
On the meaning of curry(M)

for M a matrix

J.N. Oliveira
(joint work with H. Macedo)

HASLab/Universidade do Minho

Braga, Portugal

IFIP WG2.1 meeting #67
May 2011

Reykjavik, Iceland

Motivation Matrices = arrows Curry/uncurry Vectorization References

Quotation

“Using matrix notation such a set of simultaneous
equations takes the form A · x = b where x is the vector
of unknown values, A is the matrix of coefficients and b
is the vector of values on the right side of the equation.”

“In this way a set of equations has been reduced to a
single equation.”

“This is a tremendous improvement in concision that
does not incur any loss of precision!”

Roland Backhouse (2004)

Motivation Matrices = arrows Curry/uncurry Vectorization References

Concision — is computer science “concise enough”?

Perhaps not: we write long-winded formulæ such as eg.

�∀ y , x :: �∃ z :: r(y , z) ∧ p(z , x)� ⇒ �∃ w :: s(y ,w) ∧ q(w , x)��

for something which could be written, in “matrix format”, as

R · P ⊆ S · Q

Question:

• “Matrix”? Are there matrices in predicate logic?

Answer:

• Yes — binary relations, which are Boolean matrices.

Motivation Matrices = arrows Curry/uncurry Vectorization References

The function-relation-matrix hierarchy

• Relations — are everywhere, eg.

y likes x
y ≤ x

(graphs, etc)

• Functions — deterministic and total relations, eg.

y = ax + b
y = birthplace of x

(“left-linear” graphs, etc)

• Matrices — quantified relations, cf.

y M x = k

further to
y M x = true

(weighted graphs, etc)

Motivation Matrices = arrows Curry/uncurry Vectorization References

Applications in computer science

• Functions — functional programming, an advanced discipline
strongly rooted on mathematics.

• Relations — ubiquitous (eg. graphs) but still under the
atavistic set of pairs interpretation.

• Matrices — key concept in mathematics as a whole, many
tools (eg. MATLAB, Mathematica) but still “untyped”.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Typed versus untyped

• Functions — polymorphically typed, cf. triples of the form

B Af�� , they form a category under composition (f · g),
etc.

• Relations — polymorphically typed if understood in the Rel
allegory, where R · S means relation composition and R ⊆ S
means a partial order (one per type, ie. homset).

• Matrices — our “Matrices as arrows!” campaign promotes a
typed approach to linear algebra (LA) rooted on categories of
matrices.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Matrices are Arrows

Given

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

m×n

m nA��

B =

b11 . . . b1k
...

. . .
...

bn1 . . . bnk

n×k

n kB��

define

m nA�� kB��

A·B

��

Motivation Matrices = arrows Curry/uncurry Vectorization References

Category of matrices

Under A · B (vulg. MMM)

• matrices form a category whose objects are matrix

dimensions and whose morphisms m nA�� , n kB�� are
the matrices themselves;

• every identity n nid�� is the diagonal of size n, that is,
id(r , c) � r = c under the (0, 1) encoding of the Booleans:

idn =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

n×n

n n
idn��

Motivation Matrices = arrows Curry/uncurry Vectorization References

Vectors

Vectors are special cases of matrices in which one of the
dimensions is 1, for instance

v =

v1
...
vm

 and w =
�
w1 . . . wn

�

Column vector v is of type m 1�� (m rows, one column) and
row vector w is of type 1 n�� (one row, n columns).

Our convention is that lowercase letters (eg. v ,w) denote vectors
and uppercase letters (eg. A, M) denote arbitrary matrices.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Categories of Matrices

Very rarely used in computing, to the best of our knowledge.

Notable exception

Work on linear algebras of machines by Bloom et al. (1996),
who

• develop a “machines as matrices” theory of concurrency
where the underlying matrix-cell algebra is the semiring L(X ∗)
of subsets of words on a finite alphabet X .

• They define machine composition, machine target and source
tupling, and machine product.

Via these constructions they obtain a compositional and modular
approach to build complex machines.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Our aim

To enrich relation and linear algebra with ingredients which have
proved effective in functional programming, namely

• types

• polymorphism

• type checking

• calculational techniques.

Common ground?

• Mild use of category theory.

In this talk we focus on one such good ingredient — transposition.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Curry/uncurry

Functional programming’s “Swiss army knife” with two blades,

curry :: ((a,b) -> c) -> (a -> b -> c)

curry f x y = f(x,y)

and
uncurry :: (a -> b -> c) -> ((a,b) -> c)

uncurry f (a,b) = f a b

These higher-order functions enable programmers to

• defer input to output;

• fit a binary function where a unary one is expected;

• temporarily freeze parameters of a binary function while these
don’t play a role in the computation.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Exponentials

No loss of information (isomorphisms)

A× B → C

curry
��∼= A → CB

uncurry

��

thanks to universal property

curry f = k ⇔ f = � · (k × id)

where � is the eval function, cf. diagram

CB CB × B � �� C

A

k=curry f

��

A× B

k×id

��

f

��

Motivation Matrices = arrows Curry/uncurry Vectorization References

Alternative (with a monad inside)

Universal property:

uncurry k = f ⇔ k = f B · η

cf. diagram

A× B

f=uncurry k
��

(A× B)B

f B
��

A

k
��

η��

C CB

where η is the unit (return function) of the state monad on B .

Motivation Matrices = arrows Curry/uncurry Vectorization References

Products — “where” exponentials come from

Exponentials thus explained by adjunction

(×B) � (B)

where product is another universal construct:

k = �f , g� ⇔
�

π1 · k = f
π2 · k = g

cf. diagram

A× B A A× B
π1�� π2 �� B

C

k=�f ,g�

��

C

k

��

g

��

f

��

Motivation Matrices = arrows Curry/uncurry Vectorization References

Coproducts — sums

Dual concept expressing alternation:

k = [f , g] ⇔
�

k · i1 = f
k · i2 = g

cf. diagram

A+ B

k=[f ,g]
��

A

f
��

i1 �� A+ B

k
��

B
i1��

g
��

C C

where A+ B expresses disjoint union.

Motivation Matrices = arrows Curry/uncurry Vectorization References

1st step in the generalization

From functions to relations:

• Relational type A → B (homset) far larger than the same
restricted to functions.

• Pairing not injective — �R ,P� = �S ,Q� no longer entails
R = S and P = Q — so product is gone!

• Coproduct survives :-)

• A new isomorphic transformation — converse B R◦
�� A

given A R �� B — since relations are invertible.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Biproducts

Products still to be found in the category, but elsewhere — in fact
“attached” to coproducts, as converse duals:

�R , S�◦ = [R◦, S◦]

Altogether, they form a biproduct:

C

A

R

��

i1 ��
A+ B

[R , S]

��

π1

��
π2

�� B
i2��

S

��

D

U

��

�U,V �

��

V

��

[R , S] = R · π1 ∪ S · π2
�U,V � = i1 · U ∪ i2 · V

where π1 = i◦
1

π2 = i◦
2

Motivation Matrices = arrows Curry/uncurry Vectorization References

Biproducts in general

In an Abelian category, a biproduct diagram for the objects m, n is
a diagram of shape

m
i1
�� r

π1�� π2 ��
n

i2
��

whose arrows π1, π2, i1, i2 satisfy the identities which follow:

π1 · i1 = idm (1)

π2 · i2 = idn (2)

i1 · π1 + i2 · π2 = idr (3)

Two orthogonality properties follow:

π1 · i2 = 0 , π2 · i1 = 0 (4)

Motivation Matrices = arrows Curry/uncurry Vectorization References

“Standard LA biproduct”

Among the many solutions to the biproduct equations we select
the following

π1 = m m + n
[idm | 0]

�� , π2 = n m + n
[0 | idn]��

i1 = m + n m
[idm

0
]

�� , i2 = m + n n

�
0

idm

�

��

which are made of fragments of id

[i1|i2] = id (5)�
π1
π2

�
= id (6)

and enough to explain “block notation” used in LA.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Blocked LA

Thanks to universal constructs:

• Structural equality laws (over the same biproduct):

[A|B] = [C |D] ⇔ A = C ∧ B = D (7)�
A

B

�
=

�
C

D

�
⇔ A = C ∧ B = D (8)

• Injections and projections in a biproduct are unique. For
instance,

P ·
�
U

V

�
= U ∧ Q ·

�
U

V

�
= V ⇔ P = π1 ∧ Q = π2 (9)

Motivation Matrices = arrows Curry/uncurry Vectorization References

“Forks”

Still room for “old products” — renamed “forks”.

The relational fork operator implicit in Tarski’s work

(a, b)(R � S)c ⇔ aRc ∧ bSc

is a conservative extension of functional pairing

(f � g)c = (f c , g c)

but no longer a categorial product.

Motivation Matrices = arrows Curry/uncurry Vectorization References

“Forks”

In fact:

X ⊆ R � S ⇔
�

fst · X ⊆ R
snd · X ⊆ S

cf. diagram

A× B A A× Bfst�� snd �� B

C

R�S
��

C

R�S
��

S

��

R

��

Motivation Matrices = arrows Curry/uncurry Vectorization References

Dramatic impact on “currying”

Isomorphism now is

A× B → C

curry
��

∼= A → C × B

uncurry

��

Diagram:

C × B (C × B)× B � �� C

A

curry R

��

A× B

(curry R)×id

��

R

��

Motivation Matrices = arrows Curry/uncurry Vectorization References

Self-adjunction

Relational currying thus explained by self-adjunction

(×B) � (×B)

Details:

curry R � (R � snd) · fst◦ C × B

A
fst◦

��

curry R

��

A× B

R�snd
��

that is

(c , b)(curry R)a ⇔ c R (a, b)

Moral: every n-ary relation is a binary relation; where
(input/output) you place the attributes is irrelevant.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Converse duality

Relational uncurrying:

uncurry R � curry(R◦)◦

= fst · �R◦, snd�◦

Then

� = uncurry id = fst · �id , snd�◦

With points:

c2 � ((c1, b1), b2) ⇔ c2 = c1 ∧ b1 = b2

Motivation Matrices = arrows Curry/uncurry Vectorization References

2nd step in the generalization

From relations to matrices:

• What about curry M for M a matrix?

• Types are dimensions which can be factored, for instance

k ×m → n

curryk
��

∼= m → k × n

uncurryk

��

• “Deja vu”? Yes! See next slide on matrix vectorization.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Vectorization

Example: matrix

A =

�
a11 a12 a13
a21 a22 a23

�
converted to vecA =

a11
a21
a12
a22
a13
a23

Type-wise:

3× 1 → 2

curry3
��∼= 1 → 3× 2

uncurry3

��

Transformations which preserve the “area” of the original matrix.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Parallel

Intuition — vectorization is akin to exponentiation:

While currying “thins” the input of a given binary

function m × k f �� n by converting it into its unary

(higher-order) counterpart m
curry f �� nk , so does

vectorization by thinning a given matrix k ×m M �� n

into m vecM �� k × n , where k is the “thinning factor”.

(For m = 1, vecM will be a column vector.)

Motivation Matrices = arrows Curry/uncurry Vectorization References

Self-adjunction

Vectorization with thinning factor k (in general) is captured by
self-adjunction

(k×) � (k×)

cf. diagram

k × n k × (k × n)
�k �� n

m

X

��

k ×m

idk⊗X

��

M

��

and universal property

X = veck M ⇔ M = �k · (idk ⊗ X) (10)

where ⊗ is the Kronecker product (a bifunctor in the category).

Motivation Matrices = arrows Curry/uncurry Vectorization References

Vectorization refactoring

Macedo and Oliveira (2011) show how standard vectorization
theory arises from this universal property and biproduct algebra,
namely the following relationship

vec (A · B · C) = (C ◦ ⊗ A) · vecB (11)

which Abadir and Magnus (2005) attribute to Roth (1934) and
regard as the fundamental result of the whole theory.

Such theory is often clumsy, full of index-wise “...”-built matrices
hard to grasp.

Thanks to typed (block) LA combinators and biproduct algebra
one can infer closed, polymorphic formulæ for such matrices. Let
us infer that of the counit �k .

Motivation Matrices = arrows Curry/uncurry Vectorization References

LA refreshing — Direct sum

Direct sum

A⊕ B = [i1 · A|i2 · B] =

�
A 0
0 B

�
(12)

is a bifunctor, cf.

n

A
��

m

B
��

n +m

A⊕B
��

k j k + j

such that

id2 ⊗ A = A⊕ A (13)

[A|B] · (C ⊕ D) = [A · C |B · D] (14)

Motivation Matrices = arrows Curry/uncurry Vectorization References

Kronecker product

Another bifunctor

n

A
��

m

B
��

n ×m

A⊗B
��

k j k × j

whose fusion laws

[A|B]⊗ C = [A⊗ C |B ⊗ C] (15)�
A

B

�
⊗ C =

�
A⊗ C

B ⊗ C

�
(16)

capture its meaning block-wise. Another property relevant for our
purposes is simplification rule

πj ⊗ id = πj (j = 1, 2) (17)

Motivation Matrices = arrows Curry/uncurry Vectorization References

Chasing �k

• We want to characterize �k in

k × n k × (k × n)
�k �� n

m

X

��

k ×m

idk⊗X

��

M

��

for any k , so that a generic theory of “blocked vectorization”
becomes available.

• For k = 2, the smallest possible case happens for m = n = 1,

where one expects vec2
�
x y

�
to be

�
x
y

�
, for x and y

elementary data.

• Scaling up: replace x and y by blocks n mA�� and

n mB�� , respectively, and reason:

Motivation Matrices = arrows Curry/uncurry Vectorization References

Reasoning

vec2 [A|B] =

�
A

B

�

⇔ { (10) }

[A|B] = �2 · (id2 ⊗
�
A

B

�
)

⇔ { (13) ; unjunc �2 into �21 and �22 }

[A|B] = [�21|�22] · (
�
A

B

�
⊕
�
A

B

�
)

⇔ { ⊕-absorption (14) }

[A|B] =

�
�21 ·

�
A

B

�
|�22 ·

�
A

B

��

Motivation Matrices = arrows Curry/uncurry Vectorization References

Reasoning continued

[A|B] =

�
�21 ·

�
A

B

�
|�22 ·

�
A

B

��

⇔ { (7) ; (9) }
�21 = π1 ∧ �22 = π2

⇔ { junc �21 and �22 back into �2 }

�2 = [π1|π2]

Thus we get �2 with type

n 2n + 2n
�2=[π1|π2]�� (18)

expressing �k (for k = 2) in terms of the standard biproduct projections.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Example

Check the following instance of cancellation law,

M = �k · (idk ⊗ veck M) (19)

for k = m = n = 2:

�
a11 a12
a21 a22

�
=

�
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

�
· (id2 ⊗

a11
a21
a12
a22

)

Clearly,

� =

�
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

�
=

�
1 0 0 1

�
⊗ id2

A general fact revealing the polymorphism of �:

�⊗ id = � (20)

Motivation Matrices = arrows Curry/uncurry Vectorization References

Example

Calculation:

�⊗ id

= { definition (18) }

[π1|π2]⊗ id

= { distribution (15) }

[π1 ⊗ id |π2 ⊗ id]

= { πj ⊗ id = πj (17) twice; (18) }
�

Typewise:

(k2n
�k �� n)⊗ (j id �� j) = k2(nj)

�k �� nj

This provides an elegant explanation for the index-wise
construction of � given in Dos̆en and Petrić (2003).

Motivation Matrices = arrows Curry/uncurry Vectorization References

Generic counit

Doing a similar exercise for k = 3, one would obtain

32n
�3 �� n = [[π1 · π1|π2 · π1] |π2]

with types as in diagram:

n n + n
π1��

π2

��

(n + n) + n
π1�� π2 �� n

n

Note that

�3 = [[π1|π2] · (π1 ⊕ π1)|π2]
= [�2 · (id2 ⊗ π1)|π2]

thanks to absorption laws (14), (13) and �2 (18).

Motivation Matrices = arrows Curry/uncurry Vectorization References

Generic counit

This provides a hint of the general case:

�k+1 = [�k · (idk ⊗ π1)|π2] (21)

�1 = id (22)

No explicit dimensions – is this “well-formed”?

Let us calculate its “principal type” using Hindley-Milner’s
algorithm modulo some arithmetics.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Polymorphic matrix type inference

To typecheck

�k+1 = [�k · (idk ⊗ π1)|π2]

we proceed by unification, starting from completely independent types as
starting point:

j (k + 1)2j
�k+1��

i k2i
�k��

k k
idk��

n n +m
π1��

b a+ b
π2��

Type equations a = n and b = m follow from π1 and π2 belonging to the

same biproduct.

Motivation Matrices = arrows Curry/uncurry Vectorization References

Polymorphic matrix type inference

Term �k · (idk ⊗ π1) forces type equation (“unification”)

k2i = kn

that is, n = ki . Term [�k · (idk ⊗ π1)|π2] entails i = m. Finally, the whole
equality forces:

j = m

(k + 1)2j = k(ki +m) +m + ki

Unfolding and substituting, k2m + 2km +m = k2i + km + i + ki yields
i = m. Principal type of (21) thus is:

m (k + 1)2m
�k+1��

m k2m
�k��

k k
idk��

km km +m
π1��

m km +m
π2��

Motivation Matrices = arrows Curry/uncurry Vectorization References

We could have used a diagram instead

k(km +m)
i1 ��

idk⊗π1

��

(k + 1)2m

�k+1

��

km +m
i2��

π2

��
k(km)

�k �� m

Motivation Matrices = arrows Curry/uncurry Vectorization References

Why explicit dimensions in LA?

Cf. the following piece of MATLAB code for �k

Explicit dimensions are a burden, cause mistakes and reduce
polymorphism (writer unaware that there is a more general type...)

Motivation Matrices = arrows Curry/uncurry Vectorization References

Summing up

• Linear algebra is polymorphically typed.

• Improvement over the loose “valid only for matrices of the
same order” (Abadir and Magnus, 2005) attitude found in the
literature.

• The prospect of building biproduct-based type checkers for
computer algebra systems such as MATLAB within reach.

• This seems to be already the approach in Cryptol (Browning,
2010), a Haskell based DSL for cryptography — can we
improve it?

Advertisement: talk proposed about OLAP stuff illustrates a
quite practical application of typed LA.

Motivation Matrices = arrows Curry/uncurry Vectorization References

K.M. Abadir and J.R. Magnus. Matrix algebra. Econometric
exercises 1. Cambridge , United Kingdom: Cambridge University
Press, 2005.

R.C. Backhouse. Mathematics of Program Construction. Univ. of
Nottingham, 2004. Draft of book in preparation. 608 pages.

Stephen L. Bloom, N. Sabadini, and R. F. C. Walters. Matrices,
machines and behaviors. Applied Categorical Structures, 4:
343–360, 1996. ISSN 0927-2852. URL
http://dx.doi.org/10.1007/BF00122683.
10.1007/BF00122683.

Sally Browning. Cryptol, a DSL for cryptographic algorithms. In
ACM SIGPLAN Commercial Users of Functional Programming,
CUFP ’10, pages 9:1–9:1, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0516-7.

K. Dos̆en and Z. Petrić. Self-adjunctions and matrices. Journal of
Pure and Applied Algebra, 184:7–39, 2003. doi:
http://doi.acm.org/10.1016/S0022-4049(03)00084-7.

H.D. Macedo and J.N. Oliveira. Typing linear algebra: A

http://dx.doi.org/10.1007/BF00122683

Motivation Matrices = arrows Curry/uncurry Vectorization References

biproduct-oriented approach, 2011. (Submitted to Science of
Computer Programming).

W. E. Roth. On direct product matrices. Bulletin of the American
Mathematical Society(40):461–468, 1934.

	Motivation
	Matrices = arrows
	Curry/uncurry
	Vectorization

