor
separation of concerns at architectural level, which does not
benefit maintainability.

2) Number of operations: Embedded queries can be cate-
gorized by the type of operation they perform. This catego-
rization can be defined in several ways. We present the number
of each query operation type per file, as shown in Table II.
The number of operations can also be aggregated per group
of files such as those belonging to a package or system layer.

The create, alter, and drop operations should be expected to
occur in lower numbers and more centralized than the select,
insert, update, and delete operations.

3) Number of string queries: For languages that allow
embedded queries by means of an extended syntax, such as
PL/SQL and COBOL, we measure how many queries are
constructed by concatenation of strings. We expect this number
always to be 0, but as we will see in Section V, this is not
always the case.

B. Variation points

Embedded queries are typically templates with variation
points indicated by host variables. These variation points give
rise to several measures.

SELECT name, street, phone
INTO :name, :street, :phone
FROM User
WHERE id = :uid
Listing 7. A query with 3 result variables and 1 input variable.

CURSOR cur
Is

SELECT id, name

FROM User;
Listing 8. A cursor query with 2 select items but only one result variable.

1) Number of result variables: This measurement counts
the number of result variables that are used to store the query
result in. For example, the query in Listing 7 contains three
result variables, i.e. the : name, : street and :phone. This
measure is not always equal to the number of select items, i.e.
the columns selected for the query result, in particular when
cursors are used. The PL/SQL example of Listing 8 has two
select items, but only one result variable, viz the cursor cur.

Excessively high numbers of result variables may indicate
queries that are difficult to maintain.

2) Number of (unique) input variables: Input variables may
be used more than once in a query, so we can both count the
unique input variables, or just the number of holes in the query,
without correcting for double occurrences.

We find that the non-corrected measure is a better indica-
tor for query complexity, since double occurrences of input
variables make queries less understandable and adaptable.

3) Number of variation points per query part: Variables in
a query and its subqueries can be categorized by the query
part in which they occur. We distinguish the following query
parts, ordered from common practise to potentially harmful:

o Variable criterion - WHERE clause

e Variable additional criterion - HAVING clause

e Variable result column - SELECT item

e Variable grouping - GROUP BY cause

e Variable table - FROM clause
Table III shows the measurement results for some of Listings
in this paper.

Using variables in the WHERE clause is common prac-
tise. Variability in the HAVING clause is uncommon, but
acceptable. The selected columns and the columns by which
grouping takes place are usually fixed. Finally, varying the

TABLE III
NUMBER OF VARIATION POINTS PER QUERY PART

>
m
O | B
M|l =0 | .
[H e5] D =
H|l>|4a|o| o
o] <] o o
= jasi 1] O] [
Listing 1 | 2
Listing 2 | 2 1
Listing 4 | 1
Listing 6 | 5

table queried is almost always undesirable, because such
variation points are more difficult to understand and harder
to test.

Inspection of the top scoring queries in each column can
rapidly reveal problematic queries in an application.

C. Measures related to query structure

1) Number of tables used: A simple measurement for
complexity is performed by counting the number of tables
used by each query. The more tables used, the more complex
the query gets, because of the many joins and nestings they
are forced to use. Instead of inspecting the FROM clause, this
information is derived from the previously constructed CRUD
tables (see Section III-A).

Note that complex queries, in terms of number of tables
used, are not necessarily undesirable. In fact, if the alternative
to query complexity is to shift complexity to the host program,
e.g. by introducing programmatic joins, complex queries may
be preferable from the point of view of performance and
maintainability.

2) Number of nested queries: A nested query is an SQL
SELECT statement that is placed in the predicate of any other
SQL statement. We count the number of nested queries per
embedded query location.

For the usage of nested queries, each level deeper implies
a significantly increased complexity. The result of the nested
queries are transient, which makes the entire query harder to
understand and to test. This increased complexity however
could be taken for granted when the performance is benefiting
from this construct. The query optimizer of the DBMS may
be able to apply particular optimizations to the query with
nested subquery, but not to the two queries separately. Also,
removing nested queries may just result in shifting complexity
to the host language.

3) Number of UNION queries: This measurement counts
the number of used UNION and UNION ALL keywords.

Union queries are potentially detrimental to performance,
and should be used sparingly.

4) The number of joins used: To obtain an exact count of
the numer of joins in embedded queries, schema information
is needed [11], but this information is not always available. A
rough count can be obtained simply by counting the number of
JOIN keywords present. Alternatively, the number of tables
referenced in the FROM clause can be taken as a substitute
measure (see IV-Cl1). After all, the tables specified there
normally are connected in some way in the criterion part of
the SELECT query.

D. Measures of relations between queries

1) Equality: As explained in section III-B, for each query
the equality with respect to all the other queries is computed.
For each pair of two queries, the equality is expressed as
a number between 0% and 100%. Based on these equality
numbers for query pairs, we derive two measures to quantify
individual queries.

e Maximum: The first measure takes for each query its
highest equality percentage with respect to some other
query. With this measure, the queries that show the most
resemblance to others obtain the highest scores.

e Sum: The second measurement sums up all equality
percentages for a given query. With this measures, queries
that present similarity to many other queries score high-
est.

Suppose a system contains (i) a query that is 100% identical
to some other query, and 0% identical to all others, and (ii) a
query that has 10% similarity to 15 other queries. When taking
the maximum, the first query scores higher (100 vs. 10), but
when taking the sum, the first query scores lower (100 vs.
150).

High scores for equality measures may indicate a lack of
internal reuse in the application. Rather than repeating the
same or similar queries in many different places, a single,
parameterized query should be embedded in a subroutine that
is subsequently invoked from different host programs.

2) The number of depending queries: Multiple INSERT or
DELETE queries can use data obtained by one SELECT query
as is explained in the Sections III-C (control dependencies),
III-D (programmatic joins) and III-E (programmatic cascading
deletes). The analysis results these sections constructed, is
used by this measurement of dependent queries. For the
SELECT queries it is counted how many other queries there
are, that use its query result, creating a dependency on the
particular SELECT query.

The queries not producing a result, i.e. not retrieving
information out of a database, do not have this type of
dependency, because they just perform actions. Their result,
i.e. side effecting, is not used directly as input for other
queries.

V. CASE STUDY

The presented tool support is suitable for analysis of queries
embedded in many different programming languages, includ-
ing PL/SQL, COBOL, Visual Basic 6, and Java. Furthermore,
the tool support is easily extensible to other language.

We performed case studies on the following business critical
software systems:

« PL/SQL source of a bank

e PL/SQL source of an energy supplier

o COBOL source of a bank

« Visual Basic 6 source of a telecom company
The two banks mentioned here refer to distinct banks. In
the next two sections the results of the PL/SQL source of
the energy supplier and those of the COBOL source will be
discussed briefly. A more complete overview can be found
elsewhere [11].

A. PL/SQL system of energy supplier

For the energy supplier, Table V lists the results of the
occurrence measurements for the entire system, and for three
files separately. Quite some queries were present and, as
expected, most of them were of the type SELECT. Having

TABLE IV
MEASUREMENTS OF THE PL/SQL SOURCE

file | line | res vars vars nesting union join tables equality dependencies
dump444.out 178 59 2 0 0 0 1 97% 0
dump359.out 166 0 66 1 0 0 11 9% 0
dump249.out 136 0 20 4 0 0 1 69% 0
dump98.out | 2692 0 10 0 2 0 2 81% 0
dump65.out 832 0 33 0 0 0 18 653% 0
dump296.out | 3349 0 17 0 0 0 2 3302% 0
dump218.out | 1353 2 3 0 0 0 1 186% 37
dump65.out | 1369 0 2 0 0 0 2 351% 0
TABLE V TABLE VI
OCCURRENCE MEASURES FOR A PL/SQL SYSTEM. OCCURRENCE MEASUREMENTS FOR A COBOL SYSTEM.
amount SEL INS UPD DEL string amount SEL INS UPD DEL
All | 5475 3427 787 912 245 104 All 496 282 65 115 34
dump221.out 59 22 4 7 2 24 x.COB 59 24 9 21 5
dump222.out 211 71 7 71 56 6 y.COB 56 14 1 25 6
dump?208.out 206 101 40 28 22 15 z.COB 50 19 11 11 9
TABLE VII
. . MEASUREMENTS OF THE COBOL SYSTEM.
more UPDATE than INSERT queries is also unsurprising. No
CREATE, ALTER or DROP queries were found, indicating that file | line | resvars vars nests thls eq
no database initialization code was included in the delivered iggg ggg? 408 419 8 i fo
.. (4
source code. A surprising finding is that 104 queries in this <.COB | 1158 23 5 0 5 15%
PL/SQL project are constructed out of strings, rather than in w.COB | 1502 13 2 0 2 34%

the syntax that the language offeres for this purpose.

Various other measurements are displayed in table IV,
where each row represents a single query. Queries using large
numbers of variables, as present in this project, normally imply
INSERT queries that obtain information from the surrounding
source. The source at that point then is likely to point directly
to the complex parts of the software, where lots of state is
involved. This indication also applies to the queries dealing
with many result variables, leading to parts consuming much
information.

While this project contains a large number queries, the
biggest duplication in a single query (at line 3349 in file
dump296.out) was 3302%, meaning that the query is equal
to 33 other queries or half equal to 66 other queries. Thus,
a high degree of duplication is present among the queries for
this application, indicating that improving this aspect would
likely increase its quality.

The nesting metric indicates that complex queries are
present. This indication is confirmed by the queries that
use a large number of tables. For the query at line 832 in
’dump65.out’ this is remarkable because this query is not being
composed out of queries combined with the UNION construct.
Refactoring this query therefore probably will simplify the
application. No join keywords were used, and from the point
of view of the surrounding source, the number of queries
depending directly on a single query is at maximum 37. This
means that changing one query may influence the behaviour
of 37 other queries, thus limiting adaptability and testability.

The last entry of the table represents a SELECT query at line
1369 in *dump65.out’. This query contains two variables: one
variable in the selected items and one in the WHERE clause.
This indicates a malformed database structure or a bad practise

in the host language, as explained in section IV-B3. In total
this was encountered twice in this project.

B. COBOL system of a bank

The occurrence metrics for the financial COBOL system are
shown in Table VI. This first overview shows that the different
queries are well centralised, because 33.3% of all queries are
contained in just three files. Although this led to large files,
the queries at least are not scattered throughout many files.

The other observation is that 56.8% of all queries are
SELECT queries, 23.3% are UPDATE operations, 13.1% are
INSERT and 6.9% are DELETE queries. Per file the com-
position of these query types hardly differ, thus showing a
normal usage of the different query operation types. The
measurements that turned out relevant for this project are
shown in Table VII In the COBOL project quite some queries
were used, but the queries themselves proved to be simple
and straightforward. No nesting of queries occurred, no unions
were present, only a handful of queries used more than two
tables, while the most resembling queries are only 34% equal.
In order to achieve this simplicity, the programmers used
many, uniquely named variables to handle the data throughout
the application. So the work was shifted from the queries and
the DBMS to the host language. This leads to moving data
around quite a bit in the host language, meaning unnecessary
indirection.

VI. RELATED WORK

Goldberg and Brass have studied the issue of software
quality specifically for SQL queries [13]-[16]. Their work

does not cover the interaction of embedded queries with host
programs, but deals with isolated queries. Though their work
also applies to embedded queries, we have focussed on the
additional complications that arise from their embedding.

Gould et al. have studied semantic errors in dynamically
created queries, based on a Java byte-code analysis [17].
This work differs from our approach in the sense that it is
more restrictive, because they initially detect the locations
that access the database. On the other hand, our approach
is able to work with unknown database access frameworks
and mechanisms. Furthermore, we are able to handle all
common SQL dialects, and our analysis can be configured
to accept virtually any imperative programming language ahs
host language. Our analysis is performed at source level,
but does not require a full set off compilable sources to be
available.

Henrard has studied the extraction of embedded queries
from host programs in the context of database reverse en-
gineering [18]. He describes techniques for performing data
structure extraction. The objective of our approach is quality
assessment rather than reverse engineering, and we perform a
wider set of analyses.

VII. CONCLUSION
A. Contributions

We have presented an approach to tool-based analysis of the
quality of systems that employ embedded SQL queries. The
approach covers two forms of embeddings: where queries are
constructed dynamically as string values, and where queries
are expressed via an extended host language syntax.

We have presented tool support that is able to handle
embedded queries in a wide range of host languages, such
as COBOL, PL/SQL, Visual Basic 6, and Java. The support
for distillation of queries from source programs can with little
effort be configured for more host languages.

We have described the analyses we implemented for detect-
ing relationships among queries, host programs, and tables,
such as computing query similarities, extracting programmatic
joins and cascading deletes, and summarizing data access in
CRUD graphs.

A suite of metrics have been defined and implemented for
quantifying quality aspects of systems that contain embed-
ded SQL queries. The metrics quantify occurrence, variation
points, structure, and interrelations of queries.

Several case studies have been conducted on business-
critical software systems, and the result and their implications
for software quality have been presented. For all the anal-
ysed software projects, the experiment revealed, after manual
inspection, that the obtained values actually do reflect the
situation, as it is present in the software application.

B. Future work

The tool support can be configured and extended for fur-
ther host languages. Also, more metrics can be defined and
implemented.

The tool support was designed to give usable results, also
when no database schema is present. Additional work can be
done to improve accuracy of several analyses when indeed the
schema is not available. A possible line of attack would be to
reconstruct as much as possible of the schema, based on the
queries.

Our work is specific for SQL and relational databases,
but for other types of databases, such as IMS, a similar
approach could be used. IMS queries are also commonly
created by a form string concatenation. We think the current
implementation can be extended to cover embedded IMS with
little effort.

REFERENCES

[1] ISO, ISO/IEC 9126-1: Software Engineering - Product Quality - Part
1: Quality Model. Geneva, Switzerland: International Organization for
Standardization, 2001.

[2] A. van Deursen and T. Kuipers, “Source-based software risk assess-
ment,” in ICSM ’03: Proceedings of the Int. Conf. on Software Mainte-
nance. IEEE Computer Society, 2003, p. 385.

[3] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
mainainability,” in QUATIC 2007, 2007, to appear.

[4] T. Kuipers and J. Visser, “A tool-based methodology for software
portfolio monitoring.” in Software Audits and Metrics, Proceedings of
the 1st Int. Workshop on Software Audit and Metrics, SAM 2004, In
conjunction with ICEIS 2004, Porto, Portugal, April 2004, M. Piattini
and M. Serrano, Eds. INSTICC Press, 2004, pp. 118-128.

[5] ISO, ISO/IEC 9075-10: Information technology - Database languages
- SQL - Part 10: Object Language Bindings (SQL/OLB). Geneva,
Switzerland: International Organization for Standardization, 2003.

[6] T. Parr, The Definitive ANTLR Reference, Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[7]1 E. Visser, “Syntax definition for language prototyping,” Ph.D. disserta-
tion, University of Amsterdam, 1997.

[8] R. Lammel and C. Verhoef, “Semi-automatic Grammar Recovery,”
Software—Practice & Experience, vol. 31, no. 15, pp. 1395-1438,
December 2001.

[9] L. Moonen, “Generating robust parsers using island grammars,” in
Proceedings of the 8th Working Conference on Reverse Engineering.
IEEE Computer Society Press, 2001, pp. 13-22.

[10] T. Kuipers and J. Visser, “Object-oriented tree traversal with JJForester,”
in Electronic Notes in Theoretical Computer Science, M. van den Brand
and D. Parigot, Eds., vol. 44. Elsevier Science Publishers, 2001,
proceedings of the Workshop on Language Descriptions, Tools and
Applic ations (LDTA).

[11] H. J. van den Brink, “A framework to distil SQL queries out of host
languages in order to apply quality metrics,” Jan. 2007, MSc. thesis.

[12] C. Kapser and M. W. Godfrey, “‘cloning considered harmful’ considered
harmful.” in /3th Working Conference on Reverse Engineering (WCRE
2006). IEEE Computer Society, 2006, pp. 19-28.

[13] C. Goldberg and S. Brass, “Semantic errors in SQL queries: A quite
complete list,” in Fourth Int. Conf. on Quality Software (QSIC’04).
Martin-Luther-Universitdt Halle-Wittenberg, 2004, pp. 250-257.

[14] ——, “Proving the safety of SQL queries,” in Fifth Int. Conf. on Quality
Software (QSIC’05). Martin-Luther-Universitit Halle-Wittenberg, 2005.
[15] ——, “Detecting logical errors in SQL queries,” in 16th Workshop On

Foundations Of Databases (2004).
Wittenberg, 2004.

[16] C. Goldberg, S. Brass, and A. Hinneburg, “Detecting semantic errors in
SQL queries,” Martin-Luther-Universitidt Halle-Wittenberg, Tech. Rep.,
2003.

[17] C. Gould, Z. Su, and P. Devanbu, “Static checking of dynamically
generated queries in database applications,” in 26th Int. Conf. on
Software Engineering (ICSE 2004), University of California, Davis.
ACM Press, Sep. 2004.

[18] J. Henrard, “Program understanding in database reverse engineering,”
Ph.D. dissertation, Facultes Universitaires Notre-Dame de la Paix namur,
Aug. 2003.

Martin-Luther-Universitit Halle-

