PF transform: conditions, coreflexives and
design by contract

J.N. Oliveira

Dept. Informatica,
Universidade do Minho
Braga, Portugal

DI/UM, 2007 (last update: Nov. 2014)

Context

Recall

Some basic rules of the PF-transform:

¢ | PF ¢
(Ja :: bRanaSc) b(R-S)c
(WVa,b:: bRa=bS a) RCS
(Va: aRa) id CR
bRaAcS§S a (b,c)(R,S)a
bRandS c (b,d)(R x S)(a,c¢)
bRaAbS a b(RNS) a
bRaVvVbs$a b(RUS) a
(f b) R (g a) b(f°-R-g)a
TRUE bTa
FALSE bl a

Context

Question

e The PF-transform seems applicable to transforming binary
predicates only, easily converted to binary relations, eg.

Ply,x) & y—1=2x

which transforms to function y = 2x + 1, etc.

e What about transforming predicates such as the following
(V x,y @ y=twice x \even x : eveny) (141)

expressing the fact that function twice x & 2x preserves even
numbers, where even x & rem(x,2) = 0 is a unary predicate?

Context

Observation

e As already noted, (141) is a proposition stating that function
twice preserves even numbers.

e In general, a function A<1— A is said to preserve a given
predicate ¢ iff the following holds:

Vx @ dx: ¢(f x)) (142)
e Proposition (142) itself is a particular case of
(Vx @ ¢ x: Y (f x)) (143)

which states that f ensures property 1) on its output every
time property ¢ holds on its input.

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Answer

We first PF-transform the scope of the quantification:

y = twice x N\ even x

{ introduce z by J-one-point (15) }
(3z : z=x: y = twice z A even z)

{ F-trading (8) ; introduce Pepen }

(Jz : y=twicezN z=xANevenz)
~—_—
Z(¢even)x

{ composition (57) }

y(twice - Deyen)x

. ¢EVEI1
cf. diagram Nog =—— INg

twice i

No

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Now the whole thing

(V x,y : y=twice x \even x : even y)
{ above }
(Vx,y 1 y(twice - Poyen)x : even y)
-one-point
3 .
(Vx,y : y(twice - Poyen)x: (3z 1 z=y: even z))
{ predicate calculus: p A TRUE =p }

(V x,y : y(twice - Peyen)x : (3z 1 z=y Aeven z A TRUE))

{ T is the top relation }
(Vx,y y(twice - Peyen)x : (3 z 0 y(Peven)z A zTx))

{ composition }

Exercises

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Now the whole thing

(Vx,y @ y(twice - Deven)x i Y (Peyen - T)X)

{ go pointfree (inclusion) }

twice - Peven C Peven - T

cf. diagram

Exercises

Unary predicates

In summary

In the calculation above, unary predicate even has been
PF-transformed in two ways:

e &0, such that
Z Peyenx & z=xANevenz

Clearly, ®eyen C id — that is, ®eyen is a coreflexive relation;

e Ooen - T, which is such that
Z(Peven- T)x = evenz

— a so-called (left) condition.

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives

As id can be represented as the “all-1s” diagonal matrix, so do
coreflexives, which are sub-diagonal matrices, eg.

) vowel —

a b @ e f
a 1 o) o:io0io0
b o] 0 oioio 0 0
c:o0oio0oio0oioioioio
d 0 0 0:io0;io 0 0
e i 0i0io0io0oidi1l 0oi o
f 0 0 oo 0 0
..i0ioioio 0

where vowel is the predicate identifying characters which are
vowels.

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Exercises
Coreflexives
PF-transform of unary predicate p into the corresponding
fragment @, of id (coreflexive),
y®px = y=xApy (144)
is unique — thus the universal property:
P=0, = (yOPx=y=xApy) (145)

A set S can also be PF-transformed into a coreflexive by
calculating ®(cs), cf. eg. the transform of set {1,2,3,4}:

o

i<y = .

Coreflexive for
set{1,2,3,4}

Coreflexives

Exercises

Exercise 58: Let false be the “everywhere false” predicate such that
false x = FALSE for all x, that is, false = FALSE. Show that ® ¢, = L.

O

Exercise 59: Given a set S, let ®s abbreviate coreflexive ®cs). Use
(144) to unfold ®; 5, - @5 33 to pointwise notation.
O

Exercise 60: Show that (145) follows from (144).
(]

Exercise 61: Solve (145) for p under substitution ¢ := id.
U

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Boolean algebra of coreflexives

Building up on the exercises above, from (145) one easily draws:

Ppprg = Pp- P (146)
Ppvg = P, UD, (147)
b, = id—o, (148)
q>false = 1 (149)
q>i.“rue = id (150)

where p, g are predicates.

(Note the slight, obvious abuse in notation.)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Basic properties of coreflexives

Let ®, U be coreflexive relations. Then the following properties
hold:

o Coreflexives are symmetric and transitive:

P°=0=0-0 (151)
e Meet of two coreflexives is composition:

PNV=0¢.v (152)
e Closure properties:

R&CS = R-dCS- o (153)
®.RCS = &.RC®-S (154)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Relating coreflexives with conditions

Coreflexive W represented by a

right-condition
(17]
TV
w7
or by a left-condition:
o . T
Mapping back and forward:
PCV = dCT-V (155)

dCVY = dCW.T (156)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Relating coreflexives with conditions

Pre and post restriction:

R-® = RNT-® (157)
V.R = RNV.T (158)

Putting these together we obtain selection, as in SQL:

R

owoR 2 W.R-® B=<F_4 (159)
wl l‘»
B=——FA
Clearly, ov.oR
ovoR = {(b,a):bRany bA¢ a} (160)

for V=&, and ® = .

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Selection

Let us check (160):

oy,oR

= { set theoretical meaning of a relation }
{(b,a) : b(owoR)a}

= { definition (159) }
{(b,a): b(V-R-d)a}

= { composition }
{(bya): (3 c : bVc: c(R-P)a)}

= { coreflexive ¥ = &, (145) ; I-trading }
{(b,a): (3 c : b=c: YybAc(R-P)a)}

= { next slide }

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Selection

= { J-one-point ; composition again }
{(b,a): bA(3d : bRdAd D a)}

= { coreflexive ® = ®,, (145) ; I-trading }
{(b,a): v bA(3d : d=a: bRdAS a)}

= { J-one-point ; trivia }
{(b,a): ¢y bAb R an¢ a}

Exercise 62: Combinator
rROS 2 R-T-S (161)

is known as the “rectangular” combinator. Recalling that ker! = T, show
that ' OJ1° = id
O

Coreflexives=guards

Projection

By the way, another SQL-like relational operator is projection,

mefR & g-R-f° B<E_ A (162)
s
C TR D
whose set-theoretic meaning is
mgfrR = {(g b, fa):bR a} (163)

Functions f and g are often referred to as attributes of R.

Exercise 63: Derive (163) from (162).
O

Coreflexives=guards

Exercise

Exercise 64: A relation R is said to satisfy functional dependency

(FD) g — f, written & — R ¢ wherever projection 7r R (162) is
simple.

1. Show that
g—Lsf = ker (g - R°) C ker f (164)

holds.

2. Show that (164) trivially holds wherever g is injective and R is
simple, for all (suitably typed) f.

3. Prove the composition rule of FDs:

h<Bg < .S o fR_g (165

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Two useful coreflexives

Domain:
OR 2 kerRnNid (166)
Range:
pR 2 imgRNid (167)
Universal properties:
JRC® = RCT-0 (168)
pRCO = RCO.-T (169)
Domain/range elimination rules:
T-6R = T-R (170)
pR-T = R-T (171)

JRCJS = RCT-S (172)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises
0 R and p R illustrated in Alloy

M O O fUsers/jnofwork/x.als

g o B P .

New Open Reload Save Execute Si
x | | RelCalc

open RelCalc
(x) Run run$1

o's
sig A { & E E B @ E@

S:setB
! Viz Dot XML Tree Theme Magic Layout Evaluator Next

D:setA

}

fact {
D = delta[S] B
R = rhol[S]

}

sig B{ R: set B}

run {
some S
not Entire[S,A]
not Surjective[S,Bﬂ
}

Line 19, Column 22

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Two useful coreflexives

More facts about domain and range:

SR = p(R%) (173)
S(R-S) = 6(6R-S (174)
p(R-S) = p(R-p (175)
R = R-(6R) (176)
R = (pR) (177)

Exercise 65: Recalling (157), (158) and other properties of relation
algebra, show that: (a) (168) and (169) can be re-written with R
replacing T; (b) C W =1.0 C!- V¥ holds.

O

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Exercise

Exercise 66: Recall diagram (117) of a library loan data model:

T ™2

ISBN <———— ISBN x UID ——— UID

M 2 R c N
j Name x
Title x
Publisher T Date - Address x
Phone

Show that the invariants captured by the two rectangles can be
alternatively expressed by mjg -, R < M and 7ig -, R < N where

R<S 2 §RCHS (178)

clearly exhibiting the foreign/primary-key relationships of the data
model (ISBN and UID).

O

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives at work — data flow

Coreflexives are very handy in controlling information flow in
PF-expressions, as the following two PF-transform rules show,
given two suitably typed coreflexives ® = &, and W = &

e Guarded composition: for all b, ¢

(Ja: ¢pa: bRaNaSc) = b(R-d-S)c (179)

e Guarded inclusion:

(Vba: ¢bApa: bRa=bS a)
= ¢.RWCS (180)

For ® = id and W = id we recover the (non-guarded) standard
definitions.

Context

Unary predicates Coreflexives Coreflexives=guards Domain and range Applications

Coreflexives at work — satisfiability

Back to the pre/post specification style, by writing specification S

S:(b:B)«— (a:A)
pre ...
post

we mean the definition of two predicates

pre-S: A— B
post-S: BxA—B

such that the satisfiability condition holds
(Va:aeAApre-Sa: (b : be B: post-S(b,a)))

recall (33).

Exercises

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Coreflexives at work — satisfiability

Let us abbreviate
L] (Dpre_s by Pre
o q)post_s by POSt

e Oy by ®4, which in general includes an invariant associated to
datatype A

® () by ®p, which in general includes an invariant associated to
datatype B

Then (33) PF-transforms to

Pre-®, C T -®g- Post (181)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Functional satisfiability

Case Pre = id, Post = f:

PACT-0p-f
{ shunting rule (80) }
Op-fFPCT-0p
{ converses }
f- P C O T
{ (96), since f - do Cf }
f-PpCFfNPg-T
= { (158) }
f.byCdp-f

What does this mean?

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Functional satisfiability = invariant preservation

Let us introduce variables in f - &4 C ¢p - f:

fodpC g f
= { shunting rule (79) }
PpCf°-Op-f

{ introduce variables }
(Vaa : adpad: (f a)dg(f d))
= { coreflexives (a = a') }
(Va:: adsa=(f a)dp(f a))
= { meaning of &4, g }
(Va:acA: (fa)eB)

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Functional satisfiability = invariant preservation

Another way to put it:
f-®p C Op-f
= { shunting }
f-®y-f° C Op
{ coreflexives }

fdp 09 C bp

{ image definition }
img (f-®4) C op

{ f-®paissimple }
p(f-®a) € Pp

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Functional satisfiability = invariant preservation

We will write “type declaration”

b~y (182)
to mean

f.by C bg-f cf diagram A<—A— A (183)

fi lf

equivalent to both B<~—B

]

f-dp C op-T (184)
p(f-®a) C @p (185)

Applications

Design by contract

In general, a “type declaration” W LA (182) is the basis of
functional programming (1) with so-called contracts (V, ®), an
instance of the well-known Design by Contract (DbC)
methodology (more about this later).

DbC works because contracts are compositional,

f.
v—59o <« w<l-rArTrT<E-0 (186)

that is, diagram

makes sense. f-g

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Design by contract

Contract composition (186) is easy to prove:

v<"r ATt o

{ (182) twice }
- TCV.-f ANg-dCT-g

= { monotonicity of (-g) and (f-) }
f-T-gCV.-f-gNFf-g-®Cf-T-g
= { Cis transitive }
f.g-dCV.f. g
= { (182) }
fg

V<—-90

Context Unary predicates Coreflexives Coreflexives=guards Domain and range Applications Exercises

Design by contract

Contracts cam also be paired, leading to the type rule (188) which
is derived in the exercise below.

Exercise 67: Rely on the absorption property

(R-T,S-U) = (RxS)-(T,U) (187)
in showing that
(f.g) _ f g
UxT<=—-¢ = VY<—OAT<—29 (188)

holds.

Exercises

Exercises

Exercise 68: From (182) and properties (79), etc infer the following
DbC rules

T ouv = T<o ATV (189)
b VU<~"——T = o<"—TAU<L7 (190)

You will also need (R-)-distribution (101).
g

Exercise 69: Show that (181) means the same as

Pre - ® 5 C Post® - &g - Post (191)

Exercises

Exercises

Exercise 70: Consider the relational version of McCarthy's conditional
combinator which follows:

(a) Using (184) infer the following DbC rule for conditionals:

p—f.g

TEEy = vl v, A T<E-V.0, (193)

(b) Now try and define a rule for handling contracts involving conditional
conditions:

p—f.g

T<—(p—V,0) =... (194)

Exercises

Exercises

Exercise 71: Recall that our motivating ESC assertion (141) was stated
but not proved. Now that we know that (141) PF-transforms to

Peven Lwice ®even and that ®.., = p twice, complete the following

"almost no work at all” PF-calculation of (141):

twice _
q)even < q)even = { }

= { 1 twice - Peyen C twice
twice - q)even g q)even - twice = { """"" }

I
~
Il
—t— ‘

twice - Peven C p twice - twice

	Context
	Unary predicates
	Coreflexives
	Coreflexives=guards
	Domain and range
	Applications
	Exercises

