
Reasoning About Dynamical
Systems

Luı́s Soares Barbosa

2002.05.18

Departamento de Informática

Universidade do Minho

Reasoning About Dynamical Systems – p.1/21

Dynamical Systems

internal state space (‘memory’ and persistence),

possibility of interaction with other components during
overall computation,

observable through well-defined interfaces to ensure
flow of data.

often acting as a ‘building blocks’ of larger, concur-
rent, systems

Reasoning About Dynamical Systems – p.2/21

Dynamical Systems

internal state space (‘memory’ and persistence),

possibility of interaction with other components during
overall computation,

observable through well-defined interfaces to ensure
flow of data.

often acting as a ‘building blocks’ of larger, concur-
rent, systems

Reasoning About Dynamical Systems – p.2/21

Dynamical Systems

internal state space (‘memory’ and persistence),

possibility of interaction with other components during
overall computation,

observable through well-defined interfaces to ensure
flow of data.

often acting as a ‘building blocks’ of larger, concur-
rent, systems

Reasoning About Dynamical Systems – p.2/21

Dynamical Systems

internal state space (‘memory’ and persistence),

possibility of interaction with other components during
overall computation,

observable through well-defined interfaces to ensure
flow of data.

often acting as a ‘building blocks’ of larger, concur-
rent, systems

Reasoning About Dynamical Systems – p.2/21

Dynamical Systems

internal state space (‘memory’ and persistence),

possibility of interaction with other components during
overall computation,

observable through well-defined interfaces to ensure
flow of data.

often acting as a ‘building blocks’ of larger, concur-
rent, systems

Reasoning About Dynamical Systems – p.2/21

Examples

monitor

� � ��� � � � � 	
 � ��
 	

bams

automaton

component

a lens:

(an interface)

an observation structure: universe universe

(a system of type)

Reasoning About Dynamical Systems – p.3/21

Examples

monitor

� � ��� � � � � 	
 � ��
 	

bams

���� �� � �� � ��� � � � � 	
 � ��
 	 �

automaton

component

a lens:

(an interface)

an observation structure: universe universe

(a system of type)

Reasoning About Dynamical Systems – p.3/21

Examples

monitor

� � ��� � � � � 	
 � ��
 	

bams

���� �� � �� � ��� � � � � 	
 � ��
 	 �

automaton

�� �� � � � � � � � � 	
 � �
 � � 	 � �

component

a lens:

(an interface)

an observation structure: universe universe

(a system of type)

Reasoning About Dynamical Systems – p.3/21

Examples

monitor

� � ��� � � � � 	
 � ��
 	

bams

���� �� � �� � ��� � � � � 	
 � ��
 	 �

automaton

�� �� � � � � � � � � 	
 � �
 � � 	 � �
component

�� � � � � � 	
 � � �
 	 � �

a lens:

(an interface)

an observation structure: universe universe

(a system of type)

Reasoning About Dynamical Systems – p.3/21

Examples

monitor

� � ��� � � � � 	
 � ��
 	

bams

���� �� � �� � ��� � � � � 	
 � ��
 	 �

automaton

�� �� � � � � � � � � 	
 � �
 � � 	 � �
component

�� � � � � � 	
 � � �
 	 � �
a lens: �

(an interface)

an observation structure: universe

�
 � � universe

(a system of type)

Reasoning About Dynamical Systems – p.3/21

Examples

monitor

� � ��� � � � � 	
 � ��
 	

bams

���� �� � �� � ��� � � � � 	
 � ��
 	 �

automaton

�� �� � � � � � � � � 	
 � �
 � � 	 � �
component

�� � � � � � 	
 � � �
 	 � �
a lens: �
(an interface

)

an observation structure: universe

�
 � � universe

(a system of type

)

Reasoning About Dynamical Systems – p.3/21

Behaviour

� � ��� � � � � 	
 � ��
 	

where

Reasoning About Dynamical Systems – p.4/21

Behaviour

� � ��� � � � � 	
 � ��
 	 �! " # $ � � " � � � � � � " � � � � � � � � � � " � � �% % % &

where

Reasoning About Dynamical Systems – p.4/21

Behaviour

� � ��� � � � � 	
 � ��
 	 �! " # $ � � " � � � � � � " � � � � � � � � � � " � � �% % % &

�! " ' �(

where

Reasoning About Dynamical Systems – p.4/21

Behaviour

� � ��� � � � � 	
 � ��
 	 �! " # $ � � " � � � � � � " � � � � � � � � � � " � � �% % % &

�! " ' �(

�� � � � � � 	
 � � �
 	 � �

where

Reasoning About Dynamical Systems – p.4/21

Behaviour

� � ��� � � � � 	
 � ��
 	 �! " # $ � � " � � � � � � " � � � � � � � � � � " � � �% % % &

�! " ' �(

�� � � � � � 	
 � � �
 	 � � �! " ' � �)

where

Reasoning About Dynamical Systems – p.4/21

Behaviour

� � ��� � � � � 	
 � ��
 	 �! " # $ � � " � � � � � � " � � � � � � � � � � " � � �% % % &

�! " ' �(

�� � � � � � 	
 � � �
 	 � � �! " ' � �)

�! " $* � + & # � � � � � � � � " � * � + �
where

Reasoning About Dynamical Systems – p.4/21

Behaviour

� � ��� � � � � 	
 � ��
 	 �! " # $ � � " � � � � � � " � � � � � � � � � � " � � �% % % &

�! " ' �(

�� � � � � � 	
 � � �
 	 � � �! " ' � �)

�! " $* � + & # � � � � � � � � " � * � + �
where� � � � � " � $ & # "

Reasoning About Dynamical Systems – p.4/21

Behaviour

� � ��� � � � � 	
 � ��
 	 �! " # $ � � " � � � � � � " � � � � � � � � � � " � � �% % % &

�! " ' �(

�� � � � � � 	
 � � �
 	 � � �! " ' � �)

�! " $* � + & # � � � � � � � � " � * � + �
where� � � � � " � $ & # "

� � � � � " � $* � + & # � � � � � � � " � * � + �

Reasoning About Dynamical Systems – p.4/21

Fact

The behaviours of T-systems form a T-system

where

Reasoning About Dynamical Systems – p.5/21

Fact

The behaviours of T-systems form a T-system

�� �(� � (� � � �)
 � � ��
 � �) � �

where

Reasoning About Dynamical Systems – p.5/21

Fact

The behaviours of T-systems form a T-system

�� �(� � (� � � �)
 � � ��
 � �) � �

where

� �(�, � + � # , +
Reasoning About Dynamical Systems – p.5/21

Fact

The behaviours of T-systems form a T-system

�� �(� � (� � � �)
 � � ��
 � �) � �

where

� �(�, � + � # , +

� (� , � + � # - * % , $ + � * &

Reasoning About Dynamical Systems – p.5/21

Relating Systems

. � � 	� / �
 � � 	 0 � / 0 � is a function

. � 	
 � 	 0
such that

	 1
2

 	
3 2

	 0 1 4 	 0

e.g.

Reasoning About Dynamical Systems – p.6/21

Relating Systems

. � � 	� / �
 � � 	 0 � / 0 � is a function

. � 	
 � 	 0
such that

	 1
2

 	
3 2

	 0 1 4 	 0
e.g.

	
 5 687 9;: < =

2> ?@

��
 	
?@ > 2

	 0
 5 6 7 9 4 : < 4 = ��
 	 0

� � # � � 0BA � .
 C D �

.A � # � 0A � .
 C D �

Reasoning About Dynamical Systems – p.6/21

Fact

Morphisms preserve behaviour

Proof

Reasoning About Dynamical Systems – p.7/21

Fact

Morphisms preserve behaviour

�! " # �! . "

Proof

Reasoning About Dynamical Systems – p.7/21

Fact

Morphisms preserve behaviour

�! " # �! . "
Proof�! " $* � + & # � � � � � � � � " � * � + �

Reasoning About Dynamical Systems – p.7/21

Fact

Morphisms preserve behaviour

�! " # �! . "
Proof�! " $* � + & # � � � � � � � � " � * � + �

� � 0 � � .A � � � � " � * � + �

Reasoning About Dynamical Systems – p.7/21

Fact

Morphisms preserve behaviour

�! " # �! . "
Proof�! " $* � + & # � � � � � � � � " � * � + �

� � 0 � � .A � � � � " � * � + �

� � 0 � � � � � � . " � * � + �

Reasoning About Dynamical Systems – p.7/21

Fact

Morphisms preserve behaviour

�! " # �! . "
Proof�! " $* � + & # � � � � � � � � " � * � + �

� � 0 � � .A � � � � " � * � + �

� � 0 � � � � � � . " � * � + �

�! . " $* � + &

Reasoning About Dynamical Systems – p.7/21

Fact

�! � 	
 � � �)

is a morphism to the system of behaviours

Reasoning About Dynamical Systems – p.8/21

Fact

�! � 	
 � � �)

is a morphism to the system of behaviours

	
 5 67 9;: < =

EF > ?@

��
 	
?@ > EF

� �)
 5 67 9HG : < G = ��
 � �)

Reasoning About Dynamical Systems – p.8/21

What’ sspecial about

I J
K L MN K N ?

There is always a morphism —

�!

— to it from any
� 	� �� � � � � �

Because morphisms preserve behaviour, such a morphism is
unique

This system is itself unique up to isomorphism and can be
characterized by an universal property: finality.

Reasoning About Dynamical Systems – p.9/21

What’ sspecial about

I J
K L MN K N ?

There is always a morphism —

�!

— to it from any
� 	� �� � � � � �

Because morphisms preserve behaviour, such a morphism is
unique

This system is itself unique up to isomorphism and can be
characterized by an universal property: finality.

Reasoning About Dynamical Systems – p.9/21

What’ sspecial about

I J
K L MN K N ?

There is always a morphism —

�!

— to it from any
� 	� �� � � � � �

Because morphisms preserve behaviour, such a morphism is
unique

This system is itself unique up to isomorphism and can be
characterized by an universal property: finality.

Reasoning About Dynamical Systems – p.9/21

Going Generic: functors and coalgebras

Functors, Coalgebras, Seeds & Behaviours

a lens:

(a functor)

an observation structure: universe universe

(a -coalgebra)

A functor is an uniform transformation of sets and func-
tions, which preserves identities and composition.

Reasoning About Dynamical Systems – p.10/21

Going Generic: functors and coalgebras

Functors, Coalgebras, Seeds & Behaviours

a lens: �

(a functor)

an observation structure: universe
�
 � � universe

(a -coalgebra)

A functor is an uniform transformation of sets and func-
tions, which preserves identities and composition.

Reasoning About Dynamical Systems – p.10/21

Going Generic: functors and coalgebras

Functors, Coalgebras, Seeds & Behaviours

a lens: �

(a functor

)

an observation structure: universe
�
 � � universe

(a

-coalgebra)

A functor is an uniform transformation of sets and func-
tions, which preserves identities and composition.

Reasoning About Dynamical Systems – p.10/21

Going Generic: functors and coalgebras

Functors, Coalgebras, Seeds & Behaviours

a lens: �

(a functor

)

an observation structure: universe
�
 � � universe

(a

-coalgebra)

A functor is an uniform transformation of sets and func-
tions, which preserves identities and composition.

Reasoning About Dynamical Systems – p.10/21

Final Coalgebras and Anamorphisms

O 3 (P O 3

	 �

QR � STP

 	
3 QR � STP

whose commutativity equivales to the following universal law:

Clearly,

Reasoning About Dynamical Systems – p.11/21

Final Coalgebras and Anamorphisms

O 3 (P O 3

	 �

QR � STP

 	
3 QR � STP

whose commutativity equivales to the following universal law:

U # V �XW �Y 3 Z [3 A U # UA W

Clearly,

Reasoning About Dynamical Systems – p.11/21

Final Coalgebras and Anamorphisms

O 3 (P O 3

	 �

QR � STP

 	
3 QR � STP

whose commutativity equivales to the following universal law:

U # V �XW �Y 3 Z [3 A U # UA W

Clearly,

V � W � Y 3 # �!

Reasoning About Dynamical Systems – p.11/21

What universality means

Existence \ definition principle

Uniqueness proof principle

... for state-based systems

Laws:

if

Reasoning About Dynamical Systems – p.12/21

What universality means

Existence \ definition principle

Uniqueness \ proof principle

... for state-based systems

Laws:

if

Reasoning About Dynamical Systems – p.12/21

What universality means

Existence \ definition principle

Uniqueness \ proof principle

... for state-based systems

Laws:

if

Reasoning About Dynamical Systems – p.12/21

What universality means

Existence \ definition principle

Uniqueness \ proof principle

... for state-based systems

Laws:

if

Reasoning About Dynamical Systems – p.12/21

What universality means

Existence \ definition principle

Uniqueness \ proof principle

... for state-based systems

Laws:

[3 A V �XW �Y # V �XW �Y A W

if

Reasoning About Dynamical Systems – p.12/21

What universality means

Existence \ definition principle

Uniqueness \ proof principle

... for state-based systems

Laws:

[3 A V �XW �Y # V �XW �Y A W

V � [3 �Y # C D^]P

if

Reasoning About Dynamical Systems – p.12/21

What universality means

Existence \ definition principle

Uniqueness \ proof principle

... for state-based systems

Laws:

[3 A V �XW �Y # V �XW �Y A W

V � [3 �Y # C D^]PV �XW �Y A . # V �X_ �Y

if W A . # .A _

Reasoning About Dynamical Systems – p.12/21

CoinductiveDefinition

Stream Generation

`(6 F @ : 9 a = `
 `(

`
b cd

e `
 `
?@ > b cd

f� � # V �hg �Y

Reasoning About Dynamical Systems – p.13/21

CoinductiveDefinition

Stream Merge

`(6 F @ : 9 a = `
 `(

`(
 `(
< ci b c

j `
 � `(
 `(�
?@ > < c i b c

� � � f� # V �Xk � Y

and

k # �! D A lnm � �A � � �
 C D � �

Reasoning About Dynamical Systems – p.14/21

CoinductiveProof

� � � f� �Xo (� p(� # �Xo p � (

i.e.

� � � f� A � f� �
 f� � � # �nq C � �
where

`(6 F @ : 9 a = `
 `(

`
 `
9r ?ts 9 6vuw : s = `
 � `
 ` �
?@ > 9r ?ts 9

Reasoning About Dynamical Systems – p.15/21

CoinductiveProof

� � � f� A � f� �
 f� � � # �nq C � �

x

definition

y

V � �! D A lzm � �A � � �
 C D � � �Y A � f� �
 f� � � # � lzm � � �

{ x

fusion

y

�! D A lm � �A � � �
 C D � � A � f� �
 f� � � # C D
 � f� �
 f� � � A � lm � � �

x | absorption and reflection

y

�! D A f� �A lzm � �A � � � �}A f� � �
 f� � � � # C D
 � f� �
 f� � � A � lzm � � �

xn~ ��� � �� � � �� and

�� � � �� � �� y

� lm � �A � f� �
 f� � � � # C D
 � f� �
 f� � � A � lzm � � �

Reasoning About Dynamical Systems – p.16/21

CoinductiveProof

� lzm � �A � f� �
 f� � � � # C D
 � f� �
 f� � � A � lzm � � �

x | absorption

y

� lzm � �A � f� �
 f� � � � # � lzm � � f� �
 f� � � A � �

x�� natural

y

� lzm � �A � f� �
 f� � � � # � lzm � �A � f� �
 f� � � �

Reasoning About Dynamical Systems – p.17/21

Remarks

observational equivalence and proof techniques

development of prototypes in CHARITY

bisimulation as local proof theory

Reasoning About Dynamical Systems – p.18/21

Remarks

observational equivalence and proof techniques

development of prototypes in CHARITY

bisimulation as local proof theory

Reasoning About Dynamical Systems – p.18/21

Remarks

observational equivalence and proof techniques

development of prototypes in CHARITY

bisimulation as local proof theory

Reasoning About Dynamical Systems – p.18/21

Remarks

observational equivalence and proof techniques

development of prototypes in CHARITY

bisimulation as local proof theory

	
�

�� 	
 �
�

uw u� �
�

 	 �3 uw 3 u� �

Reasoning About Dynamical Systems – p.18/21

Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �

Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21

Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21

Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21

Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21

Application: Concurrent Processes

A new look at (CCS-like) process algebra on top of a representation
of processes as inhabitants of final coalgebras in

� � �
Clear separation between the behaviour model (active vs reactive,
determinism vs non determinism, ...) from the interaction
structure (which defines the synchronisation discipline)

The latter, encoded as a positive monoid, acts as a source of
genericity

Equational (pointfree) reasoning (vs explicit bisimulations)

Laws and constraints are ‘found’ (rather than postulated)

Reasoning About Dynamical Systems – p.19/21

Application: SoftwareComponents

functions

� � 5
 � � � ' � �

components

Components seeded concrete coalgebras for endofunctors

where is a strong monad, capturing a behavioural model, e.g.,

partiality:

non determinism:

monoidal stamping:

‘metric’ non determinism:

Reasoning About Dynamical Systems – p.20/21

Application: SoftwareComponents

functions

� � 5
 � � � ' � �

components W � 5
 � � W '�� � �

Components seeded concrete coalgebras for endofunctors

where is a strong monad, capturing a behavioural model, e.g.,

partiality:

non determinism:

monoidal stamping:

‘metric’ non determinism:

Reasoning About Dynamical Systems – p.20/21

Application: SoftwareComponents

functions

� � 5
 � � � ' � �

components W � 5
 � � W '�� � �
Components \ seeded concrete coalgebras for

� � � endofunctors

 � # � �� D
 � � �

where

�

is a strong monad, capturing a behavioural model, e.g.,

partiality:

non determinism:

monoidal stamping:

‘metric’ non determinism:

Reasoning About Dynamical Systems – p.20/21

Application: SoftwareComponents

functions

� � 5
 � � � ' � �

components W � 5
 � � W '�� � �
Components \ seeded concrete coalgebras for

� � � endofunctors

 � # � �� D
 � � �

where

�

is a strong monad, capturing a behavioural model, e.g.,

partiality:

� # � Dz� �
non determinism:

� # �

monoidal stamping:

� # � D
 �

‘metric’ non determinism:

� # �� f��

Reasoning About Dynamical Systems – p.20/21

MSc ThesisProposals

Generic process calculi and development of parametric animators

Calculi of software architectures based on software components
with state
(Reverse specification of commercial coordination middleware)

Logic & Formal Methods Group — the PURE Project

Reasoning About Dynamical Systems – p.21/21

MSc ThesisProposals

Generic process calculi and development of parametric animators

Calculi of software architectures based on software components
with state
(Reverse specification of commercial coordination middleware)

Logic & Formal Methods Group — the PURE Project

Reasoning About Dynamical Systems – p.21/21

MSc ThesisProposals

Generic process calculi and development of parametric animators

Calculi of software architectures based on software components
with state
(Reverse specification of commercial coordination middleware)

Logic & Formal Methods Group — the PURE Project

Reasoning About Dynamical Systems – p.21/21

	Dynamical Systems
	Examples
	Behaviour
	Fact
	Relating Systems
	Fact
	Fact
	What's special about $pair {{
ed O^{I^{+}}}, ainv {split {�un {at_{omega }}}{�un {m_{omega }}}}}$?
	Going Generic: functors and coalgebras
	Final Coalgebras and Anamorphisms
	What universality means
	Coinductive Definition
	Coinductive Definition
	Coinductive Proof
	Coinductive Proof
	Coinductive Proof
	Remarks
	Application: Concurrent Processes
	Application: Software Components
	MSc Thesis Proposals

