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Polymorphic types

A type is said to be polymorphic if (a) it defines data structures holding values of other
types (eg. lists of Booleans, trees of integers); (b) it encompasses operations which work
independently of which particular values are held in the structure (eg. appending two lists,
computing the depth of a tree).

Polymorphic functions are therefore generic in the sense that they are defined once for
all its possible applications and instantiations. This is of great conceptual economy and
saves a lot of programming effort. Moreover, every polymorphic function enjoys a natural
or free property [2] which exhibits its type and is of great help in calculating programs.

However, we need rules enabling the inference of the most general (polymorphic) type
of a given functional expression. The following rules apply to the pointfree combinators
used in the algebra of programming.

Typing Rules

Each rule is of the form

a , b
a � b {e}

where a and b are polymorphic functional expressions, � is a functional combinator and e
is a set of type equalities required for expression a� b to be well-typed. Examples of typing
rules follow:

– Composition:

B A
foo , D C

goo

B C
f ·goo {A = D}

– Split:

B A
foo , D C

goo

B × D C
〈f,g〉oo {A = C}

– Product:

B A
foo , D C

goo

B × D A × C
f×goo {}

Exercise: add the typing rules of the other combinators not in the list.
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Further to the above, the equality rule is implicit in typed functional equality:

B A
foo = D C

goo

{B = D,A = C}

Type checking

Type polymorphism raises the following question: what is the most general type which ac-
commodates a given function or functional expression? Such a type (if it exists) is known
as the expression’s principal type, from which all other valid types is obtained by instanti-
ation.

The more polymorphic the type of a function, the more applicable the function is. Thus
the interest of the following algorithm.

Damas-Milner’s algorithm

(Adapted from [1])

(a) Start by typing all functions so that no type variable is shared by two different
functions. (b) Apply typing rules as much as needed; (c) Collect all type unification
equations and solve them.

If no finite solution can be found for the obtained system of type equations, the function
will be ill-typed and cannot be trusted. (In Haskell, it won’t compile.)

First example

Typing π1 · π1:

A A × B
π1oo , C C × D

π1oo

{C = A × B} A C × D
π1·π1oo

Only the composition rule was applied, thus a single type unification and the final poly-
morphic type, obtained by substitution c := A × B:

A (A × B) × D
π1·π1oo

Second example

Next, we want to type f = 〈π1 · π1, π2 × id〉. As we already have the type of π1 · π1, we
focus on inferring the type of π2 × id,

F E × F
π2oo , G G

idoo

F × G (E × F ) × G
π2×idoo {}

which raises the empty set of type constraints. Then we put both together:

A (A × B) × D
π1·π1oo ,

F E × F
π2oo , G G

idoo

F × G (E × F ) × G
π2×idoo {}

A × (F × G) (A × B) × D
foo {(A × B) × D = (E × F ) × G}
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We finish by solving the type unification equation:

(A × B) × D = (E × F ) × G ≡ A = E,B = F,D = G

The final, polymorphic type of f = 〈π1 · π1, π2 × id〉 is, therefore:

A × (B × D) (A × B) × D
foo

This example shows that one can proceed in a stepwise manner by inferring the types of
sub-expressions separately and then merging the constraints.

Third example

What are the most general polymorphic types for the functions in function equality

f · in = [k , h · 〈g, f〉] ?

The whole type inference process is given below:

A B
foo , C D

inoo

{B = C} A D
f ·inoo =

J I
koo ,

H G
hoo ,

E F
goo , A B

foo

E × A B
〈g,f〉oo {B = F}

H B
h·〈g,f〉oo {G = E × A}

J I + B
[k ,h·〈g,f〉]oo {H = J}

{A = J,D = I + B}

Collecting all type equations:

A = J

B = C = F

D = I + B

G = E × A

H = I

Type unifications graphically:

?>=<89:;A ?>=<89:;B

JJJJJJJJJ
?>=<89:;C

_^]\XYZ[I + B ?>=<89:;D ?>=<89:;E ?>=<89:;F

_^]\XYZ[E × A ?>=<89:;G ?>=<89:;H

ttttttttt
?>=<89:;I

?>=<89:;J

Final type scheme:

B

f

��

I + B
inoo

[k ,h·〈g,f〉]||xxxxxxxx

A

where I
i1 //

k

""DD
DD

DD
DD

D I + B B
i2oo

〈g,f〉
��

A E × A
hoo
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Third example

Suppose we wish to define a new combinator of the algebra of programming as follows:

new(f, g) = 〈f, [g , f ]〉

However, when submitting this definition to GHCi, we get an error message:

<interactive>:1:28:
Occurs check: cannot construct the infinite type: b = Either a b
Expected type: b -> c
Inferred type: Either a b -> b1

In the second argument of ‘either’, namely ‘f’
In the second argument of ‘split’, namely ‘(either g f)’

*Cp>

Why? Just apply the typing rules of split and either so as to explain the type error message.
You will infer type equation B = A + B from such rules, which indeed has no finite
(polymorphic) solution: B = A + A + .... will, in general, be an infinite type!
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