A Quick Introduction to Polymorphic Type Checking

J.N. Oliveira
U.Minho - March 2011

Polymorphic types

A type is said to be polymorphic if (a) it defines data structures holding values of other types (eg. lists of Booleans, trees of integers); (b) it encompasses operations which work independently of which particular values are held in the structure (eg. appending two lists, computing the depth of a tree).

Polymorphic functions are therefore generic in the sense that they are defined once for all its possible applications and instantiations. This is of great conceptual economy and saves a lot of programming effort. Moreover, every polymorphic function enjoys a natural or free property [2] which exhibits its type and is of great help in calculating programs.

However, we need rules enabling the inference of the most general (polymorphic) type of a given functional expression. The following rules apply to the pointfree combinators used in the algebra of programming.

Typing Rules

Each rule is of the form

$$
\frac{a, b}{a \phi b \quad\{e\}}
$$

where a and b are polymorphic functional expressions, ϕ is a functional combinator and e is a set of type equalities required for expression $a \phi b$ to be well-typed. Examples of typing rules follow:

- Composition:

$$
\begin{array}{lr}
B \leftarrow^{f} A, & D \leftarrow^{g} C \\
B \leftarrow^{f \cdot g} C & \{A=D\}
\end{array}
$$

- Split:

$$
\frac{B \leftarrow^{f} A, D \leftarrow^{g} C}{B \times D \stackrel{\langle f, g\rangle}{\leftarrow} C \quad\{A=C\}}
$$

- Product:

Exercise: add the typing rules of the other combinators not in the list.

Further to the above, the equality rule is implicit in typed functional equality:

$$
\frac{B \leftarrow^{f}}{\{B=D, A=C\}}
$$

Type checking

Type polymorphism raises the following question: what is the most general type which accommodates a given function or functional expression? Such a type (if it exists) is known as the expression's principal type, from which all other valid types is obtained by instantiation.

The more polymorphic the type of a function, the more applicable the function is. Thus the interest of the following algorithm.

Damas-Milner's algorithm

(Adapted from [1])
(a) Start by typing all functions so that no type variable is shared by two different functions. (b) Apply typing rules as much as needed; (c) Collect all type unification equations and solve them.

If no finite solution can be found for the obtained system of type equations, the function will be ill-typed and cannot be trusted. (In Haskell, it won't compile.)

First example

Typing $\pi_{1} \cdot \pi_{1}$:

$$
\frac{A<\pi_{1}}{\frac{\pi_{1}}{} \times B,} C \leftarrow_{\leftarrow}^{\pi_{1}} C \times D,
$$

Only the composition rule was applied, thus a single type unification and the final polymorphic type, obtained by substitution $c:=A \times B$:

$$
A \stackrel{\pi_{1} \cdot \pi_{1}}{\leftarrow}(A \times B) \times D
$$

Second example

Next, we want to type $f=\left\langle\pi_{1} \cdot \pi_{1}, \pi_{2} \times i d\right\rangle$. As we already have the type of $\pi_{1} \cdot \pi_{1}$, we focus on inferring the type of $\pi_{2} \times i d$,

$$
\begin{array}{r}
F<_{\pi_{2}}^{\pi_{2}} E \times F, G \leftarrow_{i d}^{\pi_{2} \times i d} G \\
\hline F \times G) \times G
\end{array}
$$

which raises the empty set of type constraints. Then we put both together:

We finish by solving the type unification equation:

$$
(A \times B) \times D=(E \times F) \times G \equiv A=E, B=F, D=G
$$

The final, polymorphic type of $f=\left\langle\pi_{1} \cdot \pi_{1}, \pi_{2} \times i d\right\rangle$ is, therefore:

$$
A \times(B \times D)<^{f}(A \times B) \times D
$$

This example shows that one can proceed in a stepwise manner by inferring the types of sub-expressions separately and then merging the constraints.

Third example

What are the most general polymorphic types for the functions in function equality

$$
f \cdot i n=[\underline{k}, h \cdot\langle g, f\rangle] \quad ?
$$

The whole type inference process is given below:

Collecting all type equations:

$$
\begin{aligned}
& A=J \\
& B=C=F \\
& D=I+B \\
& G=E \times A \\
& H=I
\end{aligned}
$$

Type unifications graphically:

Final type scheme:

where

Third example

Suppose we wish to define a new combinator of the algebra of programming as follows:

$$
\operatorname{new}(f, g)=\langle f,[g, f]\rangle
$$

However, when submitting this definition to GHCi, we get an error message:

```
<interactive>:1:28:
    Occurs check: cannot construct the infinite type: b = Either a b
        Expected type: b -> c
        Inferred type: Either a b -> bl
    In the second argument of 'either', namely 'f'
    In the second argument of 'split', namely '(either g f)'
* Cp>
```

Why? Just apply the typing rules of split and either so as to explain the type error message.
You will infer type equation $B=A+B$ from such rules, which indeed has no finite (polymorphic) solution: $B=A+A+\ldots$ will, in general, be an infinite type!

References

1. Luís Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '82, pages 207-212, New York, NY, USA, 1982. ACM.
2. P.L. Wadler. Theorems for free! In 4th International Symposium on Functional Programming Languages and Computer Architecture, pages 347-359, London, Sep. 1989. ACM.
