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Back to basics

Examples of areas of computing which have well-established,
widespread theories taught in undergraduate courses:

• Parsers and compilers

• Relational databases

• Automata, labelled transition systems

This time we look into the last one in the list.
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Example: Bisimulations

Definition 1 (by R. Milner)

(Well-known — this version taken from the Wikipedia)
A bisimulation is a simulation between two LTS such that its
converse is also a simulation, where a simulation between two
LTS (X ,Λ,→X ) and (Y ,Λ,→Y ) is a relation R ⊆ X × Y such
that, if (p, q) ∈ R , then for all α in Λ, and for all p′ ∈ S , p

α
→ p′

implies that there is a q′ such that q
α
→ q′ and (p′, q′) ∈ R :

p

α

��

q

α

��

Roo

p′ q′

R
oo

Typical example of classical, descriptive definition.
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Example: Bisimulations

Definition 2 (by Aczel & Mendler):
Given two coalgebras c : X → F (X ) and d : Y → F (Y ) an
F-bisimulation is a relation R ⊆ X × Y which can be extended to a
coalgebra ρ such that projections π1 and π2 lift to F-comorphisms, as
expressed by

Rπ1

xxppppp π2

''NNNNN

ρ

��
X

c

��

Y

d

��
FRF π1

xxpppp
F π2

''NNN
N

FX FY

Simpler and generic (coalgebraic)
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Example: Bisimulations

Definition 3 (by Bart Jacobs):

A bisimulation for coalgebras c : X → F (X ) and d : Y → F (Y ) is
a relation R ⊆ X × Y which is “closed under c and d”:

(x , y) ∈ R ⇒ (c(x), d(y)) ∈ Rel(F )(R).

for all x ∈ X and y ∈ Y .

(Rel(F )(R) stands for the relational lifting of R via functor F .)

Still coalgebraic, pointwise — somewhat disturbed by the lifting
construct — see details in [4].
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Question

Are all these “the same” definition?
We will check the equivalence of these definitions by
PF-transformation
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Bisimulations PF-transformed

Let us implode the outermost ∀ in Jacobs definition by
PF-transformation:

〈∀ x , y : : x R y ⇒ (c x) Rel(F )(R) (d y)〉

≡ { PF-transform rule (f b)R(g a) ≡ b(f ◦ · R · g)a }

〈∀ x , y : : x R y ⇒ x(c◦ · Rel(F )(R) · d)y)〉

≡ { drop variables (PF-transform of inclusion) }

R ⊆ c◦ · Rel(F )(R) · d

≡ { introduce relator ; “al-djabr” rule }

c · R ⊆ (F R) · d

≡ { introduce Reynolds combinator }

c(F R ← R)d
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Related work

Our PF-definition of bisimulation is similar to that presented by
Roland Backhouse for dialgebras [2]: given dialgebra

FA GA
koo , relation A A

Roo is a bisimulation of k iff

GR ⊆ k◦ · FR · k FA GA
k

oo

FA

FR

OO

GA
k

oo

GR

OO (1)
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About Reynolds arrow

“Reynolds arrow combinator” is a relation on functions

f (R ← S)g ≡ f · S ⊆ R · g cf. diagram B

f

��

A
Soo

g

��
⊆

C D
R

oo

useful in expressing properties of functions — namely monotonicity

B A
foo is monotonic ≡ f (≤B ← ≤A)f

lifting

f
.

≤ g ≡ f (≤ ←id)f

polymorphism (free theorem):

G A F A
foo is polymorphic ≡ 〈∀ R : : f (G R ← F R)f 〉

etc
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Recall database projections

πc,dR ⊆ S

≡ { definition given in the other talk }

c · R · d◦ ⊆ S

≡ { functions (2nd) “al-djabr” rule }

c · R ⊆ S · d

≡ { Reynolds combinator }

c(S ← R)d

≡ { Reynolds combinator }

c · R ⊆ S · d

≡ { functions (1st) “al-djabr” rule }



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

“Al-djabr” rule for projections

R ⊆ c◦ · S · d

≡ { introduce © }

R ⊆ ©c,dS

Thus we get GC:

πc,d R ⊆ S ≡ R ⊆ ©c,d S (2)

In the other talk we were interested in the lower adjoint (πc,d); this
time we will focus on the the upper adjoint:

x (©c,dS) y ≡ (c x)S(d y)
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“Al-djabr” rule for projections

At once we get:

• πc,d and ©c,d are monotonic

• Distribution properties (can be generalized to n > 2
arguments):

πc,d(R ∪ S) = (πc,dR) ∪ (πc,dS) (3)

©c,d(R ∩ S) = (©c,dR) ∩ (©c,dS) (4)

• etc
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Why does Reynolds arrow matter?

Elegant and manageable PF-properties, eg.

id ← id = id (5)

(R ← S)◦ = R◦← S◦ (6)

R ← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (7)

(R← V ) · (S ← U) ⊆ (R · S)← (V · U) (8)

as well as

(f ← g◦)h = f · h · g (9)

recalled from Roland and Kevin Backhouse paper [1] — and earlier.

These are immediately applicable to our PF version of Jacobs’
definition. For instance, (5) ensures id as bisimulation between a
given coalgebra and itself (next slide):
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Why Reynolds arrow matters

Calculation

c(F id ← id)d

≡ { relator F preserves the identity }

c(id ← id)d

≡ { (5) }

c (id) d

≡ { id x = x }

c = d

Too simple and obvious, even without Reynolds arrow in the play.

What about the equivalence between Jacobs’s and Aczel-Mendler’s
definitions?
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Why Reynolds arrow matters

To the set of known rules about Reynolds arrow, we add the
following:

pair (r , s) is a tabulation
⇓

(r · s◦)← (f · g◦) = (r ← f ) · (s ← g)◦
(10)

Tabulations
A pair of functions C

r
����

� s
��@

@@

A B

form a tabulation iff 〈r , s〉 is

injective, that is,

r◦ · r ∩ s◦ · s = id

holds
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Why Reynolds arrow matters

Example — we check that π1 and π2 form a tabulation:

π◦
1 · π1 ∩ π◦

2 · π2 = id

≡ { go pointwise, where ∩ is conjunction }

(b, a)(π◦
1 · π1)(y , x) ∧ (b, a)(π◦

2 · π2)(y , x) ≡ (b, a) = (y , x)

≡ { PF-transform rule (f b)R(g a) ≡ b(f ◦ · R · g)a twice }

π1(b, a) = π1(y , x) ∧ π2(b, a) = π2(y , x) ≡ (b, a) = (y , x)

≡ { trivia }

b = y ∧ a = x ≡ (b, a) = (y , x)

NB: it is a standard result that every R can be factored in
tabulation R = f · g◦, eg. R = π1 · π

◦
2 .
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Jacobs ≡ Aczel & Mendler

c(FR ← R)d

≡ { tabulate R = π1 · π
◦

2 }

c(F(π1 · π
◦

2 )← (π1 · π
◦

2 ))d

≡ { relator commutes with composition and converse }

c(((Fπ1) · (Fπ2)
◦)← (π1 · π

◦

2 ))d

≡ { new rule (10) }

c((Fπ1← π1) · ((Fπ2)
◦← π◦

2 ))d

≡ { converse rule (6) }

c((Fπ1← π1) · (Fπ2← π2)
◦)d

≡ { go pointwise (composition) }

〈∃ a : : c(Fπ1← π1)a ∧ d(Fπ2← π2)a〉

cf. X

c

��

Y
Roo

d

��

Z
π1

ffMMMMM
π2

88qqqqq

a��
FZF π1

xxqqqq
F π2

&&MMM
M

FX FY
F R

oo
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Why Reynolds arrow matters

Meaning of 〈∃ a : : c(F π1← π1)a ∧ d(F π2← π2)a〉 :

there exists a coalgebra a whose
carrier is the “graph” of
bisimulation R and which is such
that projections π1 and π2 lift to
the corresponding coalgebra
morphisms.

X

c

��

Y
Roo

d

��

Z
π1

ffMMMMMM π2

88qqqqqq

a��
F ZF π1

xxqqq
q F π2

&&MM
MM

F X F Y
FR

oo

Comments:

• One-slide-long proofs are easy to grasp

• Elegance of the calculation lies in the synergy with Reynolds
arrow

• Rule (10) does most of the work — its proof is an example of
generic, stepwise PF-reasoning (see this later on)
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FDs on bisimulations

FD d
R
→ c holds wherever R is a simple bisimulation

from coalgebra d to coalgebra c :

c(F R ← R)d

≡ { expand Reynolds combinator }

c · R ⊆ (F R) · d

≡ { functions (2nd) “al-djabr” rule }

c · R · d◦ ⊆ F R

≡ { duplicate and take converses }

c · R · d◦ ⊆ F R ∧ d · R◦ · c◦ ⊆ F R◦

⇒ { monotonicity of composition ; relators }

c · R · d◦ · d · R◦ · c◦ ⊆ F(R · R◦)

F B B
coo

F A

FR

OO

A

R

OO

d
oo
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FDs on bisimulations

⇒ { R is simple ; F id = id }

c · R · d◦ · d · R◦ · c◦ ⊆ id

≡ { FD in kernel’s version }

ker (d · R◦) ⊆ ker c

≡ { FD in injectivity preorder version }

c ≤ d · R◦

In other words: c can be less injective than d as far as “allowed
by” R◦ (which is injective).
So (implementation) d is allowed to distinguish states which
(specification) c does not.
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Invariants
Fact c(F id ← id)c above already tells us that id is a (trivial)
F-invariant for coalgebra c . In general:

F-invariants
In this setting, an F-invariant Φ simply is a coreflexive bisimulation
between a coalgebra and itself:

c(F Φ← Φ)c (11)

Invariants bring about modalities:

c(F Φ← Φ)c ≡ Φ ⊆ c◦ · (F Φ) · c
︸ ︷︷ ︸

©cΦ

cf. the “next time X holds” modal operator:

©cX
def
= c◦ · (F X ) · c
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Invariants — related work

Elegant PF-definition of a (relational) F-invariant already in
Gibbons et al “When is a function a fold or an unfold”? [3]:

F-invariant

Given relation F A A
Soo (a so-called F-coalgebra), we say that

relation A A
Roo is an F-invariant for S iff

S · R ⊆ F R · S A
S // F A

⊇

A

R

OO

S
// F A

FR

OO (12)
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Invariants and projections

As as upper adjoint in a Galois connection,

• ©c is monotonic — thus simple proofs such as

Φ is an invariant

≡ { PF-definition of invariant }

Φ ⊆ ©cΦ

⇒ { monotonicity }

©cΦ ⊆ ©c(©cΦ)

≡ { PF-definition of invariant }

©cΦ is an invariant

• ©c distributes over conjunction, that is PF-equality

©c(Φ ·Ψ) = (©cΦ) · (©cΨ)

holds, etc
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What about Milner’s original definition?

Milner’s definition is recovered via

• the power-transpose relating binary relations and set-valued
functions,

f = ΛR ≡ R = ∈ ·f (13)

where A PA
∈oo is the membership relation.

• the powerset relator:

PR = (∈ \(R · ∈)) ∩ ((∈◦ ·R)/(∈◦)) (14)

which unfolds to an elaborate pointwise formula:

Y (PR)X ≡ 〈∀ a : a ∈ Y : 〈∃ b : b ∈ X : a R b〉〉 ∧ . . . etc



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Calculation of Milner’s definition

c(PR ← R)d

≡ { powerset coalgebras uniquely transpose relations }

(ΛS)(PR ← R)(ΛU)

≡ { Reynolds }

(ΛS) · R ⊆ (PR) · (ΛU)

≡ { (14) }

(ΛS) · R ⊆ ((∈ \(R · ∈)) ∩ ((∈◦ ·R)/(∈◦))) · (ΛU)

≡ { distribution since ΛU is simple }

(ΛS) · R ⊆ (∈ \(R · ∈)) · (ΛU) ∧ (ΛS) · R ⊆ ((∈◦ ·R)/(∈◦)) · (ΛU)

≡ { “al-djabr” rule (composition/division) and power transpose }
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Calculation of Milner’s definition

S · R ⊆ R · U ∧ (ΛS) · R ⊆ ((∈◦ ·R)/(∈◦)) · (ΛU)

≡ { take converses ; “al-djabr” (functions) }

S · R ⊆ R · U ∧ (ΛU) · R◦ ⊆ ((∈◦ ·R)/(∈◦))◦ · (ΛS)

≡ { divisions and power transpose }

S · R ⊆ R · U ∧ U · R◦ ⊆ R◦ · S

Obs:

• Matteo Vaccari [6] infers the same by direct PF-transforming
Milner’s original definition

• We obtain the same result by instantiating Jacobs’ definition
to the power relator.
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Follow up

• Further modal operators, for instance �Ψ — henceforth Ψ —
usually defined as the largest invariant at most Ψ:

�Ψ = 〈
⋃

Φ : : Φ ⊆ Ψ ∩©cΦ〉

which shrinks to a greatest (post)fix-point

�Ψ = 〈ν Φ : : Ψ · ©cΦ〉

where meet (of coreflexives) is replaced by composition, as
this paves the way to agile reasoning

• Properties calculated by PF-fixpoint calculation

• etc (currently writing a paper on this)
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Summary

• Pointfree / pointwise dichotomy: PF is for reasoning
in-the-large, PW is for the small

• Back to basics: need for computer science theory
“refactoring”

• Rôle of PF-patterns: clear-cut expression of complex logic
structures once expressed in less symbols

• Rôle of PF-patterns: much easier to spot synergies among
different theories

• Coalgebraic approach in a relational setting: a win-win
approach while putting together coalgebras (functions) +
relators (relations).

• Also related: proof obligations on state invariants in VDM
discharged by PF- calculation [5].
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Annex — Calculation of (10)

Still need to calculate rule

pair (r , s) is a tabulation
⇓

(r · s◦)← (f · g◦) = (r ← f ) · (s ← g)◦

Our approach structures itself in a number of (generic) auxiliary
results. First of all, and thanks to (8), only the “fission” part of
the consequent of (10)

(r · s◦)← (f · g◦) ⊆ (r ← f ) · (s ← g)◦

calls for evidence which, for all suitably typed functions c and d ,
equivales

c · f · g◦ ⊆ r · s◦ · d ⇒ 〈∃ k : : c(r ← f )k ∧ d(s← g)k〉
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c · f · g◦ ⊆ r · s◦ · d ⇒ 〈∃ k : : c(r ← f )k ∧ d(s← g)k〉

≡ { “al-djabr” and Reynolds arrow }

c · f ⊆ r · s◦ · d · g ⇒ 〈∃ k : : c · f = r · k ∧ d · g = s · k〉

This, in turn, is an instance of

x ⊆ r · s◦ · y ⇒ 〈∃ k : : x = r · k ∧ y = s · k〉

≡ { “al-djabr” and split-universal, followed by split-fusion }

x · y◦ ⊆ r · s◦ ⇒ 〈∃ k : : 〈x , y〉 = 〈r , s〉 · k〉 (15)

for x , y := c · f , d · g , cf. diagram:

A

c

��

B
foo

x

��~~
~~

~~
~

y
��@

@@
@@

@@
g

//

k
��

C

d
��

D E
roo

s
// F
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On function-split fission

The righthand side of implication (15) is an
assertion of split-fission, an instance of
function-fission in general. This can be shown
to lead to two concerns:

A

c

��

B
foo

x

��~~
~~

~~
~

y
��@

@@
@@

@@ g
//

k
��

C

d
��

D E
roo

s
// F

• the image of 〈x , y〉 must be at most the image of 〈r , s〉 —
〈r , s〉 “at least as surjective as” 〈x , y〉

• 〈r , s〉 must be injective “relative” to 〈x , y〉.

Concerning the former, we are happy to realize that it exactly
matches the antecendent of (15):

img 〈x , y〉 ⊆ img 〈r , s〉

≡ { split image transform, see below }

x · y◦ ⊆ r · s◦
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On function-split fission

Concerning the latter, we go stronger than required in forcing
〈r , s〉 to be everywhere-injective:

ker 〈r , s〉 ⊆ id

≡ { kernels of splits ; kernels of functions are reflexive }

ker r ∩ ker s = id

This is equivalent to saying that pair r , s is a tabulation: thus the
side condition of (10).
�
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On function fission

Divisibility relation on functions

f \ g iff there is a k such that

g = f · k (16)

holds. �

Of course, g \ g holds (k = id) and id \ g holds (k = g).

In general, to establish f \ g it is enough to find a functional
solution k to equation (16).
Clearly, a relational upperbound for k always exists, f ◦ · g , cf.
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On function fission

Divisibility relation on functions

f \ g iff there is a k such that

g = f · k (16)

holds. �

Of course, g \ g holds (k = id) and id \ g holds (k = g).

In general, to establish f \ g it is enough to find a functional
solution k to equation (16).
Clearly, a relational upperbound for k always exists, f ◦ · g , cf.
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On function fission

g = f · k

≡ { equality of functions }

f · k ⊆ g

≡ { “al-djabr” }

k ⊆ f ◦ · g

Let us find conditions for such a (maximal) solution f ◦ · g to be a
function: it must be entire

id ⊆ (f ◦ · g)◦ · f ◦ · g

≡ { “al-djabr” ; definition of image }

img g ⊆ img f
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On function fission

and simple:

f ◦ · g · (f ◦ · g)◦ ⊆ id

≡ { converses }

f ◦ · g · g◦ · f ⊆ id

So, for f divides g wherever

• f at least as surjective as g and

• f “injective within the image (range) of” g .

Last condition back to points: for all a, b

〈∃ c : : f a = g c = f b〉 ⇒ a = b
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Images of splits

Generic fact for calculating with images of splits:

img 〈R ,S〉 ⊆ img 〈U,V 〉 ≡ R · S◦ ⊆ U · V ◦ (17)

Calculation:

img 〈R ,S〉 ⊆ img 〈U,V 〉

≡ { switch to conditions }

〈R ,S〉 · !◦ ⊆ 〈U,V 〉 · !◦

≡ { “split twist” rule (18) }

〈R , !〉 · S◦ ⊆ 〈U, !〉 · V ◦

≡ { (19) thanks to !-natural }

〈id , !〉 · R · S◦ ⊆ 〈id , !〉 · U · V ◦

≡ { 〈id , f 〉 is injective for any f , thus left-cancellable }

R · S◦ ⊆ U · V ◦
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Again useful

“Split twist” rule:

〈R ,S〉 · T ⊆ 〈U,V 〉 · X ≡ 〈R ,T ◦〉 · S◦ ⊆ 〈U,X ◦〉 · V ◦ (18)

Conditional split-fusion:

〈R ,S〉 · T = 〈R · T ,S · T 〉 ⇐ R · (img T ) ⊆ R ∨ S · (img T ) ⊆ S(19)
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