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Motivation

Two-sided motivation:

Practical Software safety and certification standards
concerned with calculating risk involved in
safety-critical software.

Theoretical Quantitative methods in the algebra of programming
(AoP) lead to a LAoP (”L” for linear).

Question:

Can we transform (functional) programs so as to
mitigate unexpected faults better than the original ones?
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Safety and certification

Formal method bias:

Interested in the opportunities open for Formal Methods by RTCA
DO 178C for certifying airborne software.

Challenged by

the use of formal methods to be ”at least as good as” a
conventional approach that does not use formal methods.
(Joyce, 2011)

[ ... ”at least as good” ? ... ]
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Qualitative vs quantitative

Quoting Jackson (2009):

A dependable system is one (..) in which you can place
your reliance or trust. A rational person or organization
only does this with evidence that the system’s benefits
outweigh its risks.

In formula

dependable system = benefit + risk

we identify:

• benefit = qualitative

• risk = quantitative.



Motivation Quantitative FP Mutual recursion Banana-split References

Safety cases

MOD Defence Standard 00-56:

9.1 The Contractor shall produce a Safety Case for the
system [which] shall [provide] a compelling,
comprehensible and valid case that a system is safe for
a given application in a given environment.

DS 00-56 (contd.):

10.5.4 All assumptions, data, judgements and
calculations underpinning the Risk Estimation shall be
recorded in the Safety Case, such that the risk
estimates can be reviewed and reconstructed.

Risk estimation? Calculations? How, when and where is this
performed in a FM life-cycle?
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P(robabilistic)R(isk)A(nalysis)

NASA/SP-2011-3421 (Stamatelatos and Dezfuli, 2011):

1.2.2 A PRA characterizes risk in terms of three basic
questions: (1) What can go wrong? (2) How likely is
it? and (3) What are the consequences?

The PRA process

answers these questions by systematically (...)
identifying, modeling, and quantifying scenarios that
can lead to undesired consequences

Moreover,

1.2.3 (...) The total probability from the set of
scenarios modeled may also be non-negligible even
though the probability of each scenario is small.
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Doesn’t work in FMs — why?

Program semantics are usually qualitative — how does one
quantify risk in standard denotational semantics?

PRA performed a posteriori — we’ve seen this before, eg. in ’a
posteriori’ program correctness.

Need for a change:

Programming should incorporate risk as the rule rather
than the exception (absence of risk = ideal case).

Need for combinators expressing risk of failure, eg. probabilistic
choice (McIver and Morgan, 2005)

bad p� good

between expected behaviour and misbehaviour.
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Quantitative semantics

Program semantics denoted by (typed) stochastic matrices.

Semantics of language constructs modelled by linear algebra
operators — for instance,

[[P1; P2]] = [[P2]] · [[P1]]

where the dot means matrix multiplication — including
recursion.

Laws of the LAoP enable the calculation of risk (eg. fault
propagation).

Simulation easy to perform in a monadic language such as Haskell
(distribution monad).
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Quantitative functional programming

Monadic code is in general ready to accommodate PRA simulation
in functional programming. Example: a lossy channel

fcat p = fold (lose p� send) nil

(for send = cons and lose = snd) in which we express the fact
that, with probability p, fcat fails to pass data from input to
output.

For p = 0.1, for instance,
distribution fcat p "abc"

will range from perfect
copy (72.9%) to
complete loss (0.1%) —
cf. “quantified suffix”:

"abc" 72.9%

"ab" 8.1%

"ac" 8.1%

"bc" 8.1%

"a" 0.9%

"b" 0.9%

"c" 0.9%

"" 0.1%
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Details

Nothing special, just a monadic variant of foldr

fold :: Monad m⇒ ((a, b)→ m b)→ m b → [a ]→ m b
fold f d [ ] = d
fold f d (h : t) = do {x ← fold f d t; f (h, x)}

which switches to distributions or lists (cf. the suffix view above)
as you wish.

Later we will need for-loops, so we anticipate this combinator:

for :: (Monad m, Integral t)⇒ (b → m b)→ b → t → m b
for b i 0 = return i
for b i (n + 1) = do {x ← for b i n; b x }
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Quantitative functional programming

Another example:

fcount q = fold ((id q� succ) · snd) 0

is a risky length function: with probability q, it doesn’t count. For
instance, for q = 0.15, distribution fcount q "abc" will be:

3 61.4%

2 32.5%

1 5.7%

0 0.3%

However, we are simulating — not predicting!

Question: what can we predict about (fcount q) · (fcat p)? Can
we fuse this?
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Fault fusion

Fold-fusion law in the LAoP

k · (fold g e) = fold f d ⇐ k · [e|g ] = [d |f ] · (F k) (1)

holds in the probabilistic setting, but now

• regard function variables (eg. k , g , e etc) as (column)
stochastic typed matrices;

• such matrices represent the Kleisli category of the distribution
monad;

• F k = id ⊕ (id ⊗ k) is the base functor, where · ⊗ · denotes
Kronecker product and · ⊕ · denotes direct sum of matrices;

• [f |g ] glues f and g horizontally (coproduct combinator).
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Fault fusion
We want to solve equation (fcount q) · (fcat p) = fold x y for
unknowns x and y :

(fcount q) · (fcat p) = fold x y

⇐ { fold fusion (1) ; definition of fcat }

(fcount q) · [nil |(lose p� send)] = [x |y ] · (F (fcount q))

⇔ { coproduct fusion (2) ; definition of F ; (3) ; (4) }{
(fcount q) · nil = x
(fcount q) · (lose p� send) = y · (id ⊗ (fcount q))

where (LAoP):

P · [M|N] = [P ·M|P · N] (2)

[M|N] · (P ⊕ Q) = [M · P|N · Q] (3)

[M|N] = [P|Q] ⇔ M = P ∧ N = Q (4)
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Fault fusion (cntd.)
From (fcount q) · nil = 0 we obtain x = 0.

We are left with the second equality, which we solve for y knowing
that choice-fusion laws

h · (f p� g) = (h · f ) p� (h · f ) (5)

(f p� g) · h = (f · h) p� (g · h) (6)

hold:

((fcount q) · (snd p� cons) = y · (id ⊗ (fcount q))

⇔ { choice fusion (5) }

((fcount q) · snd) p� ((fcount q) · cons) = y · (id ⊗ (fcount q))

⇔ { unfolding (fcount q) · cons }

((fcount q) · snd) p� ((id q� succ) · snd · (id ⊗ (fcount q)))

= y · (id ⊗ (fcount q))
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Fault fusion (cntd.)

The free theorem of snd

snd · (f ⊗ g) = g · snd (7)

helps in the next step:

((fcount q) · snd) p� ((id q� succ) · (fcount q) · snd)

= y · (id ⊗ (fcount q))

⇔ { choice fusion (6) }

(id p� (id q� succ)) · (fcount q) · snd = y · (id ⊗ (fcount q))

⇔ { free theorem (7) again }

(id p� (id q� succ)) · snd · (id ⊗ (fcount q)) = y · (id ⊗ (fcount q))

⇐ { Leibniz — cancel id ⊗ (fcount q) from both sides }

y = (id p� (id q� succ)) · snd
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Fault fusion (conc.)

Putting everything together, we have consolidated the risk of
pipeline (fcount q) · (fcat p) into

fold y 0 where
y = ((p + q − pq) id + (1− p) (1− q) succ) · snd

using definition

f p� g = p ⊗ f + (1− p)⊗ g (8)

Higher p, q reduce the probability of succ taking place.

Fault fusion: the risk of the whole expressed in terms of the
risk of the parts.
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Fault fusion (conc.)

From the calculation we can infer eg.

(fcount 0) · (fcat p) = (fcount p) · (fcat 0)

since terms

(0 + p − 0 p) id + (1− 0) (1− p) succ)
(p + 0− p0) id + (1− p) (1− 0) succ

are the same. In words:

(for the same probabilities), a perfect counter reading
from a faulty channel is indistinguishable from a faulty
counter reading from a perfect channel.

Clearly, black-box testing and simulation wouldn’t be able to spot
where the fault is.
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LAoP vs AoP

Summing up,

• in the same way relations are needed in standard AoP for
calculating functions,

• so are (typed) matrices in the LAoP for calculating
probabilistic functions.

• AoP extends smoothly to the LAoP, but not the whole of it.

• A significant difference can be found in pairing (tupling in
general) and mutual recursion.

Thus we focus on probabilistic pairing in the sequel.
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Running examples

Consider two little programs in C, one which supposedly computes
the square of a non-negative integer n,

int sq(int n) {

int s=0; int o=1; int i;

for (i=1;i<n+1;i++) {s+=o; o+=2;}

return s;

};

and the other

int fib(int n) {

int x=0; int y=1; int i;

for (i=1;i<=n;i++) {int a=y; y=y+x; x=a;}

return x;

};

which supposedly computes the n-th entry in the Fibonacci series,
for n positive.
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Running examples

Both programs are for-loops whose bodies rely on the same
operation: addition of natural numbers.

Suppose one knows that, in the machine where such programs will
run, there is the risk of addition misbehaving in some known way:
with probability p, x + y may evaluate to y , in which case
(x+) = id .

Or one might know that, in some unfriendly environment, the
processor’s ALU may reset addition output to 0, with probability q.

Question: how do the above programs “react” to such faults?
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Simulation

As before, we may encode the two programs in Haskell using the
for combinator,

sq n =
do {(s, o)← for loop (0, 1) n; return s } where

loop (s, o) = do {z ← fadd 0.1 s o; return (z , o + 2)}
fib n =

do {(x , y)← for loop (0, 1) n; return x } where
loop (x , y) = do {z ← fadd 0.1 x y ; return (y , z)}

both calling

fadd p a = 0 p� (a+)

— a risky addition which resets with probability p.
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Simulation

Then we may simulate, for instance (p = 0.1)

sq 6 =

11 10%
20 9%
27 8%
32 7%
35 7%
36 59%

and, for instance:

fib 6 =

1 0%
2 0%
3 2%
4 2%
5 15%
6 15%
8 66%
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Simulation

However, this does not tell anything special about what’s
happening.

We know that both programs can be derived from their
specification (resp. sq n = n2 and the binary recursive definition of
Fibonacci) using the mutual-recursion law, vulg. tupling (Hu
et al., 1997).

One way to compare the two implementations would be to check
how far they are from their specifications (under the same faults).

By experimentation, we observed that spec + imp of sq seem
probabilistically indistinguishable, while Fibonacci does not: the
linear version is (as much as we could test) less risky — next slide:
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Simulation (faulty Fibonacci)

n recursive spec for loop implementation
6 4 the same

5

5 65.6%

4 21.9%

3 10.5%

2 1.9%

1 0.1%

5 72.9%

3 16.2%

4 8.1%

2 2.7%

1 0.1%

6

8 47.8%

7 26.6%

6 11.8%

5 9.8%

4 2.7%

3 1.1%

2 0.2%

1 0.0%

8 65.6%

6 14.6%

5 14.6%

3 2.4%

4 2.4%

2 0.4%

1 0.0%
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Mutual recursion?

These experiments pointed towards checking the validity of tupling
in the LAoP: while “vertical” (sequential) loop-fusion laws hold,

��
loop g

��
loop f

��

⇒

��

loop(f · g)

��
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Mutual recursion?

... “horizontal loop-fusion”

loop f

��

loop g

��

⇒ (?)

��

loop(f M g)

��

does not seem to hold in general. Why?
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Probabilistic pairing

Pairing the outputs of two probabilistic functions f and g is
captured by their Khatri-Rao matrix product (keep thinking in
terms of matrices)

A× B A A× B
fstoo snd // B

C

f Mg

OO

C

f Mg

OO

g

<<

f

bb

but (important!) this is a weak categorial product:

k = f M g ⇒
{

fst · k = f
snd · k = g

(9)

cf. the ⇒ in (9) — Khatri-Rao is injective but not surjective
(unlike pairing in Sets).
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Probabilistic pairing

Weak product (9) still grants the cancellation rule,

fst · (f M g) = f ∧ snd · (f M g) = g (10)

2 2× 3
fst=

[
1 1 1 0 0 0
0 0 0 1 1 1

]
oo

snd=

[
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

]
// 3

4

fMg=


0.15 0.12 0 0
0.35 0.06 0 0.75
0 0.12 0 0

0.15 0.28 0.1 0
0.35 0.14 0.2 0.25
0 0.28 0.7 0



OO

g=

[
0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

]

==

f=

[
0.5 0.3 0 0.75
0.5 0.7 1 0.25

]

aa
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Probabilistic pairing

... but fusion becomes side-conditioned

(f M g) · h = (f · h) M (g · h) ⇐ h is “sharp” (100%) (11)

and reconstruction doesn’t hold in general

k = (fst · k) M (snd · k)

cf. eg.

k : 2→ 2× 3

k =


0 0.4

0.2 0
0.2 0.1
0.6 0.4
0 0
0 0.1


(fst · k) M (snd · k) =


0.24 0.4
0.08 0
0.08 0.1
0.36 0.4
0.12 0
0.12 0.1


(k is not recoverable from its projections — Khatri-Rao not surjective).
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Asymmetric Khatri-Rao fusion

Another side condition granting fusion is

(f M g) · h = (f · h) M (g · h) ⇐ f · h or g · h is 100% (12)

which enables the following probabilistic mutual recursion law
(tupling):{

f · in = h · F (f M g)
g · in = k · F (f M g)

⇔ f M g = (|h M k |) (13)

provided one of

h · F (f M g) or k · F (f M g)

is 100% — generic statement for polynomial F .
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Asymmetric tupling

The calculation of (13) uses the two conditioned pairing fusion
laws in different places:

f M g = (|h M k |)

⇔ { cata (fold) universal property }

(f M g) · in = (h M k) · F (f M g)

⇔ { “sharp” fusion (11) ; asymmetric fusion (12) }

(f · in ) M (g · in ) = (h · F (f M g)) M (k · F (f M g))

⇔ { Khatri-Rao equality }{
f · in = h · F (f M g)
g · in = k · F (f M g)
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Back to square and Fibonacci

Standard tupling derivations,

sq 0 = 0
sq (n + 1) = sq n + odd n

odd 0 = 1
odd (n + 1) = 2 + odd n

fib 0 = 0
fib (n + 1) = f n

f 0 = 1
f (n + 1) = fib n + f n

show why sq M odd and fib M f react differently to faulty addition,
cf.

sq

��

// odd

��

fib // f

��

??

— odd does not depend on sq and therefore remains 100% — as
opposed to fib and f , which contaminate each other.



Motivation Quantitative FP Mutual recursion Banana-split References

Probabilistic banana-split

This also helps to see why banana-split still holds for f and g
probabilistic:

(|f |) M (|g |) = (|(f ⊗ g) · (F fst M F snd︸ ︷︷ ︸
unzipF

)|) (14)

— the two computations go side-by-side and don’t interfere with
each other.

This time the proof relies in something I’ve been using only
recently: free theorems in linear algebra, in this case

(F f ⊗ F g) · unzipF = unzipF · F (f ⊗ g)

derived using hom-functors in matrix categories — inspired by
Hinze (2012).
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Wrapping up

First round of AoP extension towards LAoP (folds)

Probabilistic unfolds require sub-distributions while computing
fixpoints (current work)

Currently using them in checking fault propagation in Barbosa
(2001)’s components as coalgebras (probabilistic automata
networks)

Probabilistic hylomorphisms are next.
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Wrapping up

Weak tupling has opened new perspectives, namely in relation to
Rel and to categorial quantum physics, under the umbrella of
monoidal categories.

In fact, these also include FdHilb, the category of finite dimensional
Hilbert spaces. — thus the remarks by Coecke and Paquette, in
their Categories for the Practising Physicist (Coecke, 2011):

Rel [the category of relations] possesses more ’quantum
features’ than the category Set of sets and functions [...]
The categories FdHilb and Rel moreover admit a categorical
matrix calculus.

I agree: Set is too perfect to “belong to reality”...



Motivation Quantitative FP Mutual recursion Banana-split References

L.S. Barbosa. Components as Coalgebras. University of Minho,
December 2001. Ph. D. thesis.

B. Coecke, editor. New Structures for Physics. Number 831 in
Lecture Notes in Physics. Springer, 2011. doi:
10.1007/978-3-642-12821-9.

Ralf Hinze. Adjoint folds and unfolds—an extended study. Science
of Computer Programming, (0):–, 2012. ISSN 0167-6423. doi:
http://dx.doi.org/10.1016/j.scico.2012.07.011. URL
http://www.sciencedirect.com/science/article/pii/

S0167642312001396. DOI: 10.1016/j.scico.2012.07.011. In
press.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling
calculation eliminates multiple data traversals. In In ACM
SIGPLAN International Conference on Functional Programming,
pages 164–175. ACM Press, 1997.

D. Jackson. A direct path to dependable software. Commun.
ACM, 52(4):78–88, 2009.

J. Joyce. Proposed Formal Methods Supplement for RTCA DO

http://www.sciencedirect.com/science/article/pii/S0167642312001396
http://www.sciencedirect.com/science/article/pii/S0167642312001396


Motivation Quantitative FP Mutual recursion Banana-split References

178C, 2011. High Confidence Software and Systems, 11th
Annual Conference, 3-6 May 2011, Annapolis.

A. McIver and C. Morgan. Abstraction, Refinement And Proof For
Probabilistic Systems. Monographs in Computer Science.
Springer-Verlag, 2005. ISBN 0387401156.

M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment
Procedures Guide for NASA Managers and Practitioners, 2011.
NASA/SP-2011-3421, 2nd edition, December 2011.


	Motivation
	Quantitative FP
	Mutual recursion
	Banana-split

