Reasomng About Dynamical
Systans

Luis Soares Barbosa
2002.05.18

Departamento de Informatica

Universidade do Minho

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.1/21

Dynamical Systams

Dynamical Systams

internal state space (‘memory’ and persistence),

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.2/21

Dynamical Systams

internal state space (‘memory’ and persistence),

* possibility of interaction with other components during
overall computation,

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.2/21

Dynamical Systams

internal state space (‘memory’ and persistence),

* possibility of interaction with other components during
overall computation,

#* observable through well-defined interfaces to ensure
flow of data.

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.2/21

Dynamical Systams

internal state space (‘memory’ and persistence),

* possibility of interaction with other components during
overall computation,

#* observable through well-defined interfaces to ensure
flow of data.

¥ often acting as a ‘building blocks’ of larger, concur-
rent, systems

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.2/21

monitor (st,nx) : U — O x U

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.3/21

monitor (st,nx) : U — O x U

bams (balance, trans) : U — O x U!

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.3/21

monitor (st,nx) : U — O x U
bams (balance, trans) : U — O x U!

automaton (final,next) : U — 2 X 7?((])E

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.3/21

monitor (st,nx) : U — O x U
bams (balance, trans) : U — O x U!
automaton (final,next) : U — 2 X 7?((])E

component {at,m):U — (O x U)!

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.3/21

monitor (st,nx) : U — O x U
bams (balance, trans) : U — O x U!
automaton (final,next) : U — 2 X 7?(U)E

component {at,m):U — (O x U)!

a lens: O~0O

an observation structure: universe — (O~ universe

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.3/21

monitor (st,nx) : U — O x U
bams (balance, trans) : U — O x U!
automaton (final,next) : U — 2 X 7?(U)E

component {at,m):U — (O x U)!

a lens: O~0O

(an interface T)
an observation structure: universe — (O~ universe

(a system of type T)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.3/21

(st,nx) : U — O x U

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.4/21

(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.4/21

(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>
bhu € O¥

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.4/21

(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>
bhu € O¥

(at,m) : U — (O x U)!

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.4/21

(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>
bhu € O¥

at,m): U — (O xU)! bhu € O

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.4/21

(st,nx) : U — O xU bhu =

<st u, st (nx u), st (nx (nx u)),...>
bhu € O¥

at,m): U — (O xU)! bhu € O

bh u <s: 4> = at ((next u) s,1)
where

Reasoning About Dynamical Systems — p.4/21

(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>
bhu € O¥

at,m): U — (O xU)! bhu € O

bh u <s: 4> = at ((next u) s,1)
where
(next u) <> = u

Reasoning About Dynamical Systems — p.4/21

(st,nx) : U — O x U bhu = <stu, st (nxu),st(nx (nxu)),...>
bhu € O¥

at,m): U — (O xU)! bhu € O

bh u <s: 4> = at ((next u) s,1)
where

(next u) <> = u

(next u) <s:i> = m ((next u)s,1)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.4/21

The behaviours of T-systems form a T-system

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.5/21

The behaviours of T-systems form a T-system

(at,, my) : O — (O x OT")!

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.5/21

The behaviours of T-systems form a T-system

(at,, my) : O — (O x OT")!

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.5/21

The behaviours of T-systems form a T-system

(at,, my) : O — (O x OT")!

where
aty, (gb,’&) — Cbz
m, (¢,1) = As. ¢ <i:s>

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.5/21

Relating Systams

h:(U,a) — (U’,a') is a function h : U — U’ such that

U—>>TU

T

U —E= TU"

Reasoning About Dynamical Systems —p.6/21

Relating Systams

h:(U,a) — (U’,a') is a function h : U — U’ such that
U——TU
ih lTh
U’—a’>TU’
eg.
(at,m) at = at’ - (h x id)
UxI——=0xU
h+m = m'-(hxid)
lhxm iwxh
{(at’,m")
U xI——=0xU’

Reasoning About Dynamical Systems — p.6/21

Morphisms preserve behaviour

° °
Reasoning About Dynamical Systems — p.7/21

Morphisms preserve behaviour

bhuw = bhhwu

° °
Reasoning About Dynamical Systems — p.7/21

Morphisms preserve behaviour

bhuw = bhhwu

bh u <s: 1>

at ((next u) s,1)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.7/21

Morphisms preserve behaviour

bhuw = bhhwu

bh u <s:4> = at ((next u) s,1)
= at’ ((h - next u) s,1)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.7/21

Morphisms preserve behaviour

bhuw = bhhwu

bh u <s:4> = at ((next u) s,1)
= at’ ((h - next u) s,1)
= at’ ((next h u) s,1)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.7/21

Morphisms preserve behaviour

bhuw = bhhwu

bh u <s: 1>

at ((next u) s,1)

= at’ ((h -+ next u) s,1)

at’ ((next h u) s,1)
= bhhu<s:i>

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.7/21

bh: U — O isa morphism to the system of behaviours

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.8/21

bh: U — O isa morphism to the system of behaviours

(at,m)

UxI]——0xU

lbhxid \Lideh

I+ (aty,,my) -+

x I —=0 x0

0,

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.8/21

What'sspeaal about (, (at,, m,))?

¥ There is always a morphism — bh — to it from any (U, (at, m))

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.9/21

What'sspedal about (, (at,,, m,))?

¥ There is always a morphism — bh — to it from any (U, (at, m))

¥ Because morphisms preserve behaviour, such a morphism is
unique

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.9/21

What'sspedal about (, (at,,, m,))?

¥ There is always a morphism — bh — to it from any (U, (at, m))

¥ Because morphisms preserve behaviour, such a morphism is
unique

This system is itself unique up to isomorphism and can be
characterized by an universal property: finality.

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.9/21

Going Gengaic: functors and coalgara:

Functors, Coalgebras, Seeds & Behaviours

Going Gengaic: functors and coalgara

Functors, Coalgebras, Seeds & Behaviours

a lens: O—~0O

an observation structure: universe — (O~ universe

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.10/21

Going Gengaic: functors and coalgara

Functors, Coalgebras, Seeds & Behaviours

a lens: O—~0O

(a functor T)

an observation structure: universe — (O~ universe

(a T-coalgebra)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.10/21

Going Gengaic: functors and coalgara

Functors, Coalgebras, Seeds & Behaviours

a lens: O—~0O

(a functor T)
an observation structure: universe — (O~ universe

(a T-coalgebra)

A functor is an uniform transformation of sets and func-
tions, which preserves identities and composition.

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.10/21

Final Coalgébras and Anamorphisms

wT
vT—— T vt

()t T TT 2=

U——TU

Final Coalgébras and Anamorphisms

wT
vT—— T vt

()t T TT 2=

p

U——TU

whose commutativity equivales to the following universal law:

k=|plt © wr-k=Tk-p

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.11/21

Final Coalgébras and Anamorphisms

wT
vT—— T vt

()t T TT 2=

p

U——TU

whose commutativity equivales to the following universal law:

k=|plt © wr-k=Tk-p

Clearly, |(p)+ = bh

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.11/21

What universality means

Existence = definition principle

Reasoning About Dynamical Systems — p.12/21

What universality means

Existence = definition principle

* Uniqueness = proof principle

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.12/21

What universality means

Existence = definition principle
* Uniqueness = proof principle

% . for state-based systems

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.12/21

What universality means

Existence = definition principle
* Uniqueness = proof principle

% . for state-based systems

Laws:

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.12/21

What universality means

Existence = definition principle
* Uniqueness = proof principle

% . for state-based systems

Laws:

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.12/21

What universality means

Existence = definition principle
* Uniqueness = proof principle

% . for state-based systems

Laws:

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.12/21

What universality means

Existence = definition principle
* Uniqueness = proof principle

% . for state-based systems

Laws:

Reasoning About Dynamical Systems — p.12/21

Coinductive Definition

Stream Generation

(hd,tl)
AY —— A x AY

genT Tingen

A—S2-Ax A

gen = [(A)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.13/21

Coinductive Definition

Stream Merge

(hd,tl)
A¥ A x A%

mergeT Tideerge

AY x AY — L A x (A¥ x A¥)

merge = [(g)

and

g = (hd-mq,s- (tl xid))

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.14/21

Coinductive Proof

merge (a*,b*) = (ab)¥
.e.

merge - (gen X gen) = twist

where

(hd,tl)
A¥ A x A%

twist T T id X twist
Ax A—T4 % (Ax A)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.15/21

Coinductive Proof

merge - (gen X gen) = twist
= { definition }

((hd - 71,5+ (tl xid))) « (gen x gen) = (my,s)
<= { fusion }

(hd - 7m1,s - (tl x id)) - (gen x gen) = id x (gen x gen) - (my,s)
= { x absorption and reflection }

(hd - gen - mq,s - ((tl- gen) x gen)) = id x (gen x gen) - (my,s)
— { tl.gen =genand hd-gen =id }

(m1,s+ (gen x gen)) = id x (gen x gen) - (71,)

Reasoning About Dynamical Systems — p.16/21

Coinductive Proof

(m1,s- (gen x gen)) = id x (gen x gen) « (my,s)

— { x absorption }

(my,s+ (gen x gen)) = (my,(gen X gen) - s)
— { s natural }

(my,s+ (gen x gen)) = (my,s-(gen X gen))

Reasoning About Dynamical Systems — p.17/21

observational equivalence and proof techniques

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.18/21

Remarks

observational equivalence and proof techniques

* development of prototypes in CHARITY

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.18/21

Remarks

observational equivalence and proof techniques
* development of prototypes in CHARITY

bisimulation as local proof theory

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.18/21

observational equivalence and proof techniques
* development of prototypes in CHARITY

bisimulation as local proof theory

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.18/21

Application: Concurrent Processes

¥ A new look at (Ccs-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in Set

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.19/21

Application: Concurrent Processes

¥ A new look at (Ccs-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in Set

¥ Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.19/21

Application: Concurrent Processes

¥ A new look at (Ccs-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in Set

¥ Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

% The latter, encoded as a positive monoid, acts as a source of
genericity

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.19/21

Application: Concurrent Processes

¥ A new look at (Ccs-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in Set

¥ Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

¥ The latter, encoded as a positive monoid, acts as a source of
genericity

* Equational (pointfree) reasoning (vs explicit bisimulations)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.19/21

Application: Concurrent Processes

¥ A new look at (Ccs-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in Set

¥ Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

¥ The latter, encoded as a positive monoid, acts as a source of
genericity

* Equational (pointfree) reasoning (vs explicit bisimulations)

% Laws and constraints are ‘found’ (rather than postulated)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.19/21

Application: Software Components

functions f:I1—0O feo!

Application: Software Components

functions f:I1—0O feo!

components p: I — O peE- -

Application: Software Components

functions f:I1—0O feo!

components p:I— O pE: -

Components = seeded concrete coalgebras for Set endofunctors
T® = B (Ild x 0)!

where B is a strong monad, capturing a behavioural model, e.g.,

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.20/21

Application: Software Components

functions f:I1—0O feo!

components p: I — O peE- -

Components = seeded concrete coalgebras for Set endofunctors
T® = B (Ild x 0)!

where B is a strong monad, capturing a behavioural model, e.g.,
* partiality: B=1I1d+ 1

non determinism: B = P

monoidal stamping: B=1Id x M

‘metric’ non determinism: B = Bag,,

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.20/21

MSc ThesisProposals

¥ Generic process calculi and development of parametric animators

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.21/21

MSc ThesisProposals

¥ Generic process calculi and development of parametric animators

¥ Calculi of software architectures based on software components
with state

(Reverse specification of commercial coordination middleware)

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.21/21

MSc ThesisProposals

¥ Generic process calculi and development of parametric animators

¥ Calculi of software architectures based on software components
with state

(Reverse specification of commercial coordination middleware)

Logic & Formal Methods Group — the PURE Project

° ° ° ° ° ° °
Reasoning About Dynamical Systems — p.21/21

	Dynamical Systems
	Examples
	Behaviour
	Fact
	Relating Systems
	Fact
	Fact
	What's special about $pair {{
ed O^{I^{+}}}, ainv {split {�un {at_{omega }}}{�un {m_{omega }}}}}$?
	Going Generic: functors and coalgebras
	Final Coalgebras and Anamorphisms
	What universality means
	Coinductive Definition
	Coinductive Definition
	Coinductive Proof
	Coinductive Proof
	Coinductive Proof
	Remarks
	Application: Concurrent Processes
	Application: Software Components
	MSc Thesis Proposals

