
An AoP approach to typed linear algebra

J.N. Oliveira
(joint work with Hugo Macedo)

Dept. Informática,
Universidade do Minho

Braga, Portugal

IFIP WG2.1 meeting #65
27th January 2010
Braga, Portugal

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Context and Motivation

• The advent of on-chip parallelism poses many challenges to
current programming languages.

• Traditional approaches (compiler + hand-coded optimization
are giving place to trendy DSL-based generative techniques.

• In areas such as scientific computing, image/video processing,
the bulk of the work performed by so-called kernel functions.

• Examples of kernels are matrix-matrix multiplication (MMM),
the discrete Fourier transform (DFT), etc.

• Kernel optimization is becoming very difficult due to the
complexity of current computing platforms.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Teaching computers to write fast numerical code

In the Spiral Group (CMU), a DSL has been defined (OL)
(Franchetti et al., 2009) to specify kernels in a data-independent
way.

• Divide-and-conquer algorithms are described as OL
breakdown rules.

• By recursively applying these rules a space of algorithms for a
desired kernel can be generated.

Rationale behind Spiral:

• Target imperative code is too late for numeric processing
kernel optimization.

• Such optimization can be elegantly and efficiently performed
well above in the design chain once the maths themselves are
expressed in an index-free style.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Starting point

Synergy:

• Parallel between the pointfree notation of OL and relational
algebra (relations are Boolean matrices)

• Rich calculus of algebraic rules.

Observation:

• Relational calculus is typed once relations are regarded as
arrows in the Rel allegory.

• What about the matrix calculus?

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

OL Sample (Franchetti et al., 2009)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

MMM as inspiration about what to do

From the Wikipedia:

Index-wise definition

Cij =

2,3∑
k,j=1,1

Aik × Bkj

Hiding indices i , j , k:

3 2
Aoo 3

Boo

A·B

ff Index-free

C = A · B

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

MMM as inspiration about what to do

From the Wikipedia:

Index-wise definition

Cij =

2,3∑
k,j=1,1

Aik × Bkj

Hiding indices i , j , k:

3 2
Aoo 3

Boo

A·B

ff Index-free

C = A · B

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Matrices are Arrows

Given

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

m×n

m nAoo

B =

b11 . . . b1k
...

. . .
...

bu1 . . . bnk

n×k

n k
Boo

Define

m nAoo k
Boo

A·B

gg

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Matrices are Arrows

Given

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

m×n

m nAoo

B =

b11 . . . b1k
...

. . .
...

bu1 . . . bnk

n×k

n k
Boo

Define

m nAoo k
Boo

A·B

gg

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Category of matrices

As guessed above:

• Under MMM (A · B), matrices form a category whose
objects are matrix dimensions and whose morphisms

m nAoo , n k
Boo are the matrices themselves.

• Every identity n nidoo is the diagonal of size n, that is,
id(r , c) 4 r = c under the (0, 1) encoding of the Booleans:

idn =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

n×n

n n
idnoo

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Transposition (converse)

As happens with relations, given n A // m define

A◦ =

a11 . . . am1
...

. . .
...

a1n . . . amn

 n mA◦oo

Instead of telling how transposition is carried out index-wise, let us
stress on its (index-free) properties such as, eg.

(A◦)◦ = A (1)

(A · B)◦ = B◦ · A◦ (2)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Bilinearity

Categories of matrices are Abelian — every homset forms an
aditive Abelian group (Ab-category) such that composition is
bilinear relative to +:

M · (N + L) = M · N + M · L (3)

(N + L) · K = N · K + L · K (4)

Moreover, it has biproducts, where a biproduct diagram

a
i1

// c
π1oo π2 //

b
i2

oo (5)

is such that

π1 · i1 = ida (6)

π2 · i2 = idb (7)

i1 · π1 + i2 · π2 = idc (8)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Deja vu?

In fact, within relations (where + is ∪, π1 is i◦1 and π2 is i◦2):

i◦1 · i1 = id

i◦2 · i2 = id

meaning that ik=1,2 are injections (kernels both reflexive and
coreflexive) and

i1 · i◦1 ∪ i2 · i◦2 = id

meaning that they are jointly surjective (images together are
reflexive and coreflexive).

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Orthogonality

Projections and injections are orthogonal to each other:

π1 · i2 = 0 , π2 · i1 = 0 (9)

Again something we can translate to relational algebra, for instance
(recalling that π1 = i◦1 , π2 = i◦2):

i◦1 · i2 = ⊥

⇔ { go pointwise and simplify }

¬〈∃ b, a :: 〈∃ c :: i1 c = i2 c〉〉

(injections are range-disjoint).

In linear algebra, however, biproducts are far many and more interesting!

Let us see why.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Biproduct=product+coproduct

Quoting MacLane (1971), pg. 194:

Theorem:
“ Two objects a and b in Ab-category A have a product in A iff
they have a biproduct in A. Specifically, given a biproduct
diagram, the object c with the projections π1 and π2 is a product
of a and b, while, dually, c with i1 and i2 is a coproduct.”

How do we build (c)products from biproducts?

The parallel with relation algebra helps once again (for π1 = i◦1 and
π2 = i◦2):

[R ,S]=(R · i◦1) ∪ (S · i◦2) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

C

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Biproduct=product+coproduct

Quoting MacLane (1971), pg. 194:

Theorem:
“ Two objects a and b in Ab-category A have a product in A iff
they have a biproduct in A. Specifically, given a biproduct
diagram, the object c with the projections π1 and π2 is a product
of a and b, while, dually, c with i1 and i2 is a coproduct.”

How do we build (c)products from biproducts?

The parallel with relation algebra helps once again (for π1 = i◦1 and
π2 = i◦2):

[R ,S]=(R · i◦1) ∪ (S · i◦2) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

C

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Diagram for (co)products

Diagram and definitions below depict how products and coproducts
arise from biproducts:

m

n

R
<<yyyyyyyyy

i1
// n + p

[R|S]

OO

π1oo π2 // p
i2

oo

S
bbEEEEEEEEE

t
U

bbEEEEEEEEE
[U

V]

OO

V

<<yyyyyyyyy

[R|S] = R · π1 + S · π2 (10)[
U

V

]
= i1 · U + i2 · V (11)

These are in fact families of (co)products, as there are many
solutions to the biproduct equations. How do we go about such a
variety of solutions?

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Chasing biproducts

Hugo sought help from Mathematica by reducing dimensions as
much as possible

1
i1

// 1 + 1
π1oo π2 //

1
i2

oo

thus leading to a more manageable “puzzle”
π1 · i1 = [1]
π2 · i2 = [1]

i1 · π1 + i2 · π2 =

[
1 0
0 1

]
(which still has several solutions)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Chasing biproducts

Fragment of Mathematica script:

sol = Solve[{pi1.i1 == I1, pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]sol = Solve[{pi1.i1 == I1, pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]sol = Solve[{pi1.i1 == I1, pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]
Solve::svars :

Equations may not give solutions for all "solve" variables. 〉〉{{
w [1][1] → 1

y [1][1] ,w [1][2] → − x[1][1]z[1][2]
y [1][1] , x [1][2] → 1

z[1][2] , z [1][1] → 0, y [1][2] → 0
}

,{
w [1][1] → − x[1][2]z[1][1]

y [1][2] ,w [1][2] → y [1][2]+x[1][2]y [1][1]z[1][1]
y [1][2]2 ,

x [1][1] → y [1][2]+x[1][2]y [1][1]z[1][1]
y [1][2]z[1][1] , z [1][2] → − y [1][1]z[1][1]

y [1][2]

}}

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Chasing biproducts

Among solutions given by Mathematica we picked

π1 =
[
1 0

]
π2 =

[
0 1

]
i1 =

[
1
0

]
i2 =

[
0
1

]
which purport an intuitive reading of either and split:

• [A|B] glues two matrices horizontally

•
[

A
B

]
glues two matrices vertically

In general:

π1 = m m + n
[idm | 0]oo , π2 = n m + n

[0 | idn]oo

i1 = m + n m
[idm

0]
oo , i2 = m + n n

h
0

idm

i
oo

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

The “standard” biproduct

Rephrased using (10) and (11) just defined, biproduct axiom (8)
rewrites to both

[i1|i2] = id (12)[
π1

π2

]
= id (13)

telling how the two injections and the two projections
“decompose” the identity matrix.

Moreover, (12,13) look like reflection laws (AoP terminology).

Thus the universal properties which follow:

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

The “standard” biproduct

Universal properties (familiar to the AoP practitioner) — one for
“either”,

X = [R|S] ⇔
{

X · i1 = R
X · i2 = S

(14)

another for “split”:

X =

[
U

V

]
⇔

{
π1 · X = U
π2 · X = V

(15)

Converse duality [
A

B

]
= [A◦|B◦]◦ (16)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Block notation

Block notation is nothing but but packaging products and
coproducts together:

X =

[
A C

B D

]
⇔

π1 · X · i1 = A
π1 · X · i2 = C
π2 · X · i1 = B
π2 · X · i2 = D

(17)

As expected, projection indices identify lines, injection indices
identify columns.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Triggering the AoP panoply

(Besides reflection laws already mentioned)

Two fusion laws: [
A

B

]
· C =

[
A · C
B · C

]
(18)

C · [A|B] = [C · A|C · B] (19)

Four cancellation-laws:

[A|B] · i1 = A , [A|B] · i2 = B (20)

π1 ·
[

A

B

]
= A , π2 ·

[
A

B

]
= B (21)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Abide laws

The either/split exchange law:[
[A|B]
[C |D]

]
=

[[
A
C

]
|
[

B
D

]]
=

[
A B

C D

]
(22)

— tells the equivalence between row-major and column-major
matrix construction.

Two blocked addition laws,

[A|B] + [C |D] = [A + C |B + D] (23)[
A

B

]
+

[
C

D

]
=

[
A + C

B + D

]
(24)

for suitably typed A, B, C and D.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Putting things in motion

Elementary divide and conquer matrix multiplication:

[R|S] ·
[

U

V

]
= R · U + S · V (25)

Calculation:

[R|S] ·
[

U

V

]
= { (11) }

[R|S] · (i1 · U + i2 · V)

= { bilinearity (3) }

[R|S] · i1 · U + [R|S] · i2 · V

= { +-cancellation (20) twice }

R · U + S · V

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Putting things in motion

Blockwise MMM:[
R S

U V

]
·
[

A B

C D

]
=

[
RA + SC RB + SD

UA + VC UB + VD

]
(26)

Calculation: [[
R

U

]
|
[

S

V

]]
·
[[

A

C

]
|
[
B

D

]]
= { either-fusion (19) }[[[

R

U

]
|
[

S

V

]]
·
[

A

C

]
|
[[

R

U

]
|
[

S

V

]]
·
[
B

D

]]

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Putting things in motion

= { divide and conquer (25) twice }[[
R

U

]
· A +

[
S

V

]
· C |

[
R

U

]
· B +

[
S

V

]
· D

]
= { split-fusion (19) four times }[[

R · A
U · A

]
+

[
S · C
V · C

]
|

[
R · B
U · B

]
+

[
S · D
V · D

]]
= { blocked addition (24) twice }[[

R · A + S · C
U · A + V · C

]
|

[
R · B + S · D
U · B + V · D

]]
= { the same in block notation (22) }[

RA + SC RB + SD
UA + VC UB + VD

]
No indices messing around :-)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Exploiting the biproduct space

What about other solutions to the biproduct equations? What can
we expect from them?

Think of Gaussian elimination, for instance: main steps are
row-switching, row-multiplication and row-addition, eg.
transformation t for a given α:

t : (n noo)× (n + n moo) → (n + n moo)

t(α,

[
A

B

]
) =

[
A

αA + B

]

(arrow n nαoo means n nidoo with all 1s replaced by αs.)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Another biproduct
Let us “reverse specify” t:

t(α,

[
A

B

]
) =

[
A

αA + B

]
= { (26) in reverse order }[[

1

α

]
|
[
0

1

]]
·
[

A

B

]
= { divide-and-conquer (25) }[

1

α

]
· A +

[
0

1

]
· B (27)

It can be shown that (27) is the split combinator of another biproduct,
the one capturing such a step of Gaussian elimination:

π′
1 =

[
1 0

]
, π′

2 =
[
−α 1

]
i ′1 =

[
1
α

]
, i ′2 =

[
0
1

]

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Gaussian elimination “hylomorphism”

Structured and (“polymorphically”) typed:

ge : (1 + n 1 + moo) → (1 + n 1 + moo)

ge

[
x M

N Q

]
=

[
x M

0 ge(Q − N
x ·M)

]
ge x = x

However: what’s the specification of ge?

Currently studying its specification and correctness proof.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Last but not least — vectorization

Refinement step: linearization of an arbitrary matrix into a vector
mapped on linear storage.

Refactoring Spiral’s OL means studying the refinement of all
matrix operations into vectorial form.

A foretaste of what is to come: DFT as an OL breakdown rule,

DFTn → (DFTk ⊗ Im) ◦ Dk,m ◦ (Ik ⊗ DFT) ◦ Lkm
k , n = km

MMM as an OL breakdown rule,

Strategy?

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Last but not least — vectorization

Main observation — vectorization is akin to exponentiation:

While currying “thins” the input of a given binary

function n mk
foo by converting it into its unary

(higher-order) counterpart nk m
curry foo , so does

vectorization by thining a given matrix n km
Moo into

kn mvecMoo , where k is the “thining factor”.

(For m = 1, vecM will be a column vector.)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Last but not least — vectorization

Once again, let us rely on capturing such a relationship by an
universal property:

X = vecM ⇔ M = ε · (id ⊗ X)

cf. diagram (analogue to that of curry)

k × n k × (k × n)
ε // n

m

vecM

OO

k ×m

idk⊗(vecM)

OO

M

::ttttttttttt

where ⊗ denotes Kronecker product.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Last but not least — vectorization

This grants vec as a bijective transformation. So its converse
unvec is also a bijection, whereby ε = unvec id , etc, etc

In other words, we are in presence of an adjunction between
functor FX = idk ⊗ X and itself.

Categories of matrices are not CCC but they are CSM (closed
symmetric monoidal), yielding a tensor product (⊗) which is a
bifunctor with a monoidal structure

⊗ : Matk ×Matk → Matk

Exploring all this in calculating the whole algebra of OL vectorized
operations will keep us (HM+JNO) busy for a while.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and
Markus Püschel. Operator language: A program generation
framework for fast kernels. In IFIP Working Conference on
Domain Specific Languages (DSL WC), 2009.

S. MacLane. Categories for the Working Mathematician.
Springer-Verlag, New-York, 1971.

	Motivation
	Matrices = arrows
	Abelian category
	Abide laws
	Divide & conquer
	Vectorization
	References

