An AoP approach to typed linear algebra

J.N. Oliveira
(joint work with Hugo Macedo)

Dept. Informatica,
Universidade do Minho
Braga, Portugal

IFIP WG2.1 meeting #65
27th January 2010
Braga, Portugal

Motivation

Context and Motivation

e The advent of on-chip parallelism poses many challenges to
current programming languages.

e Traditional approaches (compiler + hand-coded optimization
are giving place to trendy DSL-based generative techniques.

e In areas such as scientific computing, image/video processing,
the bulk of the work performed by so-called kernel functions.

o Examples of kernels are matrix-matrix multiplication (MMM),
the discrete Fourier transform (DFT), etc.

e Kernel optimization is becoming very difficult due to the
complexity of current computing platforms.

Motivation

Teaching computers to write fast numerical code

In the SPIRAL Group (CMU), a DSL has been defined (OL)
(Franchetti et al., 2009) to specify kernels in a data-independent
way.
¢ Divide-and-conquer algorithms are described as OL
breakdown rules.
e By recursively applying these rules a space of algorithms for a
desired kernel can be generated.
Rationale behind SPIRAL:
e Target imperative code is too late for numeric processing
kernel optimization.
e Such optimization can be elegantly and efficiently performed
well above in the design chain once the maths themselves are
expressed in an index-free style.

Motivation

Starting point

Synergy:
o Parallel between the pointfree notation of OL and relational
algebra (relations are Boolean matrices)

e Rich calculus of algebraic rules.
Observation:

e Relational calculus is typed once relations are regarded as
arrows in the Rel allegory.

e What about the matrix calculus?

Motivation Matrices = arrows

Abelian category

Abide laws Divide & conquer Vectorization

OL Sample (Franchetti et al., 2009)

name

definition

Linear, arity (1,1)
identity
vector flip
transposition of an 1 x n matrix
matrix M e C™*"

Multilinear, arity (2,1)
Point-wise product
Scalar product
Kronecker product

Others
Fork
Split
Concatenate
Duplication
Min
Max

[, :C" —=0C" x—x

Jn :C" — T (z3) v (Tn—i)
L omn o A AT
M:C" = C"x— Mx

Pn:C" < C" = C% ((21), (y:)) = (way:)
Sn i C" % C" — C; ((2:3), (1)) — E(wams)
Kiwn : C" x C" = C" ((x:),y) = (2:y)

Fork, : C" — C" x C"; x+— (x,x)

Split,, : C" — €2 x €2 x — (xV x")

P C"x C™ = C"M™ (x,¥) = xBy
dup)’ : C" — C"™; (x = x@ [

min, : C" x C" — C"; (x,y) — (min(z;, y:))
max, : C" x C" — C"; (x,y) — (max(z,v:))

Table 1. Definition of basic operators. The operators are assumed to operate on complex numbers
but other base sets are possible. Boldface fonts represent vectors or matrices linearized in mem-
ory. Superscripts U7 and L represent the upper and lower half of a vector. A vector is sometimes
written as x = (;) to identify the components.

References

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

MMM as inspiration about what to do

From the Wikipedia:

w

I:'1.1 bl.z b_l.a
D2 [bzafbzs Index-wise definition
N .
a1_1|a1.2 e —— o !
1 Ci= Y AwxBy
A RN L=E l---_* . k’J:]-’l

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

MMM as inspiration about what to do
From the Wikipedia:

w

I:'1.1 bl.z b_l.a
D2 [bzafbzs Index-wise definition
N .
a1_1|a1.2 e —— o !
1 Ci= Y AwxBy
A RN L=E l---_* . k’J:]-’l

Hiding indices /, j, k:
3 A 5 B 3 Index-free

AB C=A-B

Motivation Matrices = arrows

Given
ai
A=
amil
b11
B=| :
bul

Abelian category Abide laws Divide & conquer Vectorization

Matrices are Arrows

4 mxXn

d nxk

References

Motivation Matrices = arrows

Given
ai
A=
amil
b11
B=| :
bul

Define

Abelian category Abide laws Divide & conquer Vectorization

Matrices are Arrows

ain | A
1n m<2_n
amn] myn
bik | B
bnk_ nxk
A B

References

Abelian category

Category of matrices

As guessed above:

e Under MMM (A - B), matrices form a category whose

objects are matrix dimensions and whose morphisms

A
m n

B .
, n k are the matrices themselves.

e Every identity n<9_n s the diagonal of size n, that is,
id(r,c) 2 r = c under the (0,1) encoding of the Booleans:

10 --- 0

01 0 ;
id, =)) n<d—"

0 0 - 1

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Transposition (converse)

. . . A .
As happens with relations, given n——— m define
dilr ... ami
o A°
A° = L n<—m
din .- dmn

Instead of telling how transposition is carried out index-wise, let us
stress on its (index-free) properties such as, eg.

(A = A (1)
(A-BY = B°.A° (2)

Abelian category

Bilinearity

Categories of matrices are Abelian — every homset forms an
aditive Abelian group (Ab-category) such that composition is
bilinear relative to +:

M-(N+L) = M-N+M-L
(N+L)-K = N-K+L-K

Moreover, it has biproducts, where a biproduct diagram

- —_—
a c b
i i
is such that
T = Id,
Mo = idp
i m+i-m = idc

Abelian category

Deja vu?

In fact, within relations (where + is U, 71 is if and m is i5):

i = id

i i = id

meaning that ix—1 » are injections (kernels both reflexive and
coreflexive) and

I'1~I'fUI'2‘I'§ = id

meaning that they are jointly surjective (images together are
reflexive and coreflexive).

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Orthogonality

Projections and injections are orthogonal to each other:
7 =0) M- =0 9)

Again something we can translate to relational algebra, for instance
(recalling that mp = i, mp = i5):

=1
& { go pointwise and simplify }
(3 b,a :: (3c : hc=hc))

(injections are range-disjoint).

In linear algebra, however, biproducts are far many and more interesting!
Let us see why.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Biproduct=product+coproduct
Quoting MacLane (1971), pg. 194:

Theorem:

“ Two objects a and b in Ab-category A have a product in A iff
they have a biproduct in A. Specifically, given a biproduct
diagram, the object ¢ with the projections 71 and 75 is a product
of a and b, while, dually, ¢ with /1 and i is a coproduct.”

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Biproduct=product+coproduct
Quoting MacLane (1971), pg. 194:

Theorem:

“ Two objects a and b in Ab-category A have a product in A iff
they have a biproduct in A. Specifically, given a biproduct
diagram, the object ¢ with the projections 71 and 75 is a product
of a and b, while, dually, ¢ with /1 and i is a coproduct.”

How do we build (c)products from biproducts?
The parallel with relation algebra helps once again (for 71 = iy and
o = Ig)i

i i

[R,SI=(R-§)U(S-i5) of. A—">AtB<"——8

\ l[is/

C

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Diagram for (co)products

Diagram and definitions below depict how products and coproducts
arise from biproducts:

m
R rls NS RIS| = R-m+S-m (10)
1 T2 U
+ _ — - i -
e M WU+ Vo (11)

These are in fact families of (co)products, as there are many
solutions to the biproduct equations. How do we go about such a
variety of solutions?

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Chasing biproducts

Hugo sought help from Mathematica by reducing dimensions as
much as possible

T o)
1 _ 1+1 ' 1
i i

thus leading to a more manageable “puzzle

m i = [1]
7T2-i2 = []_]
. . 10
n-mp+nr-m = [0 1]

(which still has several solutions)

Abelian category

Chasing biproducts

Fragment of Mathematica script:

= Solve[{pil.il == I1, pi2.i2 == I1,il.pil + i2.pi2 == 12}]
Solve::svars :
Equations may not give solutions for all "solve" variables.))

{{wltlit] = i, witli2) - 2B 2] — Sy, 20)[1] — 0, y{)[2
{w[11[1] — S 5] — AL,

2kl lelaln] vzt
x[1][1] — RIRERI) z[1][2] — 12l }}

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization

Chasing biproducts

Among solutions given by Mathematica we picked

m=[1 0 m=][0 1]

-l o[

which purport an intuitive reading of either and split:
e [A|B] glues two matrices horizontally
° [g] glues two matrices vertically

In general:

lidm | 0] [0 | idn]

References

™M= M<——"7"""—m-+n , M= N<——m-+n

[i42] (2]

H= m+n<——m , h= m+n<——

Abelian category

The “standard” biproduct

Rephrased using (10) and (11) just defined, biproduct axiom (8)
rewrites to both

[al2] = id (12)
[:ﬂ — id (13)

telling how the two injections and the two projections
“decompose” the identity matrix.

Moreover, (12,13) look like reflection laws (AoP terminology).

Thus the universal properties which follow:

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

The “standard” biproduct

Universal properties (familiar to the AoP practitioner) — one for

“either”,
B X-i=R
X =[R|S] & { X h=5 (14)
another for “split”:
U m - X=U
X_[V] & {wz-X:V (15)

Converse duality

5| - wier (16)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Block notation

Block notation is nothing but but packaging products and
coproducts together:

m-X-h=A

[AC m - X-h=C

X_[B D} T\ m-X-a=B (17)
- X-ihb=D

As expected, projection indices identify lines, injection indices

identify columns.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Triggering the AoP panoply

(Besides reflection laws already mentioned)

-l o

C-[AB] = [C-A|C-B] (19)

Two fusion laws:

Four cancellation-laws:

[AB]-ii=A , [AB] =8 (20)

£

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Abide laws

The either/split exchange law:

e - wenen - [He] 0 @

— tells the equivalence between row-major and column-major
matrix construction.

Two blocked addition laws,
[A|B]+[C|D] = [A+ C|B+ D] (23)
sl +[o) = [+ &

for suitably typed A, B, C and D.

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Putting things in motion

Elementary divide and conquer matrix multiplication:

[R|S]-[ﬂ — R-U+S-V (25)
Calculation:
7Isl- |5,
- ()

[RIS] - (h-U+1ir-V)

= { bilinearity (3) }
[RIS]- - U+[R|S]-in-V

= { +-cancellation (20) twice }
R-U+S-V

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Putting things in motion

Blockwise MMM:

R| ST [A|B]_[RA+SC|RB+SD
ulv C|D| |[UA+VC|UB+ VD

(26)

Calculation:

[ElEIRIEIE]

= { either-fusion (19) }

sl) [t o] L]

Motivation Matrices = arrows

Abelian category Abide laws Divide & conquer

Putting things in motion

{ divide and conquer (25) twice }

o] 4+ 3] <1 o) e+ 3] 2]
{ split-fusion (19) four times }
(o4l [oe] [o5]+[52]]

{ blocked addition (24) twice }

[[R-A+S-C [R:Bt5-D
lU-A+V-C U-B+V-D

{ the same in block notation (22) }

[RA+SC | RB+5SD
| UA+ VC | UB + VD

No indices messing around :-)

Vectorization

References

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Exploiting the biproduct space

What about other solutions to the biproduct equations? What can
we expect from them?

Think of Gaussian elimination, for instance: main steps are
row-switching, row-multiplication and row-addition, eg.
transformation t for a given a:

t:(n<—n)x(ntn<—m)—(ntn<—m)
o[- [

. _
(arrow n<%—n means n<""—n with all 1s replaced by as.)

Motivation Matrices = arrows

Abelian category

Abide laws Divide & conquer Vectorization

Another biproduct

Let us “reverse specify”’ t:

[A
| A+ B}
{ (26) in reverse order }
[HEHIRE
{ divide-and-conquer (25) }

(27)

)

It can be shown that (27) is the split combinator of another biproduct,
the one capturing such a step of Gaussian elimination:

m=[1 0]

iTi]

, 71'5:[—04 1]

) 0
I I2 = 1

References

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization

Gaussian elimination “hylomorphism”

Structured and (“polymorphically”) typed:
ge:(1l+n<=—-14+m)—(14+n<=—1+m)

e[xl\/l}_[x M
& N‘Q N O‘ge(Q—g-M)
ge x = x

However: what's the specification of ge?

Currently studying its specification and correctness proof.

References

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Last but not least — vectorization

Refinement step: linearization of an arbitrary matrix into a vector
mapped on linear storage.

Refactoring SPIRAL's OL means studying the refinement of all
matrix operations into vectorial form.

A foretaste of what is to come: DFT as an OL breakdown rule,
DFT, — (DFT, ® I) © Dg.m o (I ® DFT) o L™, n= km

MMM as an OL breakdown rule,

I\’II\'II\"I'rrL.k.fm - (Im,«"m“ '@L.‘““”/‘“h I®IH“)O(I\’.II\'.‘[]\;IJH;JHL[,‘kfk[,"ﬂfﬁﬂh ® I\'H\H\'Iru,,.k,,.nr,)

L
myk /Ky kynfny
o ((Lnjmy ® Litt™ @ I,) % (Igr, @ L™ 0 1,,))

Strategy?

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References

Last but not least — vectorization

Main observation — vectorization is akin to exponentiation:

While currying “thins” the input of a given binary

function n<"— mk by converting it into its unary
. f
(higher-order) counterpart pk <—— m , so does

vectorization by thining a given matrix n M ym into

kn M , where k is the "thining factor”.

(For m =1, vec M will be a column vector.)

Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization

Last but not least — vectorization

Once again, let us rely on capturing such a relationship by an
universal property:

X=vecM & M=c¢c-(id® X)
cf. diagram (analogue to that of curry)

kxn x (kx n)—==n

id,®(vec M
vec T [®()T "’

k X m

where ® denotes Kronecker product.

References

Vectorization

Last but not least — vectorization

This grants vec as a bijective transformation. So its converse
unvec is also a bijection, whereby ¢ = unvec id, etc, etc

In other words, we are in presence of an adjunction between
functor FX = idy ® X and itself.

Categories of matrices are not CCC but they are CSM (closed
symmetric monoidal), yielding a tensor product (®) which is a
bifunctor with a monoidal structure

® : Mat, x Mat, — Maty

Exploring all this in calculating the whole algebra of OL vectorized
operations will keep us (HM+JNO) busy for a while.

References
Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and
Markus Piischel. Operator language: A program generation
framework for fast kernels. In IFIP Working Conference on
Domain Specific Languages (DSL WC), 2009.

S. Maclane. Categories for the Working Mathematician.
Springer-Verlag, New-York, 1971.

	Motivation
	Matrices = arrows
	Abelian category
	Abide laws
	Divide & conquer
	Vectorization
	References

