A Quick Introduction to Polymorphic Type Checking

J.N. Oliveira

U.Minho - March 2011

Polymorphic types

A type is said to be polymorphic if (a) it defines data structures holding values of other
types (eg. lists of Booleans, trees of integers); (b) it encompasses operations which work
independently of which particular values are held in the structure (eg. appending two lists,
computing the depth of a tree).

Polymorphic functions are therefore generic in the sense that they are defined once for
all its possible applications and instantiations. This is of great conceptual economy and
saves a lot of programming effort. Moreover, every polymorphic function enjoys a natural
or free property [2] which exhibits its type and is of great help in calculating programs.

However, we need rules enabling the inference of the most general (polymorphic) type
of a given functional expression. The following rules apply to the pointfree combinators
used in the algebra of programming.

Typing Rules

Each rule is of the form

a,b
adb {e}

where a and b are polymorphic functional expressions, ¢ is a functional combinator and e
is a set of type equalities required for expression a ¢ b to be well-typed. Examples of typing
rules follow:

— Composition:
B<l—4,p<"¢c
B<l" (¢ {A=D}
— Split:
B<l—4,p<"cC
Bx D<) ¢ {A=C)
— Product:
B<l—4,p<"¢c
BxDL Axc 0

Exercise: add the typing rules of the other combinators not in the list.
a

2 J.N. Oliveira
Further to the above, the equality rule is implicit in typed functional equality:

B<l A =p<’ ¢
{(B=D,A=C}

Type checking

Type polymorphism raises the following question: what is the most general type which ac-
commodates a given function or functional expression? Such a type (if it exists) is known
as the expression’s principal type, from which all other valid types is obtained by instanti-
ation.

The more polymorphic the type of a function, the more applicable the function is. Thus
the interest of the following algorithm.

Damas-Milner’s algorithm

(Adapted from [1])

(a) Start by typing all functions so that no type variable is shared by two different
functions. (b) Apply typing rules as much as needed; (c) Collect all type unification
equations and solve them.

If no finite solution can be found for the obtained system of type equations, the function
will be ill-typed and cannot be trusted. (In Haskell, it won’t compile.)

First example
Typing 7y - 71t

A< Ax B , C<2—CxD

1T

{C=AxB} A<—CxD

Only the composition rule was applied, thus a single type unification and the final poly-
morphic type, obtained by substitution ¢ := A x B:

LTl

A<— (AxB)x D

Second example

Next, we want to type f = (w1 - w1, ™2 X id). As we already have the type of my - 71, we
focus on inferring the type of w5 X id,

F<Z_ExF , <2 ¢

FxGZ (ExF)xG !

which raises the empty set of type constraints. Then we put both together:

F<Z_ExF , <2 ¢

AL (AxBYxD , FxGZ (ExF)xG !

Ax(FxG)<l—(AxB)xD {(AxB)x D= (Ex F) x G}

A Quick Introduction to Polymorphic Type Checking 3

We finish by solving the type unification equation:

(AxB)xD=(ExF)xG = A=E,B=F,D=G

The final, polymorphic type of f = (my - w1, 72 X id) is, therefore:

Ax(BxD)<f—(A><B)><D

This example shows that one can proceed in a stepwise manner by inferring the types of

sub-expressions separately and then merging the constraints.

Third example

What are the most general polymorphic types for the functions in function equality

The whole type inference process is given below:

p<lF, A<l B

H<'—¢, Exap (B=F)

A<l B, c<"Dp J<tr g lp (G=Ex A}
_ f’bn _ IE 1h'<gvf>] _
{B=C} A<—D =J<—"—"—""""—1I+B {H = J}

(A=J,D=1+DB}

Collecting all type equations:

Type unifications graphically:

Final type scheme:

i1 2

B<""714+B where I I+B B

k
' %«g,m \ l<g’f>

A A<—""FExA

4 J.N. Oliveira

Third example

Suppose we wish to define a new combinator of the algebra of programming as follows:

ne’LU(fvg) = <f7 [gvf]>

However, when submitting this definition to GHCi, we get an error message:

<interactive>:1:28:
Occurs check: cannot construct the infinite type: b = Either a b
Expected type: b —> ¢
Inferred type: Either a b -> bl
In the second argument of ‘either’, namely ‘f’
In the second argument of ‘split’, namely ‘(either g f)’
*Cp>

Why? Just apply the typing rules of split and either so as to explain the type error message.
You will infer type equation B = A + B from such rules, which indeed has no finite
(polymorphic) solution: B = A 4 A + will, in general, be an infinite type!

References

1. Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’82, pages 207-212, New York, NY, USA, 1982. ACM.

2. PL. Wadler. Theorems for free! In 4th International Symposium on Functional Programming
Languages and Computer Architecture, pages 347-359, London, Sep. 1989. ACM.

