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Quotation

“Using matrix notation such a set of simultaneous
equations takes the form A · x = b where x is the vector
of unknown values, A is the matrix of coefficients and b
is the vector of values on the right side of the equation.”

“In this way a set of equations has been reduced to a
single equation.”

“This is a tremendous improvement in concision that
does not incur any loss of precision!”

Roland Backhouse (2004)
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Concision — is computer science “concise enough”?

Perhaps not: we write long-winded formulæ such as eg.

�∀ y , x :: �∃ z :: r(y , z) ∧ p(z , x)� ⇒ �∃ w :: s(y ,w) ∧ q(w , x)��

for something which could be written, in “matrix format”, as

R · P ⊆ S · Q

Question:

• “Matrix”? Are there matrices in predicate logic?

Answer:

• Yes — binary relations, which are Boolean matrices.
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The function-relation-matrix hierarchy

• Relations — are everywhere, eg.

y likes x
y ≤ x

(graphs, etc)

• Functions — deterministic and total relations, eg.

y = ax + b
y = birthplace of x

(“left-linear” graphs, etc)

• Matrices — quantified relations, cf.

y M x = k

further to
y M x = true

(weighted graphs, etc)
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Applications in computer science

• Functions — functional programming, an advanced discipline
strongly rooted on mathematics.

• Relations — ubiquitous (eg. graphs) but still under the
atavistic set of pairs interpretation.

• Matrices — key concept in mathematics as a whole, many
tools (eg. MATLAB, Mathematica) but still “untyped”.
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Typed versus untyped

• Functions — polymorphically typed, cf. triples of the form

B Af�� , they form a category under composition (f · g),
etc.

• Relations — polymorphically typed if understood in the Rel
allegory, where R · S means relation composition and R ⊆ S
means a partial order (one per type, ie. homset).

• Matrices — our “Matrices as arrows!” campaign promotes a
typed approach to linear algebra (LA) rooted on categories of
matrices.
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Matrices are Arrows

Given

A =




a11 . . . a1n
...

. . .
...

am1 . . . amn





m×n

m nA��

B =




b11 . . . b1k
...

. . .
...

bn1 . . . bnk





n×k

n kB��

define

m nA�� kB��

A·B

��
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Category of matrices

Under A · B (vulg. MMM)

• matrices form a category whose objects are matrix

dimensions and whose morphisms m nA�� , n kB�� are
the matrices themselves;

• every identity n nid�� is the diagonal of size n, that is,
id(r , c) � r = c under the (0, 1) encoding of the Booleans:

idn =





1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1





n×n

n n
idn��
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Vectors

Vectors are special cases of matrices in which one of the
dimensions is 1, for instance

v =




v1
...
vm



 and w =
�
w1 . . . wn

�

Column vector v is of type m 1�� (m rows, one column) and
row vector w is of type 1 n�� (one row, n columns).

Our convention is that lowercase letters (eg. v ,w) denote vectors
and uppercase letters (eg. A, M) denote arbitrary matrices.
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Categories of Matrices

Very rarely used in computing, to the best of our knowledge.

Notable exception

Work on linear algebras of machines by Bloom et al. (1996),
who

• develop a “machines as matrices” theory of concurrency
where the underlying matrix-cell algebra is the semiring L(X ∗)
of subsets of words on a finite alphabet X .

• They define machine composition, machine target and source
tupling, and machine product.

Via these constructions they obtain a compositional and modular
approach to build complex machines.
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Our aim

To enrich relation and linear algebra with ingredients which have
proved effective in functional programming, namely

• types

• polymorphism

• type checking

• calculational techniques.

Common ground?

• Mild use of category theory.

In this talk we focus on one such good ingredient — transposition.
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Curry/uncurry

Functional programming’s “Swiss army knife” with two blades,

curry :: ((a,b) -> c) -> (a -> b -> c)

curry f x y = f(x,y)

and
uncurry :: (a -> b -> c) -> ((a,b) -> c)

uncurry f (a,b) = f a b

These higher-order functions enable programmers to

• defer input to output;

• fit a binary function where a unary one is expected;

• temporarily freeze parameters of a binary function while these
don’t play a role in the computation.
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Exponentials

No loss of information (isomorphisms)

A× B → C

curry
��∼= A → CB

uncurry

��

thanks to universal property

curry f = k ⇔ f = � · (k × id)

where � is the eval function, cf. diagram

CB CB × B � �� C

A

k=curry f

��

A× B

k×id

��

f

��
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Alternative (with a monad inside)

Universal property:

uncurry k = f ⇔ k = f B · η

cf. diagram

A× B

f=uncurry k
��

(A× B)B

f B
��

A

k
��

η��

C CB

where η is the unit (return function) of the state monad on B .
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Products — “where” exponentials come from

Exponentials thus explained by adjunction

(×B) � ( B)

where product is another universal construct:

k = �f , g� ⇔
�

π1 · k = f
π2 · k = g

cf. diagram

A× B A A× B
π1�� π2 �� B

C

k=�f ,g�

��

C

k

��

g

��

f

��



Motivation Matrices = arrows Curry/uncurry Vectorization References

Coproducts — sums

Dual concept expressing alternation:

k = [f , g ] ⇔
�

k · i1 = f
k · i2 = g

cf. diagram

A+ B

k=[f ,g ]
��

A

f
��

i1 �� A+ B

k
��

B
i1��

g
��

C C

where A+ B expresses disjoint union.
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1st step in the generalization

From functions to relations:

• Relational type A → B (homset) far larger than the same
restricted to functions.

• Pairing not injective — �R ,P� = �S ,Q� no longer entails
R = S and P = Q — so product is gone!

• Coproduct survives :-)

• A new isomorphic transformation — converse B R◦
�� A

given A R �� B — since relations are invertible.
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Biproducts

Products still to be found in the category, but elsewhere — in fact
“attached” to coproducts, as converse duals:

�R , S�◦ = [R◦, S◦]

Altogether, they form a biproduct:

C

A

R

��

i1 ��
A+ B

[R , S ]

��

π1

��
π2

�� B
i2��

S

��

D

U

��

�U,V �

��

V

��

[R , S ] = R · π1 ∪ S · π2
�U,V � = i1 · U ∪ i2 · V

where π1 = i◦
1

π2 = i◦
2
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Biproducts in general

In an Abelian category, a biproduct diagram for the objects m, n is
a diagram of shape

m
i1
�� r

π1�� π2 ��
n

i2
��

whose arrows π1, π2, i1, i2 satisfy the identities which follow:

π1 · i1 = idm (1)

π2 · i2 = idn (2)

i1 · π1 + i2 · π2 = idr (3)

Two orthogonality properties follow:

π1 · i2 = 0 , π2 · i1 = 0 (4)
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“Standard LA biproduct”

Among the many solutions to the biproduct equations we select
the following

π1 = m m + n
[idm | 0]

�� , π2 = n m + n
[0 | idn]��

i1 = m + n m
[ idm

0
]

�� , i2 = m + n n

�
0

idm

�

��

which are made of fragments of id

[i1|i2] = id (5)�
π1
π2

�
= id (6)

and enough to explain “block notation” used in LA.
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Blocked LA

Thanks to universal constructs:

• Structural equality laws (over the same biproduct):

[A|B] = [C |D] ⇔ A = C ∧ B = D (7)�
A

B

�
=

�
C

D

�
⇔ A = C ∧ B = D (8)

• Injections and projections in a biproduct are unique. For
instance,

P ·
�
U

V

�
= U ∧ Q ·

�
U

V

�
= V ⇔ P = π1 ∧ Q = π2 (9)
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“Forks”

Still room for “old products” — renamed “forks”.

The relational fork operator implicit in Tarski’s work

(a, b)(R � S)c ⇔ aRc ∧ bSc

is a conservative extension of functional pairing

(f � g)c = (f c , g c)

but no longer a categorial product.
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“Forks”

In fact:

X ⊆ R � S ⇔
�

fst · X ⊆ R
snd · X ⊆ S

cf. diagram

A× B A A× Bfst�� snd �� B

C

R�S
��

C

R�S
��

S

��

R

��
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Dramatic impact on “currying”

Isomorphism now is

A× B → C

curry
��

∼= A → C × B

uncurry

��

Diagram:

C × B (C × B)× B � �� C

A

curry R

��

A× B

(curry R)×id

��

R

��
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Self-adjunction

Relational currying thus explained by self-adjunction

(×B) � (×B)

Details:

curry R � (R � snd) · fst◦ C × B

A
fst◦

��

curry R

��

A× B

R�snd
��

that is

(c , b)(curry R)a ⇔ c R (a, b)

Moral: every n-ary relation is a binary relation; where
(input/output) you place the attributes is irrelevant.
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Converse duality

Relational uncurrying:

uncurry R � curry(R◦)◦

= fst · �R◦, snd�◦

Then

� = uncurry id = fst · �id , snd�◦

With points:

c2 � ((c1, b1), b2) ⇔ c2 = c1 ∧ b1 = b2
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2nd step in the generalization

From relations to matrices:

• What about curry M for M a matrix?

• Types are dimensions which can be factored, for instance

k ×m → n

curryk
��

∼= m → k × n

uncurryk

��

• “Deja vu”? Yes! See next slide on matrix vectorization.
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Vectorization

Example: matrix

A =

�
a11 a12 a13
a21 a22 a23

�
converted to vecA =





a11
a21
a12
a22
a13
a23





Type-wise:

3× 1 → 2

curry3
��∼= 1 → 3× 2

uncurry3

��

Transformations which preserve the “area” of the original matrix.
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Parallel

Intuition — vectorization is akin to exponentiation:

While currying “thins” the input of a given binary

function m × k f �� n by converting it into its unary

(higher-order) counterpart m
curry f �� nk , so does

vectorization by thinning a given matrix k ×m M �� n

into m vecM �� k × n , where k is the “thinning factor”.

(For m = 1, vecM will be a column vector.)
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Self-adjunction

Vectorization with thinning factor k (in general) is captured by
self-adjunction

(k×) � (k×)

cf. diagram

k × n k × (k × n)
�k �� n

m

X

��

k ×m

idk⊗X

��

M

��

and universal property

X = veck M ⇔ M = �k · (idk ⊗ X ) (10)

where ⊗ is the Kronecker product (a bifunctor in the category).
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Vectorization refactoring

Macedo and Oliveira (2011) show how standard vectorization
theory arises from this universal property and biproduct algebra,
namely the following relationship

vec (A · B · C ) = (C ◦ ⊗ A) · vecB (11)

which Abadir and Magnus (2005) attribute to Roth (1934) and
regard as the fundamental result of the whole theory.

Such theory is often clumsy, full of index-wise “...”-built matrices
hard to grasp.

Thanks to typed (block) LA combinators and biproduct algebra
one can infer closed, polymorphic formulæ for such matrices. Let
us infer that of the counit �k .
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LA refreshing — Direct sum

Direct sum

A⊕ B = [i1 · A|i2 · B] =

�
A 0
0 B

�
(12)

is a bifunctor, cf.

n

A
��

m

B
��

n +m

A⊕B
��

k j k + j

such that

id2 ⊗ A = A⊕ A (13)

[A|B] · (C ⊕ D) = [A · C |B · D] (14)
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Kronecker product

Another bifunctor

n

A
��

m

B
��

n ×m

A⊗B
��

k j k × j

whose fusion laws

[A|B]⊗ C = [A⊗ C |B ⊗ C ] (15)�
A

B

�
⊗ C =

�
A⊗ C

B ⊗ C

�
(16)

capture its meaning block-wise. Another property relevant for our
purposes is simplification rule

πj ⊗ id = πj (j = 1, 2) (17)
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Chasing �k

• We want to characterize �k in

k × n k × (k × n)
�k �� n

m

X

��

k ×m

idk⊗X

��

M

��

for any k , so that a generic theory of “blocked vectorization”
becomes available.

• For k = 2, the smallest possible case happens for m = n = 1,

where one expects vec2
�
x y

�
to be

�
x
y

�
, for x and y

elementary data.

• Scaling up: replace x and y by blocks n mA�� and

n mB�� , respectively, and reason:
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Reasoning

vec2 [A|B] =

�
A

B

�

⇔ { (10) }

[A|B] = �2 · (id2 ⊗
�
A

B

�
)

⇔ { (13) ; unjunc �2 into �21 and �22 }

[A|B] = [�21|�22] · (
�
A

B

�
⊕
�
A

B

�
)

⇔ { ⊕-absorption (14) }

[A|B] =

�
�21 ·

�
A

B

�
|�22 ·

�
A

B

��
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Reasoning continued

[A|B] =

�
�21 ·

�
A

B

�
|�22 ·

�
A

B

��

⇔ { (7) ; (9) }
�21 = π1 ∧ �22 = π2

⇔ { junc �21 and �22 back into �2 }

�2 = [π1|π2]

Thus we get �2 with type

n 2n + 2n
�2=[π1|π2]�� (18)

expressing �k (for k = 2) in terms of the standard biproduct projections.



Motivation Matrices = arrows Curry/uncurry Vectorization References

Example

Check the following instance of cancellation law,

M = �k · (idk ⊗ veck M) (19)

for k = m = n = 2:

�
a11 a12
a21 a22

�
=

�
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

�
· (id2 ⊗





a11
a21
a12
a22



)

Clearly,

� =

�
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

�
=

�
1 0 0 1

�
⊗ id2

A general fact revealing the polymorphism of �:

�⊗ id = � (20)
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Example

Calculation:

�⊗ id

= { definition (18) }

[π1|π2]⊗ id

= { distribution (15) }

[π1 ⊗ id |π2 ⊗ id ]

= { πj ⊗ id = πj (17) twice; (18) }
�

Typewise:

( k2n
�k �� n )⊗ ( j id �� j ) = k2(nj)

�k �� nj

This provides an elegant explanation for the index-wise
construction of � given in Dos̆en and Petrić (2003).
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Generic counit

Doing a similar exercise for k = 3, one would obtain

32n
�3 �� n = [[π1 · π1|π2 · π1] |π2]

with types as in diagram:

n n + n
π1��

π2

��

(n + n) + n
π1�� π2 �� n

n

Note that

�3 = [[π1|π2] · (π1 ⊕ π1)|π2]
= [�2 · (id2 ⊗ π1)|π2]

thanks to absorption laws (14), (13) and �2 (18).
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Generic counit

This provides a hint of the general case:

�k+1 = [�k · (idk ⊗ π1)|π2] (21)

�1 = id (22)

No explicit dimensions – is this “well-formed”?

Let us calculate its “principal type” using Hindley-Milner’s
algorithm modulo some arithmetics.
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Polymorphic matrix type inference

To typecheck

�k+1 = [�k · (idk ⊗ π1)|π2]

we proceed by unification, starting from completely independent types as
starting point:

j (k + 1)2j
�k+1��

i k2i
�k��

k k
idk��

n n +m
π1��

b a+ b
π2��

Type equations a = n and b = m follow from π1 and π2 belonging to the

same biproduct.
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Polymorphic matrix type inference

Term �k · (idk ⊗ π1) forces type equation (“unification”)

k2i = kn

that is, n = ki . Term [�k · (idk ⊗ π1)|π2] entails i = m. Finally, the whole
equality forces:

j = m

(k + 1)2j = k(ki +m) +m + ki

Unfolding and substituting, k2m + 2km +m = k2i + km + i + ki yields
i = m. Principal type of (21) thus is:

m (k + 1)2m
�k+1��

m k2m
�k��

k k
idk��

km km +m
π1��

m km +m
π2��
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We could have used a diagram instead

k(km +m)
i1 ��

idk⊗π1

��

(k + 1)2m

�k+1

��

km +m
i2��

π2

��
k(km)

�k �� m
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Why explicit dimensions in LA?

Cf. the following piece of MATLAB code for �k

Explicit dimensions are a burden, cause mistakes and reduce
polymorphism (writer unaware that there is a more general type...)
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Summing up

• Linear algebra is polymorphically typed.

• Improvement over the loose “valid only for matrices of the
same order” (Abadir and Magnus, 2005) attitude found in the
literature.

• The prospect of building biproduct-based type checkers for
computer algebra systems such as MATLAB within reach.

• This seems to be already the approach in Cryptol (Browning,
2010), a Haskell based DSL for cryptography — can we
improve it?

Advertisement: talk proposed about OLAP stuff illustrates a
quite practical application of typed LA.
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