
A Quick Introduction to Polymorphic Type Checking

J.N. Oliveira

U.Minho - March 2011

Polymorphic types

A type is said to be polymorphic if (a) it defines data structures holding values of other
types (eg. lists of Booleans, trees of integers); (b) it encompasses operations which work
independently of which particular values are held in the structure (eg. appending two lists,
computing the depth of a tree).

Polymorphic functions are therefore generic in the sense that they are defined once for
all its possible applications and instantiations. This is of great conceptual economy and
saves a lot of programming effort. Moreover, every polymorphic function enjoys a natural
or free property [2] which exhibits its type and is of great help in calculating programs.

However, we need rules enabling the inference of the most general (polymorphic) type
of a given functional expression. The following rules apply to the pointfree combinators
used in the algebra of programming.

Typing Rules

Each rule is of the form

a , b
a � b {e}

where a and b are polymorphic functional expressions, � is a functional combinator and e
is a set of type equalities required for expression a� b to be well-typed. Examples of typing
rules follow:

– Composition:

B A
foo , D C

goo

B C
f ·goo {A = D}

– Split:

B A
foo , D C

goo

B × D C
〈f,g〉oo {A = C}

– Product:

B A
foo , D C

goo

B × D A × C
f×goo {}

Exercise: add the typing rules of the other combinators not in the list.
2

2 J.N. Oliveira

Further to the above, the equality rule is implicit in typed functional equality:

B A
foo = D C

goo

{B = D,A = C}

Type checking

Type polymorphism raises the following question: what is the most general type which ac-
commodates a given function or functional expression? Such a type (if it exists) is known
as the expression’s principal type, from which all other valid types is obtained by instanti-
ation.

The more polymorphic the type of a function, the more applicable the function is. Thus
the interest of the following algorithm.

Damas-Milner’s algorithm

(Adapted from [1])

(a) Start by typing all functions so that no type variable is shared by two different
functions. (b) Apply typing rules as much as needed; (c) Collect all type unification
equations and solve them.

If no finite solution can be found for the obtained system of type equations, the function
will be ill-typed and cannot be trusted. (In Haskell, it won’t compile.)

First example

Typing π1 · π1:

A A × B
π1oo , C C × D

π1oo

{C = A × B} A C × D
π1·π1oo

Only the composition rule was applied, thus a single type unification and the final poly-
morphic type, obtained by substitution c := A × B:

A (A × B) × D
π1·π1oo

Second example

Next, we want to type f = 〈π1 · π1, π2 × id〉. As we already have the type of π1 · π1, we
focus on inferring the type of π2 × id,

F E × F
π2oo , G G

idoo

F × G (E × F) × G
π2×idoo {}

which raises the empty set of type constraints. Then we put both together:

A (A × B) × D
π1·π1oo ,

F E × F
π2oo , G G

idoo

F × G (E × F) × G
π2×idoo {}

A × (F × G) (A × B) × D
foo {(A × B) × D = (E × F) × G}

A Quick Introduction to Polymorphic Type Checking 3

We finish by solving the type unification equation:

(A × B) × D = (E × F) × G ≡ A = E,B = F,D = G

The final, polymorphic type of f = 〈π1 · π1, π2 × id〉 is, therefore:

A × (B × D) (A × B) × D
foo

This example shows that one can proceed in a stepwise manner by inferring the types of
sub-expressions separately and then merging the constraints.

Third example

What are the most general polymorphic types for the functions in function equality

f · in = [k , h · 〈g, f〉] ?

The whole type inference process is given below:

A B
foo , C D

inoo

{B = C} A D
f ·inoo =

J I
koo ,

H G
hoo ,

E F
goo , A B

foo

E × A B
〈g,f〉oo {B = F}

H B
h·〈g,f〉oo {G = E × A}

J I + B
[k ,h·〈g,f〉]oo {H = J}

{A = J,D = I + B}

Collecting all type equations:

A = J

B = C = F

D = I + B

G = E × A

H = I

Type unifications graphically:

?>=<89:;A ?>=<89:;B

JJJJJJJJJ
?>=<89:;C

_^]\XYZ[I + B ?>=<89:;D ?>=<89:;E ?>=<89:;F

_^]\XYZ[E × A ?>=<89:;G ?>=<89:;H

ttttttttt
?>=<89:;I

?>=<89:;J

Final type scheme:

B

f

��

I + B
inoo

[k ,h·〈g,f〉]||xxxxxxxx

A

where I
i1 //

k

""DD
DD

DD
DD

D I + B B
i2oo

〈g,f〉
��

A E × A
hoo

4 J.N. Oliveira

Third example

Suppose we wish to define a new combinator of the algebra of programming as follows:

new(f, g) = 〈f, [g , f]〉

However, when submitting this definition to GHCi, we get an error message:

<interactive>:1:28:
Occurs check: cannot construct the infinite type: b = Either a b
Expected type: b -> c
Inferred type: Either a b -> b1

In the second argument of ‘either’, namely ‘f’
In the second argument of ‘split’, namely ‘(either g f)’

*Cp>

Why? Just apply the typing rules of split and either so as to explain the type error message.
You will infer type equation B = A + B from such rules, which indeed has no finite
(polymorphic) solution: B = A + A + will, in general, be an infinite type!

References

1. Luı́s Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’82, pages 207–212, New York, NY, USA, 1982. ACM.

2. P.L. Wadler. Theorems for free! In 4th International Symposium on Functional Programming
Languages and Computer Architecture, pages 347–359, London, Sep. 1989. ACM.

