
Invariants as coreflexive bisimulations — in a
coalgebraic setting

J.N. Oliveira1 Alexandra Silva2 Lúıs Barbosa1

1U. Minho, Braga
2CWI, Amsterdam

IFIP WG2.1 meeting #62
Dec. 2006

Namur, Belgium



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Back to basics

Examples of areas of computing which have well-established,
widespread theories taught in undergraduate courses:

• Parsers and compilers

• Relational databases

• Automata, labelled transition systems

This time we look into the last one in the list.



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Example: Bisimulations

Definition 1 (by R. Milner)

(Well-known — this version taken from the Wikipedia)
A bisimulation is a simulation between two LTS such that its
converse is also a simulation, where a simulation between two
LTS (X ,Λ,→X ) and (Y ,Λ,→Y ) is a relation R ⊆ X × Y such
that, if (p, q) ∈ R , then for all α in Λ, and for all p′ ∈ S , p

α
→ p′

implies that there is a q′ such that q
α
→ q′ and (p′, q′) ∈ R :

p

α

��

q

α

��

Roo

p′ q′

R
oo

Typical example of classical, descriptive definition.



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Example: Bisimulations

Definition 2 (by Aczel & Mendler):
Given two coalgebras c : X → F (X ) and d : Y → F (Y ) an
F-bisimulation is a relation R ⊆ X × Y which can be extended to a
coalgebra ρ such that projections π1 and π2 lift to F-comorphisms, as
expressed by

Rπ1

xxppppp π2

''NNNNN

ρ

��
X

c

��

Y

d

��
FRF π1

xxpppp
F π2

''NNN
N

FX FY

Simpler and generic (coalgebraic)



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Example: Bisimulations

Definition 3 (by Bart Jacobs):

A bisimulation for coalgebras c : X → F (X ) and d : Y → F (Y ) is
a relation R ⊆ X × Y which is “closed under c and d”:

(x , y) ∈ R ⇒ (c(x), d(y)) ∈ Rel(F )(R).

for all x ∈ X and y ∈ Y .

(Rel(F )(R) stands for the relational lifting of R via functor F .)

Still coalgebraic, pointwise — somewhat disturbed by the lifting
construct — see details in [4].



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Question

Are all these “the same” definition?
We will check the equivalence of these definitions by
PF-transformation



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Bisimulations PF-transformed

Let us implode the outermost ∀ in Jacobs definition by
PF-transformation:

〈∀ x , y : : x R y ⇒ (c x) Rel(F )(R) (d y)〉

≡ { PF-transform rule (f b)R(g a) ≡ b(f ◦ · R · g)a }

〈∀ x , y : : x R y ⇒ x(c◦ · Rel(F )(R) · d)y)〉

≡ { drop variables (PF-transform of inclusion) }

R ⊆ c◦ · Rel(F )(R) · d

≡ { introduce relator ; “al-djabr” rule }

c · R ⊆ (F R) · d

≡ { introduce Reynolds combinator }

c(F R ← R)d



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Related work

Our PF-definition of bisimulation is similar to that presented by
Roland Backhouse for dialgebras [2]: given dialgebra

FA GA
koo , relation A A

Roo is a bisimulation of k iff

GR ⊆ k◦ · FR · k FA GA
k

oo

FA

FR

OO

GA
k

oo

GR

OO (1)



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

About Reynolds arrow

“Reynolds arrow combinator” is a relation on functions

f (R ← S)g ≡ f · S ⊆ R · g cf. diagram B

f

��

A
Soo

g

��
⊆

C D
R

oo

useful in expressing properties of functions — namely monotonicity

B A
foo is monotonic ≡ f (≤B ← ≤A)f

lifting

f
.

≤ g ≡ f (≤ ←id)f

polymorphism (free theorem):

G A F A
foo is polymorphic ≡ 〈∀ R : : f (G R ← F R)f 〉

etc



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Recall database projections

πc,dR ⊆ S

≡ { definition given in the other talk }

c · R · d◦ ⊆ S

≡ { functions (2nd) “al-djabr” rule }

c · R ⊆ S · d

≡ { Reynolds combinator }

c(S ← R)d

≡ { Reynolds combinator }

c · R ⊆ S · d

≡ { functions (1st) “al-djabr” rule }



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

“Al-djabr” rule for projections

R ⊆ c◦ · S · d

≡ { introduce © }

R ⊆ ©c,dS

Thus we get GC:

πc,d R ⊆ S ≡ R ⊆ ©c,d S (2)

In the other talk we were interested in the lower adjoint (πc,d); this
time we will focus on the the upper adjoint:

x (©c,dS) y ≡ (c x)S(d y)



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

“Al-djabr” rule for projections

At once we get:

• πc,d and ©c,d are monotonic

• Distribution properties (can be generalized to n > 2
arguments):

πc,d(R ∪ S) = (πc,dR) ∪ (πc,dS) (3)

©c,d(R ∩ S) = (©c,dR) ∩ (©c,dS) (4)

• etc



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Why does Reynolds arrow matter?

Elegant and manageable PF-properties, eg.

id ← id = id (5)

(R ← S)◦ = R◦← S◦ (6)

R ← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (7)

(R← V ) · (S ← U) ⊆ (R · S)← (V · U) (8)

as well as

(f ← g◦)h = f · h · g (9)

recalled from Roland and Kevin Backhouse paper [1] — and earlier.

These are immediately applicable to our PF version of Jacobs’
definition. For instance, (5) ensures id as bisimulation between a
given coalgebra and itself (next slide):



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Why Reynolds arrow matters

Calculation

c(F id ← id)d

≡ { relator F preserves the identity }

c(id ← id)d

≡ { (5) }

c (id) d

≡ { id x = x }

c = d

Too simple and obvious, even without Reynolds arrow in the play.

What about the equivalence between Jacobs’s and Aczel-Mendler’s
definitions?



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Why Reynolds arrow matters

To the set of known rules about Reynolds arrow, we add the
following:

pair (r , s) is a tabulation
⇓

(r · s◦)← (f · g◦) = (r ← f ) · (s ← g)◦
(10)

Tabulations
A pair of functions C

r
����

� s
��@

@@

A B

form a tabulation iff 〈r , s〉 is

injective, that is,

r◦ · r ∩ s◦ · s = id

holds



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Why Reynolds arrow matters

Example — we check that π1 and π2 form a tabulation:

π◦
1 · π1 ∩ π◦

2 · π2 = id

≡ { go pointwise, where ∩ is conjunction }

(b, a)(π◦
1 · π1)(y , x) ∧ (b, a)(π◦

2 · π2)(y , x) ≡ (b, a) = (y , x)

≡ { PF-transform rule (f b)R(g a) ≡ b(f ◦ · R · g)a twice }

π1(b, a) = π1(y , x) ∧ π2(b, a) = π2(y , x) ≡ (b, a) = (y , x)

≡ { trivia }

b = y ∧ a = x ≡ (b, a) = (y , x)

NB: it is a standard result that every R can be factored in
tabulation R = f · g◦, eg. R = π1 · π

◦
2 .



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Jacobs ≡ Aczel & Mendler

c(FR ← R)d

≡ { tabulate R = π1 · π
◦

2 }

c(F(π1 · π
◦

2 )← (π1 · π
◦

2 ))d

≡ { relator commutes with composition and converse }

c(((Fπ1) · (Fπ2)
◦)← (π1 · π

◦

2 ))d

≡ { new rule (10) }

c((Fπ1← π1) · ((Fπ2)
◦← π◦

2 ))d

≡ { converse rule (6) }

c((Fπ1← π1) · (Fπ2← π2)
◦)d

≡ { go pointwise (composition) }

〈∃ a : : c(Fπ1← π1)a ∧ d(Fπ2← π2)a〉

cf. X

c

��

Y
Roo

d

��

Z
π1

ffMMMMM
π2

88qqqqq

a��
FZF π1

xxqqqq
F π2

&&MMM
M

FX FY
F R

oo



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Why Reynolds arrow matters

Meaning of 〈∃ a : : c(F π1← π1)a ∧ d(F π2← π2)a〉 :

there exists a coalgebra a whose
carrier is the “graph” of
bisimulation R and which is such
that projections π1 and π2 lift to
the corresponding coalgebra
morphisms.

X

c

��

Y
Roo

d

��

Z
π1

ffMMMMMM π2

88qqqqqq

a��
F ZF π1

xxqqq
q F π2

&&MM
MM

F X F Y
FR

oo

Comments:

• One-slide-long proofs are easy to grasp

• Elegance of the calculation lies in the synergy with Reynolds
arrow

• Rule (10) does most of the work — its proof is an example of
generic, stepwise PF-reasoning (see this later on)



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

FDs on bisimulations

FD d
R
→ c holds wherever R is a simple bisimulation

from coalgebra d to coalgebra c :

c(F R ← R)d

≡ { expand Reynolds combinator }

c · R ⊆ (F R) · d

≡ { functions (2nd) “al-djabr” rule }

c · R · d◦ ⊆ F R

≡ { duplicate and take converses }

c · R · d◦ ⊆ F R ∧ d · R◦ · c◦ ⊆ F R◦

⇒ { monotonicity of composition ; relators }

c · R · d◦ · d · R◦ · c◦ ⊆ F(R · R◦)

F B B
coo

F A

FR

OO

A

R

OO

d
oo



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

FDs on bisimulations

⇒ { R is simple ; F id = id }

c · R · d◦ · d · R◦ · c◦ ⊆ id

≡ { FD in kernel’s version }

ker (d · R◦) ⊆ ker c

≡ { FD in injectivity preorder version }

c ≤ d · R◦

In other words: c can be less injective than d as far as “allowed
by” R◦ (which is injective).
So (implementation) d is allowed to distinguish states which
(specification) c does not.



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Invariants
Fact c(F id ← id)c above already tells us that id is a (trivial)
F-invariant for coalgebra c . In general:

F-invariants
In this setting, an F-invariant Φ simply is a coreflexive bisimulation
between a coalgebra and itself:

c(F Φ← Φ)c (11)

Invariants bring about modalities:

c(F Φ← Φ)c ≡ Φ ⊆ c◦ · (F Φ) · c
︸ ︷︷ ︸

©cΦ

cf. the “next time X holds” modal operator:

©cX
def
= c◦ · (F X ) · c



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Invariants — related work

Elegant PF-definition of a (relational) F-invariant already in
Gibbons et al “When is a function a fold or an unfold”? [3]:

F-invariant

Given relation F A A
Soo (a so-called F-coalgebra), we say that

relation A A
Roo is an F-invariant for S iff

S · R ⊆ F R · S A
S // F A

⊇

A

R

OO

S
// F A

FR

OO (12)



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Invariants and projections

As as upper adjoint in a Galois connection,

• ©c is monotonic — thus simple proofs such as

Φ is an invariant

≡ { PF-definition of invariant }

Φ ⊆ ©cΦ

⇒ { monotonicity }

©cΦ ⊆ ©c(©cΦ)

≡ { PF-definition of invariant }

©cΦ is an invariant

• ©c distributes over conjunction, that is PF-equality

©c(Φ ·Ψ) = (©cΦ) · (©cΨ)

holds, etc



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

What about Milner’s original definition?

Milner’s definition is recovered via

• the power-transpose relating binary relations and set-valued
functions,

f = ΛR ≡ R = ∈ ·f (13)

where A PA
∈oo is the membership relation.

• the powerset relator:

PR = (∈ \(R · ∈)) ∩ ((∈◦ ·R)/(∈◦)) (14)

which unfolds to an elaborate pointwise formula:

Y (PR)X ≡ 〈∀ a : a ∈ Y : 〈∃ b : b ∈ X : a R b〉〉 ∧ . . . etc



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Calculation of Milner’s definition

c(PR ← R)d

≡ { powerset coalgebras uniquely transpose relations }

(ΛS)(PR ← R)(ΛU)

≡ { Reynolds }

(ΛS) · R ⊆ (PR) · (ΛU)

≡ { (14) }

(ΛS) · R ⊆ ((∈ \(R · ∈)) ∩ ((∈◦ ·R)/(∈◦))) · (ΛU)

≡ { distribution since ΛU is simple }

(ΛS) · R ⊆ (∈ \(R · ∈)) · (ΛU) ∧ (ΛS) · R ⊆ ((∈◦ ·R)/(∈◦)) · (ΛU)

≡ { “al-djabr” rule (composition/division) and power transpose }



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Calculation of Milner’s definition

S · R ⊆ R · U ∧ (ΛS) · R ⊆ ((∈◦ ·R)/(∈◦)) · (ΛU)

≡ { take converses ; “al-djabr” (functions) }

S · R ⊆ R · U ∧ (ΛU) · R◦ ⊆ ((∈◦ ·R)/(∈◦))◦ · (ΛS)

≡ { divisions and power transpose }

S · R ⊆ R · U ∧ U · R◦ ⊆ R◦ · S

Obs:

• Matteo Vaccari [6] infers the same by direct PF-transforming
Milner’s original definition

• We obtain the same result by instantiating Jacobs’ definition
to the power relator.



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Follow up

• Further modal operators, for instance �Ψ — henceforth Ψ —
usually defined as the largest invariant at most Ψ:

�Ψ = 〈
⋃

Φ : : Φ ⊆ Ψ ∩©cΦ〉

which shrinks to a greatest (post)fix-point

�Ψ = 〈ν Φ : : Ψ · ©cΦ〉

where meet (of coreflexives) is replaced by composition, as
this paves the way to agile reasoning

• Properties calculated by PF-fixpoint calculation

• etc (currently writing a paper on this)



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Summary

• Pointfree / pointwise dichotomy: PF is for reasoning
in-the-large, PW is for the small

• Back to basics: need for computer science theory
“refactoring”

• Rôle of PF-patterns: clear-cut expression of complex logic
structures once expressed in less symbols

• Rôle of PF-patterns: much easier to spot synergies among
different theories

• Coalgebraic approach in a relational setting: a win-win
approach while putting together coalgebras (functions) +
relators (relations).

• Also related: proof obligations on state invariants in VDM
discharged by PF- calculation [5].



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Annex — Calculation of (10)

Still need to calculate rule

pair (r , s) is a tabulation
⇓

(r · s◦)← (f · g◦) = (r ← f ) · (s ← g)◦

Our approach structures itself in a number of (generic) auxiliary
results. First of all, and thanks to (8), only the “fission” part of
the consequent of (10)

(r · s◦)← (f · g◦) ⊆ (r ← f ) · (s ← g)◦

calls for evidence which, for all suitably typed functions c and d ,
equivales

c · f · g◦ ⊆ r · s◦ · d ⇒ 〈∃ k : : c(r ← f )k ∧ d(s← g)k〉



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

c · f · g◦ ⊆ r · s◦ · d ⇒ 〈∃ k : : c(r ← f )k ∧ d(s← g)k〉

≡ { “al-djabr” and Reynolds arrow }

c · f ⊆ r · s◦ · d · g ⇒ 〈∃ k : : c · f = r · k ∧ d · g = s · k〉

This, in turn, is an instance of

x ⊆ r · s◦ · y ⇒ 〈∃ k : : x = r · k ∧ y = s · k〉

≡ { “al-djabr” and split-universal, followed by split-fusion }

x · y◦ ⊆ r · s◦ ⇒ 〈∃ k : : 〈x , y〉 = 〈r , s〉 · k〉 (15)

for x , y := c · f , d · g , cf. diagram:

A

c

��

B
foo

x

��~~
~~

~~
~

y
��@

@@
@@

@@
g

//

k
��

C

d
��

D E
roo

s
// F



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

On function-split fission

The righthand side of implication (15) is an
assertion of split-fission, an instance of
function-fission in general. This can be shown
to lead to two concerns:

A

c

��

B
foo

x

��~~
~~

~~
~

y
��@

@@
@@

@@ g
//

k
��

C

d
��

D E
roo

s
// F

• the image of 〈x , y〉 must be at most the image of 〈r , s〉 —
〈r , s〉 “at least as surjective as” 〈x , y〉

• 〈r , s〉 must be injective “relative” to 〈x , y〉.

Concerning the former, we are happy to realize that it exactly
matches the antecendent of (15):

img 〈x , y〉 ⊆ img 〈r , s〉

≡ { split image transform, see below }

x · y◦ ⊆ r · s◦



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

On function-split fission

Concerning the latter, we go stronger than required in forcing
〈r , s〉 to be everywhere-injective:

ker 〈r , s〉 ⊆ id

≡ { kernels of splits ; kernels of functions are reflexive }

ker r ∩ ker s = id

This is equivalent to saying that pair r , s is a tabulation: thus the
side condition of (10).
�



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

On function fission

Divisibility relation on functions

f \ g iff there is a k such that

g = f · k (16)

holds. �

Of course, g \ g holds (k = id) and id \ g holds (k = g).

In general, to establish f \ g it is enough to find a functional
solution k to equation (16).
Clearly, a relational upperbound for k always exists, f ◦ · g , cf.



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

On function fission

Divisibility relation on functions

f \ g iff there is a k such that

g = f · k (16)

holds. �

Of course, g \ g holds (k = id) and id \ g holds (k = g).

In general, to establish f \ g it is enough to find a functional
solution k to equation (16).
Clearly, a relational upperbound for k always exists, f ◦ · g , cf.



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

On function fission

g = f · k

≡ { equality of functions }

f · k ⊆ g

≡ { “al-djabr” }

k ⊆ f ◦ · g

Let us find conditions for such a (maximal) solution f ◦ · g to be a
function: it must be entire

id ⊆ (f ◦ · g)◦ · f ◦ · g

≡ { “al-djabr” ; definition of image }

img g ⊆ img f



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

On function fission

and simple:

f ◦ · g · (f ◦ · g)◦ ⊆ id

≡ { converses }

f ◦ · g · g◦ · f ⊆ id

So, for f divides g wherever

• f at least as surjective as g and

• f “injective within the image (range) of” g .

Last condition back to points: for all a, b

〈∃ c : : f a = g c = f b〉 ⇒ a = b



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Images of splits

Generic fact for calculating with images of splits:

img 〈R ,S〉 ⊆ img 〈U,V 〉 ≡ R · S◦ ⊆ U · V ◦ (17)

Calculation:

img 〈R ,S〉 ⊆ img 〈U,V 〉

≡ { switch to conditions }

〈R ,S〉 · !◦ ⊆ 〈U,V 〉 · !◦

≡ { “split twist” rule (18) }

〈R , !〉 · S◦ ⊆ 〈U, !〉 · V ◦

≡ { (19) thanks to !-natural }

〈id , !〉 · R · S◦ ⊆ 〈id , !〉 · U · V ◦

≡ { 〈id , f 〉 is injective for any f , thus left-cancellable }

R · S◦ ⊆ U · V ◦



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Again useful

“Split twist” rule:

〈R ,S〉 · T ⊆ 〈U,V 〉 · X ≡ 〈R ,T ◦〉 · S◦ ⊆ 〈U,X ◦〉 · V ◦ (18)

Conditional split-fusion:

〈R ,S〉 · T = 〈R · T ,S · T 〉 ⇐ R · (img T ) ⊆ R ∨ S · (img T ) ⊆ S(19)



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

K. Backhouse and R.C. Backhouse.
Safety of abstract interpretations for free, via logical relations
and Galois connections.
SCP, 15(1–2):153–196, 2004.

R.C. Backhouse and P.F. Hoogendijk.
Final dialgebras: From categories to allegories.
Informatique Theorique et Applications, 33(4/5):401–426,
1999.
Presented at Workshop on Fixed Points in Computer Science,
Brno, August 1998.

Jeremy Gibbons, Graham Hutton, and Thorsten Altenkirch.
When is a function a fold or an unfold?, 2001.
WGP, July 2001 (slides).

Bart Jacobs.
Introduction to Coalgebra. Towards Mathematics of States and
Observations.



Motivation Bisimulations Reynolds arrow Invariants Summary Proof

Draft Copy. Institute for Computing and Information Sciences,
Radboud University Nijmegen, P.O. Box 9010, 6500 GL
Nijmegen, The Netherlands.

J.N. Oliveira.
Reinvigorating pen-and-paper proofs in VDM: the pointfree approach
2006.
Presentation at the
Third Overture Workshop: Newcastle, UK, 27-28 November 2006
Slides available from the author’s website.

M. Vaccari.
Calculational derivation of circuits, 1998.
PhD thesis, Dipartimento di Informatica, Universita degli Studi
di Milano.

file:../ps/vdm06sl.pdf
 http://www.overturetool.org/twiki/bin/view/Main/WorkshopPage##Third_Workshop_Newcastle_UK_27_2 

	Motivation
	Bisimulations
	Reynolds arrow
	Invariants
	Summary
	Proof

