
Introduction Verification Life Cycle File System Model Conclusions Questions

Verifying Intel Flash File System
Core Specification

M.A. Ferreira, S.S. Silva, J.N. Oliveira

DIUM/CCTC, University of Minho

Overture/VDM++ WS, May 26, 2008

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

VTTSE’05

Hoare and Misra proposed [HM05]
• Grand Challenge for research in computing science

• Verified Software Repository (http://vsr.sourceforge.net)

Goals
• Apply formal methods to real problems

• Automation of verification processes

• Focus on tool interoperability

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

http://vsr.sourceforge.net

Introduction Verification Life Cycle File System Model Conclusions Questions

Case Studies

Mondex
• Electronic purse protocol

• Great community response

• Practical results in model based verification

POSIX File Store
• on going effort to verify a POSIX compliant file system

• wide spread impact on many kinds of devices

• increased complexity

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

VFS (POSIX file store)

Mini-challenge
• proposed by Joshi and Holzmann (NASA - JPL) [JH07]

• specific for FLASH hardware

• intended for (critical) Mars Rover system

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Past & Present

BSc course 2006/07
Preliminary work:

• VFS model: POSIX file store (VDM++) [S+07]
• ONFI model: flash device (VDM++) [DF07]

MSc course 2007/08 [DIU]
Currently working on modeling IFFSC (Intel Flash File System
Core) in

• Alloy

• HOL

• VDM++
Why three different models?

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Intel Flash File System — Architecture

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Why the IFFSC [Cor04]

Advantages
• POSIX aware

• designed for FLASH memory

• layered architecture

• VFS and ONFI fit in IFFSC

Disadvantages
• document is currently deactivated

• some inconsistencies (eg. data type mismatch)

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

"All-in-one" Verification Strategy

We are using several tools of different kinds at the same time.
Why?
Consider a typical proof obligation:

Satisfiability

∀ a · a ∈ A ∧ pre-Op(a) : ∃ b · b ∈ B ∧ post-Op(b, a) (1)

that is (in case of deterministic operations):

∀ a · a ∈ A ∧ pre-Op(a) : Op(a) ∈ B (2)

(a ∈ A and b ∈ B check for the invariants associated to A and B, respectively)

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

"All-in-one" Verification Strategy

We are using several tools of different kinds at the same time.
Why?
Consider a typical proof obligation:

Satisfiability

∀ a · a ∈ A ∧ pre-Op(a) : ∃ b · b ∈ B ∧ post-Op(b, a) (1)

that is (in case of deterministic operations):

∀ a · a ∈ A ∧ pre-Op(a) : Op(a) ∈ B (2)

(a ∈ A and b ∈ B check for the invariants associated to A and B, respectively)

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

"All-in-one" Verification Strategy

Different scenarios:
1 Op satisfies (2) but is semantically wrong — its does not

behave according to the requirements
• need for manual tests
• strategy is to run the model as a prototype

Thus the VDMTools

2 Op survives all tests (including dynamic type checking)
and yet it does not satisfy (2)

• a model checker able to generate counter-examples to (2)
is useful

• suggestions on how to improve Op are welcome

Thus Alloy

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

"All-in-one" Verification Strategy

Different scenarios:
1 Op satisfies (2) but is semantically wrong — its does not

behave according to the requirements
• need for manual tests
• strategy is to run the model as a prototype

Thus the VDMTools

2 Op survives all tests (including dynamic type checking)
and yet it does not satisfy (2)

• a model checker able to generate counter-examples to (2)
is useful

• suggestions on how to improve Op are welcome

Thus Alloy

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

"All-in-one" Verification Strategy

3 Model checker doesn’t find any counter examples
• a theorem prover is welcome to mechanically discharge (2)

Thus HOL

4 PO (2) is too complex for the available theorem prover
• decompose too complex PO into smaller sub-goals
• the ultimate hope is a pen-and-paper manual proof

Thus the PF-transform

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

"All-in-one" Verification Strategy

3 Model checker doesn’t find any counter examples
• a theorem prover is welcome to mechanically discharge (2)

Thus HOL

4 PO (2) is too complex for the available theorem prover
• decompose too complex PO into smaller sub-goals
• the ultimate hope is a pen-and-paper manual proof

Thus the PF-transform

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Development & Verification Process

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Problem

Understand the Problem

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Model

Write VDM++ Model

• animate prototype

• run test suites

• run Integrity Checker to generate
POs

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Model Check

Write Alloy Model
• capture data types and invariants

• capture functions, pre and post
conditions

• abstract sequences and numbers

Model Check in Alloy
• assert proof obligations

• try and find counter-examples

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Model Check

Write Alloy Model
• capture data types and invariants

• capture functions, pre and post
conditions

• abstract sequences and numbers

Model Check in Alloy
• assert proof obligations

• try and find counter-examples

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Review VDM++ Model

Counter-Example Found

• the assertion is invalid
• counter-example show why and

how

Back to VDM++ Model
• error in model?
• too weak a pre-condition?
• too strong an invariant?

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Review VDM++ Model

Counter-Example Found

• the assertion is invalid
• counter-example show why and

how

Back to VDM++ Model
• error in model?
• too weak a pre-condition?
• too strong an invariant?

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Attempt Automatic Proof

No Counter-Example Found
• assertion of PO may be valid
• gained increased confidence, but no

certainty

Translate VDM++ to HOL
• VdmHolTranslator

• translate model
• generate proof commands for POs

• ask HOL to discharge proof

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Attempt Automatic Proof

No Counter-Example Found
• assertion of PO may be valid
• gained increased confidence, but no

certainty

Translate VDM++ to HOL
• VdmHolTranslator

• translate model
• generate proof commands for POs

• ask HOL to discharge proof

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Proof Successful

HOL Completes the Proof

• PO discharged!

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Proof Unsuccessful

HOL Proof Fails

• is PO invalid?
• is PO too complex?

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Proof Successful

PF Proof Successful

• PO discharged!

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

PO Decomposition

Try Simplified Proof

• decompose complex PO with
PF-transform

• re-feed HOL with sub-proofs

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Why VDM-HOL first

Integrity Checker
VDMTools generates POs (but doesn’t discharge them)

Automatic Proof Support
Generates HOL from a VDM++ model + POs (developed by
Sander Vermolen):

• supports a subset of the VDM++ syntax
• specialized proof tactics that can discharge proofs in HOL
• still under development

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

VDM-HOL-Alloy strategy

• first go for proofs in HOL

• then model check (if
needed)

• NB: as earlier on, Alloy
models have to be written
by hand

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

File System Layer — FileStore

VDM++

FileStore = map Path to File

inv fileStore ==

forall path in set dom fileStore &

let parent = dirName(path) in

isElemFileStore(parent , fileStore) and

isDirectory(fileStore(parent));

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

File System Layer — FileStore

Translated to HOL

Hol_datatype ‘System

= <| table :((num , OpenFileDescriptor) fmap);

fileStore :((Path , File) fmap) |>‘;

Define ‘inv_FileStore (inv_FileStore_subj :((Path , File) fmap

)) =

(let fileStore = inv_FileStore_subj in

(! uni_1_var_1.

((((uni_1_var_1 IN (FDOM fileStore)) /\

(? path.(path = uni_1_var_1))) /\ T) ==>

(let path = uni_1_var_1 in

(((dirName path) IN (FDOM fileStore)) /\

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

File System Layer — FileStore

Alloy

sig FileStore {

map: Path -> File

}

pred FileStoreInvariantVDM[fs: FileStore]{

RelCalc/Simple[fs.map , File] and

RelCalc/Injective[fs.map , Path] and

PathInvariantVDM[RelCalc/dom[fs.map]] and

FileInvariantVDM[RelCalc/rng[fs.map]] and

FileStoreInvariant[fs]

}

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

File System Layer — FileStore

Alloy

pred FileStoreInvariant[fs: FileStore]{

all path: RelCalc/dom[fs.map] {

isElemFileStore[path.dirName ,fs] and

isDirectory[fs.map[path.dirName]]

}

}

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

File System Layer — FS_Delete_FileDir_FileStore

VDM++

private

FS_DeleteFileDir_FileStore: FileStore * set of Path ->

FileStore

FS_DeleteFileDir_FileStore(fileStore , paths) ==

paths <-: fileStore

pre forall path in set dom fileStore &

dirName(path) in set paths => path in set paths;

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FileStore Invariant Preservation PO

• Is the FileStore Invariant still valid after excuting
FS_DeleteFileDir_FileStore?

Generated PO

forall fileStore : FileStore , paths : set of Path &

(forall path in set dom (fileStore) &

dirName(path) in set paths => path in set paths)

=> inv_FileStore(paths <-: fileStore)

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FileStore Invariant Preservation PO

• Let’s Model Check this PO

Alloy equivalent

all fs,fs ’: FileStore , paths: set Path {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[paths] => (

(all path : RelCalc/dom[fs.map] |

path.dirName in paths => path in paths) and

fs ’.map = fs.map - (paths -> paths.(fs.map))

=> FileStoreInvariantVDM[fs ’]

)

}

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FileStore Invariant Preservation PO

As a matter of fact . . .

• HOL fails to discharge this PO

• Alloy doesn’t find any counter-examples

• PF-transformed pen-and-paper proof required

• PF-transform removes variables and quantifiers from
predicates — everything becomes a relation

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FileStore Invariant

PF-transform blends particularly well with Alloy:
• Alloy is a relational language :-)
• Recall invariant PW definition:

Alloy PW FileStore invariant

pred FileStoreInvariant[fs: FileStore]{

all path: RelCalc/dom[fs.map] {

isElemFileStore[path.dirName ,fs] and

isDirectory[fs.map[path.dirName]]

}

}

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FileStore invariant

• PF version of the invariant is much shorter — in Alloy
reads as follows:

Alloy PF FileStore invariant

pred FileStoreInvariant[fs: FileStore]{

(fs.map).(File ->Directory)

in (dirName).(fs.map).attributes.fileType

}

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FS_DeleteFileDir_FileStore Pre-Condition

Using the relational calculus, one easily calculates WP for
FileStore invariant to be maintained – details in [Oli08]:

Alloy PF weakest pre-condition

pred pre_FS_DeleteFileDir_FileStorePF[fs:FileStore ,paths:set

Path] {

(((Path - paths)->Path) & iden).(fs.map)

in dirName.((Path - paths)->File)

}

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FS_DeleteFileDir_FileStore Pre-Condition

Corresponding WP in PW Alloy

pred pre_FS_DeleteFileDir_FileStorePW[fs:FileStore ,paths:set

Path] {

all path: RelCalc/dom[fs.map] {

path.dirName in paths => path in paths

}

}

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FS_DeleteFileDir_FileStore Pre-Condition

Checking PF <=> PW

assert pw_equiv_pf {

all fs: FileStore , paths: set Path {

pre_FS_DeleteFileDir_FileStorePW[fs,paths] <=>

pre_FS_DeleteFileDir_FileStorePF[fs,paths]

}

}

check pw_equiv_pf for 20

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

FS_DeleteFileDir_FileStore Pre-Condition

Back to VDM

FS_DeleteFileDir_FileStore: FileStore * set of Path ->

FileStore

FS_DeleteFileDir_FileStore(fileStore , paths) ==

paths <-: fileStore

pre forall path in set dom fileStore &

dirName(path) in set paths => path in set paths;

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

"All-in-one" Verification Strategy

• working with three different technologies is harder but
worthwhile

• learning a lot on verification tool interoperability

• different tools show different aspects of the problem

• VDM-Alloy-HOL complement each other

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

VDM-HOL

The only automatic step of the Verification Process:

Automatic Proof Support
• still "semi" automatic

• on-going work towards increasing automation

Also researching on
• how to use HOL for Weakest Pre-Condition calculation

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

VDM-Alloy translation

Automatic bidirectional conversion would bring great benefit:
• need to keep models consistent

• need for uniform rules across translations

• Alloy more abstract (declarative) than VDM

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Other lessons learned from interoperability

Verifying complex models in more than one tool calls for code
slicing:

• one PO at a time ("single PO, multiple tool")

• need to isolate the smallest model which accommodates
given PO in each tool / notation (slice)

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Outline
1 Introduction

Grand Challenge
Work at Minho
Intel Flash File System Core (IFFSC)

2 Verification Life Cycle
Strategy
Process
Process Analysis

3 File System Model
Example: FileStore
Example: FS_DeleteFileDir_FileStore
Invariant Preservation PO

4 Conclusions
Tool Interoperability
Closing

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Translations

Very useful for verification

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Translations

Already automated by the
VdmHolTranslator

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Translations

• would allow for direct
model checking in Alloy

• will remove the need to
synchronize separate
VDM++ and Alloy models

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Translations

• Alloy-HOL inter-operation
interesting on its own

• increase the level of
confidence in all models

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Thank You

Thank you for your attention

Work has just started
• everyone interested in the approach is welcome on board!
• http://twiki.di.uminho.pt/twiki/bin/view/Research/VFS/

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Questions

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

Introduction Verification Life Cycle File System Model Conclusions Questions

Intel Corporation.
Intel Flash File System Core Reference Guide, October
2004.
Doc. Ref. 304436-001.

B.S. Dias and M.A. Ferreira.
Nand flash interface specification.
Technical report, University of Minho, July 2007.

DIUM/CCTC.
Verifiable file system project.
Website:
http://twiki.di.uminho.pt/twiki/bin/view/Research/
VFS/WebHome.

T. Hoare and J. Misra.
Verified software: theories, tools, experiments-vision of a
grand challenge project.

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

http://twiki.di.uminho.pt/twiki/bin/view/Research/VFS/WebHome
http://twiki.di.uminho.pt/twiki/bin/view/Research/VFS/WebHome

Introduction Verification Life Cycle File System Model Conclusions Questions

Proceedings of IFIP working conference on Verified
Software: theories, tools, experiments, 2005.

Rajeev Joshi and Gerard Holzmann.
A mini challenge: build a verifiable filesystem.
Formal Aspects of Computing, 19(2):269–272(4), June
2007.

J.N. Oliveira.
Theory and applications of the PF-transform, Feb. 2008.
Tutorial at LerNET’08, Piriápolis, Uruguay (slides available
from the author’s website). Post workshop full text intended
for LNCS publication is under way.

Samuel Silva et al.
Verified file-system v1.0.
Technical report, University of Minho, September 2007.

M.A. Ferreira, S.S. Silva, J.N. Oliveira Verifying Intel Flash File System Core Specification

	Introduction
	Grand Challenge
	Work at Minho
	Intel Flash File System Core (IFFSC)

	Verification Life Cycle
	Strategy
	Process
	Process Analysis

	File System Model
	Example: FileStore
	Example: FS_DeleteFileDir_FileStore
	Invariant Preservation PO

	Conclusions
	Tool Interoperability
	Closing

	Questions

