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Dynamical Systems

internal state space (‘memory’ and persistence),

possibility of interaction with other components during
overall computation,

observable through well-defined interfaces to ensure
flow of data.

often acting as a ‘building blocks’ of larger, concur-
rent, systems
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Examples

monitor

� � ��� � � � � 	 
 � ��
 	

bams

automaton

component

a lens:

(an interface )

an observation structure: universe universe

(a system of type )
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Behaviour
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Fact

The behaviours of T-systems form a T-system

where

Reasoning About Dynamical Systems – p.5/21



Fact

The behaviours of T-systems form a T-system

�� �( � � ( � � � � ) 
 � � ��
 � � ) � �

where

Reasoning About Dynamical Systems – p.5/21



Fact

The behaviours of T-systems form a T-system

�� �( � � ( � � � � ) 
 � � ��
 � � ) � �

where

� �( �, � + � # , +
Reasoning About Dynamical Systems – p.5/21



Fact

The behaviours of T-systems form a T-system

�� �( � � ( � � � � ) 
 � � ��
 � � ) � �

where

� �( �, � + � # , +

� ( � , � + � # - * % , $ + � * &

Reasoning About Dynamical Systems – p.5/21



Relating Systems
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Fact

Morphisms preserve behaviour

Proof
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What’ sspecial about

I J
K L MN K N ?

There is always a morphism —

�!

— to it from any
� 	� �� � � � � �

Because morphisms preserve behaviour, such a morphism is
unique

This system is itself unique up to isomorphism and can be
characterized by an universal property: finality.
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Going Generic: functors and coalgebras

Functors, Coalgebras, Seeds & Behaviours

a lens:

(a functor )

an observation structure: universe universe

(a -coalgebra)

A functor is an uniform transformation of sets and func-
tions, which preserves identities and composition.
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Final Coalgebras and Anamorphisms

O 3 (P  O 3

	 �

QR � STP
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whose commutativity equivales to the following universal law:

Clearly,
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What universality means

Existence \ definition principle

Uniqueness proof principle

... for state-based systems

Laws:

if
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CoinductiveDefinition

Stream Generation

`( 6 F @ : 9 a = `
 `(

`
b cd

e `
 `
?@ > b cd

f� � # V �hg �Y
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CoinductiveDefinition

Stream Merge
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CoinductiveProof
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Remarks

observational equivalence and proof techniques

development of prototypes in CHARITY

bisimulation as local proof theory
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Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �

Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21



Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21



Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21



Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21



Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21



Application: SoftwareComponents

functions

� � 5 
 � � � ' � �

components

Components seeded concrete coalgebras for endofunctors

where is a strong monad, capturing a behavioural model, e.g.,

partiality:

non determinism:

monoidal stamping:

‘metric’ non determinism:
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MSc ThesisProposals

Generic process calculi and development of parametric animators

Calculi of software architectures based on software components
with state
(Reverse specification of commercial coordination middleware)

Logic & Formal Methods Group — the PURE Project
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