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Dynamical Systams

# internal state space (‘memory’ and persistence),

* possibility of interaction with other components during
overall computation,

#* observable through well-defined interfaces to ensure
flow of data.

¥ often acting as a ‘building blocks’ of larger, concur-
rent, systems
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monitor (st,nx) : U — O x U
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monitor (st,nx) : U — O x U
bams (balance, trans) : U — O x U!
automaton  (final,next) : U — 2 X 7?(U)E

component {at,m):U — (O x U)!

a lens: O~0O

(an interface T)
an observation structure: universe — (O~ universe

(a system of type T)
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(st,nx) : U — O x U
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(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>
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(st,nx) : U — O xU bhu =
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(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>
bhu € O¥

at,m): U — (O xU)! bhu € O

bh u <s: 4> = at ((next u) s,1)
where

(next u) <> = u

(next u) <s:i> = m ((next u)s,1)
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The behaviours of T-systems form a T-system
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The behaviours of T-systems form a T-system

(at,, my) : O — (O x OT")!
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The behaviours of T-systems form a T-system

(at,, my) : O — (O x OT")!

where
aty, (gb,’&) — Cbz
m, (¢,1) = As. ¢ <i:s>
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Relating Systams

h:(U,a) — (U’,a') is a function h : U — U’ such that

U—>>TU

T

U —E= TU"
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Relating Systams

h:(U,a) — (U’,a') is a function h : U — U’ such that
U——TU
ih lTh
U’—a’>TU’
# eg.
(at,m) at = at’ - (h x id)
UxI——=0xU
h+m = m'-(hxid)
lhxm iwxh
{(at’,m")
U xI——=0xU’
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Morphisms preserve behaviour
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Morphisms preserve behaviour

bhuw = bhhwu

bh u <s: 1>

at ((next u) s,1)

= at’ ((h -+ next u) s,1)

at’ ((next h u) s,1)
= bhhu<s:i>
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bh: U — O isa morphism to the system of behaviours
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bh: U — O isa morphism to the system of behaviours

(at,m)

UxI]——0xU

lbhxid \Lideh

I+ (aty,,my ) -+

x I —=0 x0

0,
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What'sspeaal about ( , (at,, m,))?

¥ There is always a morphism — bh — to it from any (U, (at, m))
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What'sspedal about ( , (at,,, m,))?

¥ There is always a morphism — bh — to it from any (U, (at, m))

¥ Because morphisms preserve behaviour, such a morphism is
unique

This system is itself unique up to isomorphism and can be
characterized by an universal property: finality.
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a lens: O—~0O

(a functor T)

an observation structure: universe — (O~ universe

(a T-coalgebra)
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Going Gengaic: functors and coalgara

Functors, Coalgebras, Seeds & Behaviours

a lens: O—~0O

(a functor T)
an observation structure: universe — (O~ universe

(a T-coalgebra)

A functor is an uniform transformation of sets and func-
tions, which preserves identities and composition.
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Final Coalgébras and Anamorphisms

wT
vT—— T vt

()t T TT 2=

p

U——TU

whose commutativity equivales to the following universal law:

k=|plt © wr-k=Tk-p
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Final Coalgébras and Anamorphisms

wT
vT—— T vt

()t T TT 2=

p

U——TU

whose commutativity equivales to the following universal law:

k=|plt © wr-k=Tk-p

Clearly, |(p)+ = bh
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What universality means

# Existence = definition principle
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What universality means

# Existence = definition principle
* Uniqueness = proof principle

% . for state-based systems

Laws:
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Coinductive Definition

Stream Generation

(hd,tl)
AY —— A x AY

genT Tingen

A—S2-Ax A

gen = [(A)
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Coinductive Definition

Stream Merge

(hd,tl)
A¥ A x A%

mergeT Tideerge

AY x AY — L A x (A¥ x A¥)

merge = [(g)

and

g = (hd-mq,s- (tl xid))
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Coinductive Proof

merge (a*,b*) = (ab)¥
.e.

merge - (gen X gen) = twist

where

(hd,tl)
A¥ A x A%

twist T T id X twist
Ax A—T4 % (Ax A)
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Coinductive Proof

merge - (gen X gen) = twist
= { definition }

((hd - 71,5+ (tl xid))) « (gen x gen) = (my,s)
<= { fusion }

(hd - 7m1,s - (tl x id)) - (gen x gen) = id x (gen x gen) - (my,s)
= { x absorption and reflection }

(hd - gen - mq,s - ((tl- gen) x gen)) = id x (gen x gen) - (my,s)
— { tl.gen =genand hd-gen =id }

(m1,s+ (gen x gen)) = id x (gen x gen) - (71, )
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Coinductive Proof

(m1,s- (gen x gen)) = id x (gen x gen) « (my,s)

— { x absorption }

(my,s+ (gen x gen)) = (my,(gen X gen) - s)
— { s natural }

(my,s+ (gen x gen)) = (my,s-(gen X gen))
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# observational equivalence and proof techniques
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Remarks

# observational equivalence and proof techniques

* development of prototypes in CHARITY
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Application: Concurrent Processes

¥ A new look at (Ccs-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in Set
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Application: Concurrent Processes

¥ A new look at (Ccs-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in Set

¥ Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

¥ The latter, encoded as a positive monoid, acts as a source of
genericity

* Equational (pointfree) reasoning (vs explicit bisimulations)

% Laws and constraints are ‘found’ (rather than postulated)
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functions f:I1—0O feo!




Application: Software Components

functions f:I1—0O feo!

components p: I — O peE- -
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functions f:I1—0O feo!

components p:I— O pE: -

Components = seeded concrete coalgebras for Set endofunctors
T® = B (Ild x 0)!

where B is a strong monad, capturing a behavioural model, e.g.,
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Application: Software Components

functions f:I1—0O feo!

components p: I — O peE- -

Components = seeded concrete coalgebras for Set endofunctors
T® = B (Ild x 0)!

where B is a strong monad, capturing a behavioural model, e.g.,
* partiality: B=1I1d+ 1

# non determinism: B = P

# monoidal stamping: B=1Id x M

# ‘metric’ non determinism: B = Bag,,
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MSc ThesisProposals

¥ Generic process calculi and development of parametric animators

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.21/21




MSc ThesisProposals

¥ Generic process calculi and development of parametric animators

¥ Calculi of software architectures based on software components
with state

(Reverse specification of commercial coordination middleware)
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MSc ThesisProposals

¥ Generic process calculi and development of parametric animators

¥ Calculi of software architectures based on software components
with state

(Reverse specification of commercial coordination middleware)

Logic & Formal Methods Group — the PURE Project
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