
First steps in a (linear) algebra of (quantum)
functional programming

IFIP WG2.1 meeting #75

Montevideo, Uruguay, February 2017

J.N. Oliveira

INESC TEC & University of Minho

(QuantaLab initiative)

http://quantalab.org/

Prelude Quantum gates Quantum folds? Acknowledgement References

Context

• New initiative at Minho

• Quantum computing more and more on spot in the media

• Trying to address quantum programming from an algebraic
(category-theoretical) perspective.

• Need to abstract from the physics level.

Prelude Quantum gates Quantum folds? Acknowledgement References

Literature is vast!

2011 (vintage year):

The “bible”, compiled by B.
Coecke:

“New Structures for
Physics”, Lect. Notes
in Physics volume 813,
2011

The generic structures
(monoidal categories) in which
quantum physics are expressed
in this book accommodate typed
linear algebras in a natural way.

Prelude Quantum gates Quantum folds? Acknowledgement References

Literature is vast!

2011 (vintage year):

The 10th Anniversary Edition of
the “classic” by Nielsen and
Chuang.

But there is more — Selinger’s
qPL (2004) etc etc

Literature is vast.

This includes previous WG2.1
work in this field, see e.g. Mu
and Bird (2001).

Prelude Quantum gates Quantum folds? Acknowledgement References

Opportunities for QP

“Equation” a la Wirth:

(Quantum) Programs = (Quantum) Algorithms +
(Quantum) Data Structures

Quantum algorithms based on elementary components, called
quantum gates.

Classical bits generalize to quantum bits (qubits) — quantum
data.

Control
Classic Quantum

Data
Classic – x

Quantum x x

Prelude Quantum gates Quantum folds? Acknowledgement References

What QP should (eventually) be

QP expected to evolve and reach maturity as the other bodies of
knowledge in programming, requiring

• a syntax

• a semantics

• a calculus

This enables program
calculation, the scientific
method applied to
software.

E.g., the FP calculus
derives one version of the
Fibonacci recurrence
relation (aside) from the
other.

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

fib n =
let (x , y) = for loop (0, 1) n

loop (x , y) = (y , x + y)
in x

Prelude Quantum gates Quantum folds? Acknowledgement References

Syntax, semantics, calculus (FP)

Syntax:

• Sequential composition (f · g seen above)

• Parallel composition (f O g) based on pairing
(f O g) x = (f x , g x)

• Alternative composition [f , g] — the dual of pairing

• Recursive solutions to equations involving the above.

Semantics, e.g. that of pairing

k = f O g ⇔
{

fst · k = f
snd · k = g

A A× B
fstoo snd // B

C

f Og

OO

g

<<

f

bb

Prelude Quantum gates Quantum folds? Acknowledgement References

Syntax, semantics, calculus (FP)

Calculus, e.g. fusion,

(f O g) · h = (f · h) O (g · h) (1)

loss-less decomposition

k = (fst · k) O (snd · k) (2)

reflection

fst O snd = id (3)

pairwise equality

k O h = f O g ⇔
{

k = f
h = g

(4)

and so on.

Prelude Quantum gates Quantum folds? Acknowledgement References

Does this hold in the quantum world?

Quantum computations are all reversible.

This is expressed in linear algebra by unitary matrices (more about
this later)

Isomorphisms are unitary and many quantum gates are isos

Yesterday we have seen how pairing differs from functions in the
case of stochastic matrices

With matrices in general, products have to do with coproducts
and not with pairing — this leads to biproducts.

Prelude Quantum gates Quantum folds? Acknowledgement References

Biproducts

In LA coproducts correspond to putting matrices side by side
(horizontally):

X = [M|N]⇔
{

X .i1 = M
X .i2 = N

A

M ""

i1 // A + B

[M|N]

��

B

N||

i2oo

C

Products correspond to putting matrices side by side vertically:

X =

[
M

N

]
⇔
{
π1 · X = M
π2 · X = N

A A + B
π1

oo π2 // B

C

M

bb

[M
N]

OO
N

<<

This is the basis of block operations in LA and leads to direct sums:

M ⊕ N = [i1 ·M|i2 · N] =

[
M 0
0 N

]
.

Prelude Quantum gates Quantum folds? Acknowledgement References

Quantum gates

Let us briefly show how standard quantum programming gates,
used in quantum circuits (Nielsen and Chuang, 2011), can be
expressed in typed LA.

They can be decomposed into polymorphic, elementary matrix
categorial units.

Pairing (Khatri-Rao O + Kronecker products ⊗)1 is central to
quantum data structuring.

Interestingly, biproducts can make quantum gates easier to
understand and reason about, as I will briefly show.

1The latter is defined by M ⊗ N = (M · fst) O (N · snd).

Prelude Quantum gates Quantum folds? Acknowledgement References

Quantum processing

Quantum application — like
function application, the
outcome of processing
quantum data s by quantum
gate P is given by P · s:

1
P·s

��
s
��

B A
P
oo

Qubits — The smallest (useful) A is 2, the Booleans — so a

(qu)bit 2 1
soo is always a vector of the form

[
a
b

]
.

‘Ket’ Notation — traditionally,

• |0〉 : 1→ 2 denotes the vector
[
1
0

]
which represents point 0 (a

bit holding 0).

• |1〉 : 1→ 2 denotes the vector
[
0
1

]
which represents point 1 (a

bit holding 1).

Prelude Quantum gates Quantum folds? Acknowledgement References

|φ〉 notation

Since
[

a
b

]
= a

[
1
0

]
+ b

[
0
1

]
, the notation a |0〉+ b |1〉 is normally

used to denote qubit
[

a
b

]
.

A qubit 2 1
a |0〉+b |1〉oo expresses a quantum superposition of

the two truth values.

Complex numbers a, b ∈ C are called amplitudes and are such
that a2 + b2 = 1.

Given two qubits 1
u // 2 and 1

v // 2 , 1
uOv // 2× 2

denotes their pairing.

This leads to an extension of the ‘ket’ notation (next slide).

Prelude Quantum gates Quantum folds? Acknowledgement References

|φ〉 notation and pairing

|0〉 O |1〉

= { thinking functional helps }

0 O 1

= { constant functions }

(0, 1)

= { vector notation }
0
1
0
0

= { extended ‘ket’ notation }

|01〉

Prelude Quantum gates Quantum folds? Acknowledgement References

|φ〉 notation and pairing

More generally, the qubit pairing (a |0〉+ b |1〉) O (c |0〉+ d |1〉) yields,
once converted to vector notation[a

b

]
O

[c
d

]
= { Khatri-Rao }

ac
ad
bc
bd

= { vector addition }

ac
0
0
0

 +

0
ad
0
0

 +

0
0
bc
0

 +

0
0
0
bd

that is, ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉.

Prelude Quantum gates Quantum folds? Acknowledgement References

Qubit entanglement

The qubit pair

2× 2 1

|00〉+|01〉√
2oo

is a well-known example of entaglement – you get

fst · |00〉+|01〉√
2

= |0〉+|1〉√
2

snd · |00〉+|01〉√
2

= |0〉+|1〉√
2

but

|0〉+|1〉√
2

O
|0〉+|1〉√

2
= 2× 2 1

(!
2
)◦

oo

is different from the original 2× 2 1

|00〉+|01〉√
2oo .

Prelude Quantum gates Quantum folds? Acknowledgement References

Quantum control

A well-known quantum gate is the Hadamard gate:

2 2
Hoo = 1√

2

[
1 1
1 −1

]
Applying this gate to qubit u = a |0〉+ b |1〉:

2 2
Hoo 1

uoo

H·u

ff

Calculation:

1√
2

[
1 1
1 −1

]
· (a |0〉+ b |1〉) = 1√

2
(

[
1 1
1 −1

]
·
[

a
b

]
) =

1√
2

[
a+b
a−b

]
= a+b√

2
|0〉+ a−b√

2
|1〉.

Prelude Quantum gates Quantum folds? Acknowledgement References

Classic control (functional programming)

(Polymorphic) functional programming can play a nice role in
quantum processing (perhaps not fully appreciated yet).

Think of the function swap (a, b) = (b, a), that is, the
isomorphism:

A× B
swap // B × A = snd O fst.

For A = B = 2, this corresponds to the classical gate

0 0 1 1
0 1 0 1

0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 1

b′

a′

b

a

×

×

Prelude Quantum gates Quantum folds? Acknowledgement References

SWAP Gates
Applied to a qubit pair it will yield:

swap · (a |00〉+ b |01〉+ c |10〉+ d |11〉)

= { expand to vector notation }

swap · (a

1
0
0
0

+ b

0
1
0
0

+ c

0
0
1
0

+ d

0
0
0
1

)

= { swap = snd O fst ; vector addition }

(snd O fst) ·

a
b
c
d

= { matrix-vector multiplication; then back to |φ〉 notation }

a |00〉+ c |01〉+ b |10〉+ d |11〉

Prelude Quantum gates Quantum folds? Acknowledgement References

The Fredkin gate

This is a 3-(qu)bit gate, also known as “controlled”-SWAP. Let us
see why.

Untyped description:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

a a′

b′

c ′

b

c

t
×

×

As a function (pointwise) of type fred : 2× (2× 2)→ 2× (2× 2):{
fred (0, x) = (0, x)
fred (1, (b, c)) = (1, (c , b))

Prelude Quantum gates Quantum folds? Acknowledgement References

Back to elementary AoP

{
fred · (0 O id) = 0 O id
fred · (1 O id) = 1 O swap

⇔ { coproducts }

fred · [0 O id |1 O id]︸ ︷︷ ︸
α

= [0 O id |1 O swap]

⇔ { 1 · swap = 1 and so on }

fred · α = α · (id ⊕ swap)

⇔ { introduce C = (id⊕) }

fred · α = α · C swap

that is, α translates fredkin into C ontrolled swap.

Prelude Quantum gates Quantum folds? Acknowledgement References

The α-isomorphism

The above is a faithful transformation

fred C swap
αoo

because it relies on parametric isomorphism

α : A + A→ 2× A

α = [0 O id |1 O id]) (5)

that (by the exchange law) can also be written

α = [0|1] O [id |id] (6)

with natural property:

α · (M ⊕M) = (id ⊗M) · α (7)

For free we obtain that fred is an isomorphism too.

Prelude Quantum gates Quantum folds? Acknowledgement References

The α-isomorphism

The translation from a pair-wise description of the Fredkin gate to
a copair-wise one is so useful that we define, for every
M : 2× A→ B, the corresponding M ′ : A + A→ B defined by

M ′ = M · α (8)

This transform has a number of immediate properties:

(M O N)′ = M ′ O N ′ (9)

id ′ = α (10)

!′ = ! (11)

fst ′ = !⊕ ! (12)

xor ′ = [id |¬] (13)

an so on.

Prelude Quantum gates Quantum folds? Acknowledgement References

The CNOT gate

Think now of implementing xor : 2× 2→ 2 defined by

xor (0, a) = a
xor (1, a) = ¬ a

Clearly, this gate is not injective — e.g. xor (0, 0) = xor (1, 1) —
and therefore not reversible.

The laws of quantum physics give no hope for non-reversible
computations, so how can such an important classical gate be
incorporated in quantum circuits?

The trick is to add a “garbage” bit to the output, which becomes
type 2× 2 making room for a reversible computation:

xor (a, b) = (a, xor (a, b))

How can we be sure this is reversible (isomorphism)?

Prelude Quantum gates Quantum folds? Acknowledgement References

Easy (indirect) calculation

xor ′

= { definition }

(fst O xor)′

= { laws given }

(!⊕ !) O [id |¬]

= { ! O M = M etc }

[i1|i2 · ¬]

= { coproducts }

id ⊕ ¬
= { defined above }

C ¬

Because α is an
isomorphism, f is
injective iff f ′ = f · α is
so.

So the calculation on the
left is an indirect way of
proving that fst is a
constant complement of
xor (Matsuda et al.,
2007).

No need for pointwise
arguments!

Prelude Quantum gates Quantum folds? Acknowledgement References

Toffoli gate (CCNOT)

Diagram:

a a′

b′

c ′

b

c

ttn
As a functional program:

toffoli : (2× 2)× 2→ (2× 2)× 2
toffoli ((1, 1), c) = ((1, 1),¬ c)
toffoli ((a, b), c) = ((a, b), c)

the same as

toffoli ((a, b), c) = ((a, b), xor (a ∧ b, c))

A very useful gate, cf.

toffoli ((a, 1), c) = ((a, 1), xor a c) — implements xor
toffoli ((a, b), 0) = ((a, b), a ∧ b) — implements ∧
toffoli ((1, 1), c) = ((1, 1),¬ c) — implements ¬

Prelude Quantum gates Quantum folds? Acknowledgement References

Toffoli gate

Pointfree toffoli , as a linear algebra expression:

toffoli : (2× 2)× 2→ (2× 2)× 2

toffoli = fst O (xor · (∧ ⊗ id)) (14)

Again note how far the “useful part‘” of toffoli

xor · (∧ ⊗ id) =

[
1 0 1 0 1 0 0 1
0 1 0 1 0 1 1 0

]
is from being a reversible computation, as all quantum gates should be.

The trick will be the same — pair with constant complement (fst O).

In general, functional pairing always increases injectivity because

(f O g)◦ · (f O g) = (f ◦ · f)× (g◦ · g) (15)

and f ◦ · f (the kernel of f) measures the injectivity of f .

Prelude Quantum gates Quantum folds? Acknowledgement References

Toffoli gate

Altogether, for A = 2 in the type of α:

(2 + 2) + (2 + 2)
toffoli //

α⊕α ��
(2 + 2) + (2 + 2)

(2× 2) + (2× 2)
α ��

(2× 2) + (2× 2)
(α⊕α)◦
OO

(2× 2)× 2
X

// (2× 2)× 2
α◦
OO

Calculations (omitted for brevity) will derive, from the diagram above,

X = id⊕(id⊕¬) = C (C ¬))

a a′

b′

c ′

b

c

ttn
where 2

¬ // 2 =

[
0 1
1 0

]
— a much simpler version of (14).

Prelude Quantum gates Quantum folds? Acknowledgement References

Controlled-U gates

Generalizing, controlled-U gates are captured by the generic
combinator:

C : (A→ B)→ (2 + A→ 2 + B)

C (U) = id ⊕ U

where 2
id // 2 , whereby

fredkin = C swap

xor = C ¬
toffoli = C (C ¬)

and so on. Moreover, C is a functor:

C id = id (16)

C (M · N) = (C M) · (C N) (17)

Prelude Quantum gates Quantum folds? Acknowledgement References

Unitary gates

The isomorphisms (reversible functions) we have seen so far are
special cases of so-called unitary matrices.

A C-valued matrix U is unitary iff U · U∗ = U∗ · U = id , where U∗

is the conjugate transpose of U.

Isomorphisms admit further decompositions in terms of such
matrices, for instance “the sqrt of not”

¬ = (
√
¬) · (

√
¬)

where

√
¬ =

1

2
(>+ i (id − ¬)) =

1

2

[
1 + i 1− i
1− i 1 + i

]
Thus one gets into the wonderful world of actual quantum gates
in which classical logic operations are no longer primitive.

Prelude Quantum gates Quantum folds? Acknowledgement References

My first (tentative) quantum ’adjoint fold’

Suppose we want to apply the Hadamard gate

2 2
Hoo = 1√

2

[
1 1
1 −1

]
n times to qubit q — a kind of for-loop:

for H n q

Expanding — and ignoring the quantum essence of H for the
moment:

for H 0 q = q
for H (n + 1) q = H (for H n q)

Prelude Quantum gates Quantum folds? Acknowledgement References

My first (tentative) quantum ’adjoint fold’

From the type of for H : IN0 → 2→ 2, or the isomorphic
IN0 × 2→ 2, we see that for H cannot be reversible.

But type IN0 × 2→ IN0 × 2 would have room to accommodate one
such reversible computation.

So we go for the uncurried version, paired with fst as before — the
constant complement trick again — abbreviated to f :

f (0, q) = (0, q)
f (n + 1, q) = (n + 1,H (snd (f (n, q))))

Because H is not a function, we have to go pointfree (in LA) to
have the right definition:

f · (0⊗ id) = 0⊗ id
f · (succ ⊗ id) = (succ · fst) O (H · snd · f)

Prelude Quantum gates Quantum folds? Acknowledgement References

My first (tentative) quantum ’adjoint fold’

Putting the two lines together using coproducts and converse, we
get the recursive matrix,

f = [0⊗ id |(succ · fst) O (H · snd · f)] · (([0|succ]⊗ id) ·β)◦

cf. diagram

IN0 × 2

f
��

(1 + IN0)× 2
[0|succ]⊗idoo 1× 2 + IN0 × 2

id+fstOf
��

βoo

IN0 × 2 1× 2 + IN0 × (IN0 × 2)
[0⊗id |succ×H·snd]

oo

where β is the obvious isomorphism.

Prelude Quantum gates Quantum folds? Acknowledgement References

My first (tentative) quantum ’adjoint fold’

To test this quantum program in MATLab we fix an approximation
to IN0, for instance we restrict to n-bit numbers in {0 . . 2n − 1},
taking β = id valid at matrix level into account:

2n × 2
([0|succ]⊗id)◦ //

f
��

1× 2 + 2n × 2

id+fstOf
��

2n × 2 1× 2 + 2n × (2n × 2)
[0⊗id |succ×H·snd]
oo

Then we iterate over

f = [0⊗ id |(succ · fst) O (H · snd · f)] · ([0|succ]⊗ id)◦︸ ︷︷ ︸
F f

starting with f0 = 2n × 2 2n × 2
⊥oo holding zeros only.

Prelude Quantum gates Quantum folds? Acknowledgement References

MatLab checking

In 2n iterations we reach the fixpoint:

>> f4=[(kron(z,id)) kr(s*fst(4,2),H*snd(4,2)*f3)]*out

f4 =

1.0000 0 0 0 0 0 0 0

0 1.0000 0 0 0 0 0 0

0 0 0.7071 0.7071 0 0 0 0

0 0 0.7071 -0.7071 0 0 0 0

0 0 0 0 1.0000 0 0 0

0 0 0 0 0 1.0000 0 0

0 0 0 0 0 0 0.7071 0.7071

0 0 0 0 0 0 0.7071 -0.7071

Note the type f4 : 2n × 2→ 2n × 2.

Since it is a real valued, symmetric matrix, it is unitary.

Prelude Quantum gates Quantum folds? Acknowledgement References

MatLab checking

Suppose we want to check the outcome of for H 3 (|0〉 − |1〉).

We obtain this by running f4 · (3 O

[
1
−1

]
) = f4 · (

0
0
0
1

 O

[
1
−1

]
), cf.

>> x=f4*kr(n3,[1;-1])

x =

0

0

0

0

0

0

0

1.4142

This corresponds to the pair (3, |0〉+ |1〉√
2

), as expected.

Prelude Quantum gates Quantum folds? Acknowledgement References

Phase-shift gates
The for-loop above gets more
interesting when we replace the
Hadamard gate by the so-called
phase shift gate defined by

Rφ = (σ φ) O id =

[
1 0
0 e i φ

]
where

σ φ = [1 e i φ].

Recalling e i φ = cos φ+ i sin φ

the fixpoint of

f = [0⊗ id |(succ · fst) O (Rπ
6
· snd · f)] · ([0|succ]⊗ id)◦︸ ︷︷ ︸

F f

for the same types is given in the next slide.

Prelude Quantum gates Quantum folds? Acknowledgement References

Iterating a phase-shift gate

f4 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0.867 + 0.5i 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0.5 + 0.867i 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 i

Complex matrix f4 is unitary.

Note the effect of the constant complement (fst O) shifting the
corresponding iteration of gate Rπ

6
along the diagonal.

Prelude Quantum gates Quantum folds? Acknowledgement References

Summary

Very experimental still.

Previous work on stochastic folds in LA (Murta and Oliveira, 2015)
showed that we can have quantitative algebras of programming

Would like to investigate the AoP of unitary (recursive) matrices
now

Towards correct by construction quantum programs, who
knows...

Need to investigate Ralph Hinze’s “Adjoint folds” not in CCCs but
rather in MCCs

Also studying previous WG2.1 work in the field (Mu and Bird,
2001)

Prelude Quantum gates Quantum folds? Acknowledgement References

Acknowledgement

The idea of a “linear algebra of programming”,
which underlies this talk, was first put forward
by Aḿılcar Sernadas (1952–2017), the key
idea being

“to adopt linear algebra as the lingua franca of software
verification” (SQIG-Group, 2011).

I thank Aḿılcar for his friendship and good advice, and his research
group for this and so many other inspirations.

Prelude Quantum gates Quantum folds? Acknowledgement References

References

Prelude Quantum gates Quantum folds? Acknowledgement References

B. Coecke, editor. New Structures for Physics. Number 831 in
Lecture Notes in Physics. Springer-Verlag, 2011.

Ralf Hinze. Adjoint folds and unfolds — an extended study.
Science of Computer Programming, 78(11):2108–2159, 2013.
ISSN 0167-6423.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions, 2007. 12th ACM
SIGPLAN International Conference on Functional Programming
(ICFP 2007), Freiburg, Germany, October 1-3.

S.C. Mu and R. Bird. Quantum functional programming, 2001.
2nd Asian Workshop on Programming Languages and Systems ,
KAIST, Dajeaon, Korea, December 17-18, 2001.

D. Murta and J.N. Oliveira. A study of risk-aware program
transformation. SCP, 110:51–77, 2015.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation
and Quantum Information: 10th Anniversary Edition. Cambridge
University Press, New York, NY, USA, 10th edition, 2011. ISBN
1107002176, 9781107002173.

Prelude Quantum gates Quantum folds? Acknowledgement References

Peter Selinger. Towards a quantum programming language.
Mathematical. Structures in Comp. Sci., 14(4):527–586, August
2004. ISSN 0960-1295. URL
https://doi.org/10.1017/S0960129504004256.

A. Sernadas, J. Ramos, and P. Mateus. Linear algebra techniques
for deciding the correctness of probabilistic programs with
bounded resources. Technical report, TU Lisbon, 1049-001
Lisboa, Portugal, 2008.

SQIG-Group. LAP: Linear algebra of bounded resources programs,
2011. IT & Tech. Univ. Lisbon. URL:
http://sqig.math.ist.utl.pt/work/LAP.

https://doi.org/10.1017/S0960129504004256
http://sqig.math.ist.utl.pt/work/LAP

	Prelude
	Quantum gates
	Quantum folds?
	Acknowledgement

