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Syllabus

5 lectures (50m each):

• First lecture (Mon 25 Feb)

Introduction and motivation. Rigorous software
development: the e = m + c equation. Description
versus calculation. Pointwise versus pointfree
notation. Software properties as quantified formulæ.
Eindhoven quantifier calculus.

• Second lecture (Mon 25 Feb)

PF-transform essentials. Binary relation
combinators. Rules of the PF-transform. The role of
composition. Taxonomy of binary relations.
Functions. ”Al-djabr” rules.
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Syllabus

• Third lecture (Tue 26 Feb)

Data-type invariants. PF-transform of unary
predicates. Coreflexives and conditions. Proof
obligations (PO): invariant preservation.
PF-transformed POs. Relation to Hoare logic. Using
the Alloy Analyser as a PF-transform checker.

• Fourth lecture (Tue 26 Feb)

Discharging proof obligations via PF-transform.
Pre/post conditions. Invariants. Extended static
checking in the PF-style. PF-calculation of weakest
pre-conditions for invariant preservation.
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Syllabus

• Fifth lecture (Wed 27 Feb)

Proof obligations in-the-large and in-the-small.
Thinking big writing less. The VFS (Verified File
System) case study. The broad picture: integration
with theorem provers and model checkers The broad
picture: invariants as coreflexive bisimulations in a
coalgebraic setting.
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First lecture

Schedule: Monday Feb 25th, 16h20-17h10

Learning outcomes:

• Identifying the problem

• Finding a strategy to face it

• Why the PF-transform
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Motivation

• Much of our effort in programming goes into making sure
that a number of (“good”) relationships hold among the
artifacts we build.

• We have two main ways of ensuring that such good things
happen:

• postulate the relationship + verify what has been postulated
(“invent & verify”)

• build the relationship out of existing valid relationships using
an algebra of relationships (“correct by construction”)
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Example — type checking

In functional programming, eg. Haskell:

• Postulate:

f
︸︷︷︸

function

:: a→ b
︸ ︷︷ ︸

type

• Artifacts: functions (λ-expressions), types (τ -expressions)

• Relationship: “is of type”

• Invent & verify: declare f :: a→ b, define f and wait for the
interpreter’s reaction

• Correct by construction: start by defining f , then let the
interpreter calculate its (principal) type; instantiate this if
required.
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Example — Hoare logic

• Postulate:

{p}P{q}

— in fact “the same” as

P
︸︷︷︸

program

:: p → q
︸ ︷︷ ︸

predicative type

• Artifacts: programs (imperative code), pre/post assertions
(predicates)

• Relationship: “such that pre-condition p ensures
post-condition q”

• Invent & verify: write P , invent p and q and prove that
{p}P{q} holds

• Correct by construction: write q and P ; calculate the wp
for q to hold upon execution of P ; obtain p by going stronger,
if required.
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Example — Refining specifications

• Postulate:

P
︸︷︷︸

program

⊒ S
︸︷︷︸

specification

• Artifacts: programs, specifications

• Relationship: “is a correct implementation of”

• Invent & verify: given S , invent P and then prove that the
semantics of P are more defined than S

• Correct by construction: calculate P by transforming S
according to some refinement algebra compatible with ⊑.
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Example — in discrete maths

• Postulate:

function f is a bijection

• Artifacts: functions, isomorphisms etc

• Invent & verify: given f , invent its converse f ◦ and then
prove the two cancellations

〈∀ x :: f ◦(f (x)) = x〉

〈∀ y :: f (f ◦(y)) = y〉

• Correct by construction: from f calculate f ◦ (which in
general is not a function); both f and f ◦ will be bijective iff a
function f ◦ is obtained.
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Our Aims

Aim:

• Our lectures will be devoted to the calculational, constructive
option illustrated above

However:

• “Traditional” reasoning follows invent & verify

• Thinking constructively requires a “turn of mind”

Question:

• Are the logics and calculi we traditionally rely upon up-to-date
for such a turn of mind ?
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Scientific? Pre-scientific?

In an excellent essay on the history of scientific technology, Russo
[13] writes:

The immense usefulness of exact science consists in providing
models of the real world within which there is a guaranteed
method for telling false statements from true. (...) Such
models, of course, allow one to describe and predict natural
phenomena, by translating them to the theoretical level via
correspondence rules, then solving the “exercises” thus
obtained and translating the solutions obtained back to the
real world.

Disciplines unable to build themselves around exercises are
regarded as pre-scientific.
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Rigorous software development

Adopting a formal notation instead of some programming notation
(language) doesn’t mean by itself that one is following a formal
approach:

• formal models involve conditions which lead to

• proof obligations that need to be discharged

As in other branches of engineering

e = m + c

that is,

engineering = model first, then calculate . . .

Calculate? Verify?

We know how to calculate since the school desk...
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Problem-solving strategy

Recall the universal problem solving strategy which one is taught
at school:

• understand your problem

• build a mathematical model of it

• reason in such a model

• upgrade your model, if necessary

• calculate a final solution and implement it.



Syllabus Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Closing Addendum

School maths example

The problem

My three children were born at a 3 year interval rate. Altogether,
they are as old as me. I am 48. How old are they?

The model

x + (x + 3) + (x + 6) = 48

The calculation

3x + 9 = 48

⇔ { “al-djabr” rule }

3x = 48− 9

⇔ { “al-hatt” rule }

x = 16− 3
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School maths example

The solution

x = 13
x + 3 = 16
x + 6 = 19

Questions....

• “al-djabr” rule ?

• “al-hatt” rule ?

Rules known since On the calculus of al-gabr and al-muqâbala by
Abû Al-Huwârizm̂ı, the famous 9c Persian mathematician.
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Calculus of al-djabr, al-hatt and al-muqâbala

al-djabr

x − z ≤ y ⇔ x ≤ y + z

al-hatt

x ∗ z ≤ y ⇔ x ≤ y ∗ z−1
(z > 0)

al-muqâbala

Ex: 4x2 − 2x2 = 2x + 6− 3 ⇔ 2x2 = 2x + 3
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“Al-djabr” rules are not a privilege of arithmetics

• For instance, in predicate logic:

(x ∧ ¬ z )⇒ y ⇔ x ⇒ ( z ∨ y) (1)

(x ∧ z )⇒ y ⇔ x ⇒ ( z ⇒ y) (2)

hold, for all x , y and z .

• “Al-djabr” rules are nowadays known as Galois connections.

• Can our reasoning in rigorous software development be
performed with a similar degree of calculational accuracy and
elegance?

• First of all: what kind of problems do we want to be rigorous
about?
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Software design (toy) example

The problem

Requirements fragment:

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store operation
should work in a way such that (a) the more recently a call is
made the more accessible it is; (b) no number appears twice in
a list; (c) only the last 10 entries in each list are stored.

The model

store c △ (take 10) · (c :) · filter(c 6=) (3)

where take and filter are the obvious functions.

The calculation
You said what...?
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Software design (toy) example

The solution
Following common practice, in eg. C# ...

public void store10(string phoneNumber)

{

System.Collections.ArrayList auxList =

new System.Collections.ArrayList();

auxList.Add(phoneNumber);

auxList.AddRange(

this.filteratmost9(phoneNumber) );

this.callList = auxList;

}

public System.Collections.ArrayList filteratmost9(string n)

{

System.Collections.ArrayList retList =

new System.Collections.ArrayList();

int i=0, m=0;

while((i < this.callList.Count) && (m < 9))

{

if ((string)this.callList[i] != n)

{

retList.Add(this.callList[i]);

m++;

}

i++;

}

return retList;

}
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More than one problem

Clearly:

• Correctness: the calculation step, ie. the justification that
store10 implements the model,

store10 ⊒ store

is missing.

Worse than that, the model itself is not yet to be trusted. Why?

• Consistency: the proof obligation that store preserves
properties (1-3) of lists of calls in the mobile phone has not
been discharged either.

• Example of proof obligation ignored:

〈∀ l , c : noDuplicates l : noDuplicates(store c l)〉 (4)
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Questions

Main issue
Can we discharge proof obligations in program verification

by calculation?

“First” answer:
Yes, we can use the λ-calculus, the predicate calculus etc.

“Second” answer (once you’ve tried it):

Yes, but that’s a lot of work when tackling real-life problems.
If we want to perform as calculationally as in other engineering
disciplines, we need to bring the algebraic structure of the logic
we are using explicit via some kind of transform.

What kind of transform do we have in mind?
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e = m + c challenges

A “notation problem”:

Mathematical modelling

requires descriptive notations, therefore:

• intuitive

• domain-specific

Calculation
requires elegant notations, therefore:

• simple and compact

• generic

• cryptic, otherwise uneasy to manipulate

Recall Dijkstra’s definition : elegant ⇔ simple and remarkably effective
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A “déjà vu” problem in engineering mathematics

Quoting Kreyszig’s book, p.242: “(...) The Laplace transformation is a

method for solving differential equations (...) [which] consists of three

main steps:

1st step. The given “hard” problem is transformed into a
“simple” equation (subsidiary equation).

2nd step. The subsidiary equation is solved by purely
algebraic manipulations.

3rd step. The solution of the subsidiary equation is
transformed back to obtain the solution of the
given problem.

In this way the Laplace transformation reduces the problem of solving a

differential equation to an algebraic problem”.
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Need for a transform

Integration? Quantification?

(L f )s =
∫ ∞
0 e−st f (t)dt

f (t) L(f )

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

A parallel:

〈

∫

x : 0 ≤ x ≤ 10 : x2 − x〉

〈∀ x : 0 ≤ x ≤ 10 : x2 ≥ x〉
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An “s-space analog” for logical quantification

The pointfree (PF) transform

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
〈∀ x : : x R b⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a

What are R , S , id ?
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Work plan

• Study the PF-transform and the associated relation algebra

• Apply the transform to proof obligations

• Discharge proof obligations by PF-calculation

• Devise a strategy for dealing with real-size software problems

• Integrate calculational style with mechanical theorem proving
and model checking

We will illustrate the last item with an example taken from the
Verified File System challenge put up by NASA JPL.
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Background — Eindhoven quantifier calculus

When writing ∀, ∃-quantified expressions is useful to know a number of
rules which help in reasoning about them. We adopt notation

〈∀ x : R : T 〉

〈∃ x : R : T 〉

meaning, respectively

• “for all x in range R it is the case that T”

• “there exists x in range R such that T”

Some useful rules about ∀, ∃ follow:

• Trading:

〈∀ i : R ∧ S : T 〉 = 〈∀ i : R : S ⇒ T 〉 (5)

〈∃ i : R ∧ S : T 〉 = 〈∃ i : R : S ∧ T 〉 (6)
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Background — Eindhoven quantifier calculus

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (7)

〈∃ k : k = e : T 〉 = T [k := e] (8)

de Morgan:

¬〈∀ i : R : T 〉 = 〈∃ i : R : ¬T 〉 (9)

¬〈∃ i : R : T 〉 = 〈∀ i : R : ¬T 〉 (10)

Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (11)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (12)



Syllabus Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Closing Addendum

Background — Eindhoven quantifier calculus

Empty range:

〈∀ k : False : T 〉 = True (13)

〈∃ k : False : T 〉 = False (14)

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉 (15)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉 (16)

etc. [3]



Syllabus Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Closing Addendum

Exercises (warming up)

Exercise 1: Show that equivalences (1) and (2) hold.

�

Exercise 2: Consider the following variant of the al-hatt rule restricted
to (positive) natural numbers:

x ∗ z ≤ y ⇔ x ≤ y/ z (17)

where y/z denotes the integral division of y by z, eg. such that 3/2 = 1,
etc. Resort directly to (17) in showing that y/0 is the largest of all
natural numbers.

�
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Second lecture

Schedule: Monday Feb 25th, 17h20-18h10

Learning outcomes:

• PF-transform essentials

• Binary relation combinators. The role of composition.

• Taxonomy of binary relations. Functions. ”Al-djabr”
rules.

• Rules of the PF-transform.
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Pairs

Consider assertions

John IsFatherOf Mary

3 = (1+) 2

P ⊒ S

• They are statements of fact concerning various kinds of object
— people, natural numbers, programs and specifications, etc

• They involve two such objects, that is, pairs

(John, Mary)

(3, 2)

(P ,S)

respectively.
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Sets of pairs

So, we might have written

(John, Mary) ∈ IsFatherOf

(3, 2) ∈ (1+)

(P ,S) ∈ ⊒

What are IsFatherOf , (1+), (⊒)?

• they are sets of pairs

• they are binary relations

Therefore,

• functions — eg. succ △ (1+) — are special cases of relations

as well as partial orders — eg. (≤), etc
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Binary Relations

Binary relations are typed:

Arrow notation

Arrow A
R // B denotes a binary relation from A (source) to B

(target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation
The usual infix notation used in natural language — eg.
John IsFatherOf Mary — and in maths — eg. 0 ≤ π — extends to

arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R .
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Functions are relations

• Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

• We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a

• Therefore, we generalize

B A
foo

b = f a

to B A
Roo

b R a
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Composition

Recall function composition

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(18)

and extend f · g to R · S in the obvious way:

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (19)

Note how this rule of the PF-transform removes ∃ when applied
from right to left.
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Check generalization

Back to functions, (19) becomes

b(f · g)c ⇔ 〈∃ a :: b f a ∧ a g c〉

⇔ { a g c means a = g c }

〈∃ a :: b f a ∧ a = g c〉

⇔ { ∃-trading ; b f a means b = f a }

〈∃ a : a = g c : b = f a〉

⇔ { one-point rule (∃) }

b = f (g c)

So, we easily recover what we had before (18).
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Inclusion generalizes equality

• Equality on functions B A
f ,goo

f = g ⇔ 〈∀ a : a ∈ A : f a =B g a〉

generalizes to inclusion on relations:

R ⊆ S ⇔ 〈∀ b, a :: b R a⇒ b S a〉 (20)

(read R ⊆ S as “R is at most S”)

• R ⊆ S is a partial order — reflexive, transitive and
anti-symmetric

• Equality on relations B A
R,Soo :

R = S ⇔ R ⊆ S ∧ S ⊆ R (21)
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Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ⇔ False

• topmost relation B A
⊤oo , which is such that, for all b, a,

b⊤a ⇔ True

Type A Aoo has the

• identity relation A A
idoo which is function id a △ a.

Clearly, for every R ,

⊥ ⊆ R ⊆ ⊤ (22)
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Exercises

Exercise 3: Resort to PF-transform rule (19) and to the Eindhoven
quantifier calculus to show that

R · id = R = id · R (23)

R · ⊥ = ⊥ = ⊥ · R (24)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (25)

�
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Converses

Every relation B A
Roo has a converse B

R◦
// A which is

such that, for all a, b,

a(R◦)b ⇔ b R a (26)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (27)

and cancels itself

(R◦)◦ = R (28)

— two corollaries of “al-djabr” rule

R◦ ⊆ S ⇔ R ⊆ S◦ (29)
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Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful) PF-transform property:

(f b)R(g a) ⇔ b(f ◦ · R · g)a (30)

cf. diagram:

B

f ◦

��

A
Roo

C D

g

OO

f ◦·R·g
oo

Let us see an example of its use.
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PF-transform at work

Transforming a well-known PW-formula:

f is injective

⇔ { recall definition from discrete maths }

〈∀ y , x :: (f y) = (f x)⇒ y = x〉

⇔ { introduce id (twice) }

〈∀ y , x :: (f y)id(f x)⇒ y(id)x〉

⇔ { rule (f b)R(g a)⇔ b(f ◦ · R · g)a (30) }

〈∀ y , x :: y(f ◦ · id · f )x ⇒ y(id)x〉

⇔ { (23) ; then go pointfree via (20) }

f ◦ · f ⊆ id
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The other way round

Let us now see what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

⇔ { relational inclusion (20) }

〈∀ y , x :: y(id)x ⇒ y(f · f ◦)x〉

⇔ { identity relation ; composition (19) }

〈∀ y , x :: y = x ⇒ 〈∃ z :: y f z ∧ z f ◦x〉〉

⇔ { ∀-trading ; converse (26) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ x f z〉〉

⇔ { ∀-one point ; trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

⇔ { recal definition from maths }

f is surjective
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Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a : : a R a〉 (check as homework);

• Say R is coreflexive iff R ⊆ id
pointwise: 〈∀ a : : b R a⇒ b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

imgRoo

ker R △ R◦ · R imgR △ R · R◦
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Example: kernels of functions

a′(ker f )a

⇔ { substitution }

a′(f ◦ · f )a

⇔ { PF-transform rule (30) }

(f a′) = (f a)

In words: a′(ker f )a means a′ and a “have the same f -image”

Exercise 4: Let C be a nonempty data domain and let and c ∈ C . Let
c be the “everywhere c” function:

c : A // C
c a △ c

(31)

Compute which relations are defined by the following PF-expressions:

ker c , b · c◦ , img c (32)
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Binary relation taxonomy

Topmost criteria:
relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R
img R surjective R simple R

(33)

Facts:

ker (R◦) = img R (34)

img (R◦) = kerR (35)
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Binary relation taxonomy

The whole picture:

binary relation

ZZZZZZZZZZZZZZZ
RRR

mmm
ddddddddddddddddd

injective
QQQ

entire
mmm QQQ

Q
simple

PPPlll
l

surjective
ooo

representation
QQQ

function
RRR

mmm
abstraction
nnn

injection
QQQ

surjection
lll

bijection

(36)

Exercise 5: Resort to (34,35) and (33) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�
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Functions in one slide

A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

which both together are equivalent to any of “al-djabr” rules

f · R ⊆ S ⇔ R ⊆ f ◦ · S (37)

R · f ◦ ⊆ S ⇔ R ⊆ S · f (38)

Notation convention: functions will be denoted by lowercase characters

(eg. f , g , φ) or identifiers starting with lowercase characters, and function

application will be denoted by juxtaposition, eg. f a instead of f (a).
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Relation taxonomy — orders

Orders are endo-relations A A
Roo classified as

endo-relation

symmetric transitive reflexive anti-symmetric connected

per preorder

coreflexive equivalence partial order

id linear order

(Criteria definitions: next slide)
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Orders and their taxonomy

Besides

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

an order (or endo-relation) A A
Roo can be

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(⇔ R = R◦)

connected: iff R ∪ R◦ = ⊤
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Orders and their taxonomy

Therefore:

• Preorders are reflexive and transitive orders.
Example: y IsAtMostAsOldAs x

• Partial orders are anti-symmetric preorders
Example: y ⊆ x

• Linear orders are connected partial orders
Example: y ≤ x

• Equivalences are symmetric preorders
Example: y Permutes x (lists)

• Pers are partial equivalences
Example: y IsBrotherOf x
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Exercises

Exercise 6: Expand all criteria in the previous slides to pointwise
notation.

�

Exercise 7: A relation R is said to be co-transitive iff the following
holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (39)

Compute the PF-transform of the formula above. Find a relation (eg.
over numbers) which is co-transitive and another which is not.

�
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Meet and join

Meet (intersection) and join (union) internalize conjunction and
disjunction, respectively,

b (R ∩ S) a ⇔ b R a ∧ b S a (40)

b (R ∪ S) a ⇔ b R a ∨ b S a (41)

for R , S of the same type. Their meaning is captured by the
following universal properties:

X ⊆ R ∩ S ⇔ X ⊆ R ∧ X ⊆ S (42)

R ∪ S ⊆ X ⇔ R ⊆ X ∧ S ⊆ X (43)

NB: these are also “al-djabr” rules, although slightly more elaborate than

those seen so far.
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In summary

Type B Aoo forms a lattice:

⊤ “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S

DDDDDDDDD

zzzzzzzzz

meet, glb (“greatest lower bound”)

⊥ “bottom”
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All (data structures) in one (PF notation)

Products

A A× B
π1oo π2 // B

C

R

ffMMMMMMMMMMMMM

〈R,S〉

OO

S

88qqqqqqqqqqqqq

(44)

where

ψ PF ψ

a R c ∧ b S c (a, b)〈R ,S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

(45)

Clearly: R × S = 〈R · π1,S · π2〉
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Sums

Example (Haskell)

data X = Boo Bool | Err String

PF-transforms to:

Bool
i1 //

Boo
))SSSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err ]

��

String
i2oo

Err
uukkkkkkkkkkkkkkkkkk

X

(46)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

CDually: R + S = [i1 · R , i2 · S ]



Syllabus Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Closing Addendum

Sums

Example (Haskell)

data X = Boo Bool | Err String

PF-transforms to:

Bool
i1 //

Boo
))SSSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err ]

��

String
i2oo

Err
uukkkkkkkkkkkkkkkkkk

X

(46)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

CDually: R + S = [i1 · R , i2 · S ]
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Useful consequence of “al-djabr” rules

• All relational combinators involved in “al-djabr” rules are
monotonic

• The ones on the lower side of rules distribute over ∪, eg.:

(R ∪ S)◦ = R◦ ∪ S◦ (47)

f · (R ∪ S) = f · R ∪ f · S (48)

• The ones on the upper side of rules distribute over ∩, eg.:

(R ∩ S)◦ = R◦ ∩ S◦ (49)

(R ∩ S) · f = R · f ∩ S · f (50)
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Exercises

Exercise 8: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

�

Exercise 9: Check which of the following hold:

• If relations R and S are simple, then so is R ∩ S

• If relations R and S are injective, then so is R ∪ S

• If relations R and S are entire, then so is R ∩ S

�
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Exercises

Exercise 10: Prove that relational composition preserves all relational
classes in the taxonomy of (36).

�

Exercise 11: Show that the PW definition of 〈R , S〉 given above
PF-transforms to

〈R , S〉 = π◦
1 · R ∩ π

◦
2 · S (51)

�

Exercise 12: Infer “al-djabr” rule

X ⊆ 〈R , S〉 ⇔ π1 · X ⊆ R ∧ π2 · X ⊆ S (52)

from (51) and (42).

�
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Exercises

Exercise 13: Prove the following fact

A function f is a bijection iff its converse f ◦ is a function (53)

by completing:

f and f ◦ are functions

⇔ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker f ◦ ∧ img f ◦ ⊆ id)

⇔ { ... }

...

⇔ { ... }

f is a bijection

�
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Exercises

Exercise 14: Prove that swap △ 〈π2, π1〉 is a bijection.

�

Exercise 15: Show that (30) holds.

�

Notation: simple relations will be singled out in diagrams by
drawing A ⇀ B instead of B → A. Arrows labelled with lowercase
letters denote functions.
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Summary

Rules of the PF-transform seen so far:

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a
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Using the Alloy Analyser as a PF-transform checker

• Alloy model checker (http://alloy.mit.edu) — simple
and elegant

• In Alloy, “everything is a relation”

• Example of pointwise Alloy:

pred Injective {

all x, y : A, z : B | z in x.R && z in y.R => x=y

}

NB: note the transposed notation x.R meaning set
{y : y R x}.
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Using the Alloy Analyser as a PF-transform checker

The same in pointfree Alloy:

pred Injective’ {

R.~R in iden :> A

}

— recall R◦ · R ⊆ id . Alternatively, we may write

pred Injective’’ {

R in A lone -> B

}

pred Injective’’’ {

all x : B | lone R.x

}
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Using the Alloy Analyser as a PF-transform checker

The checking process itself: run eg.

check { Simple <=> Injective }

where

pred Simple {

~R.R in iden:> B

}

Alloy’s answer:

Executing ”Check assert$2”
Solver=sat4j Bitwidth=4 MaxSeq=4 Symmetry=20
124 vars. 15 primary vars. 280 clauses. 55ms.
Counterexample found. Assertion is invalid. 105ms.
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Using the Alloy Analyser as a PF-transform checker

Alloy counter example as shown by the tool:

To see the nice blend between Alloy and the PF-transform have a
look at RelCalc.als in src alloy.tar.bz, available from
http://twiki.di.uminho.pt/twiki/bin/view/Research/VFS/

WebHome.
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Third lecture

Schedule: Tuesday Feb 26th, 16h20-17h10

Learning outcomes:

• Data-type invariants. PF-transform of unary predicates.
Coreflexives and conditions.

• Proof obligations (PO): invariant preservation.

• PF-transformed POs.

• Relationship with Hoare logic.
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Types for software quality

Data type evolution:

• Assembly (1950s) — one single primitive data type: machine
binary

• Fortran (1960s) — primitive types for numeric processing
(INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and
LOGICAL data types)

• Pascal (1970s) — user defined (monomorphic) data types
(eg. records, files)

• ML, Haskell etc (≥1980s) — user defined (polymorphic)
data types (eg. List a for all a)
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Type checking for software quality

Why data types?

• Fortran anecdote: non-terminating loop DO I = 1.10 once
went unnoticed due to poor type-checking

• Diagnosis: compiler unable to prevent using a real number
where a discrete value (eg. integer, enumerated type) was
expected

• Solution: improve grammar + static type checker

(static means done at compile time)
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Data type invariants

In a system for monitoring the flight paths of aircrafts in a
controlled airspace, we need to define altitude, latitude and
longitude:

Alt = IR
Lat = IR
Lon = IR

However,

• altitude cannot be negative
• latitude ranges between -90 and 90
• longitude ranges between -180 and 180

In maths we would have defined:

Alt = {a ∈ IR : a ≥ 0}

Lat = {x ∈ IR : −90 ≤ x ≤ 90}

Lon = {y ∈ IR : −180 ≤ y ≤ 180}
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Data type invariants

In a system for monitoring the flight paths of aircrafts in a
controlled airspace, we need to define altitude, latitude and
longitude:

Alt = IR
Lat = IR
Lon = IR

However,

• altitude cannot be negative
• latitude ranges between -90 and 90
• longitude ranges between -180 and 180

In maths we would have defined:

Alt = {a ∈ IR : a ≥ 0}

Lat = {x ∈ IR : −90 ≤ x ≤ 90}

Lon = {y ∈ IR : −180 ≤ y ≤ 180}
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Data type invariants “a la” VDM

Standard notation (VDM family)

Alt = IR
inv a △ a ≥ 0

implicitly defines predicate

inv-Alt : IR→ IB
inv-Alt(a) △ a ≥ 0

known as the invariant of Alt.
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Invariants are inevitable

Modeling the Western dating system:

Year = IN

Month = IN
inv m △ m ≤ 12

Day = IN
inv d △ d ≤ 31

Date = Year ×Month × Day

However, 12 × 31 = 372, while one year has 365.2425... days.
Thus the need for leap years in the Julian calendar (45 BC) and in
the Gregorian calendar (1582), leading to
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Invariants are inevitable

Date = Year ×Month × Day
inv(y ,m, d) △ if m ∈ {1, 3, 5, 7, 8, 10, 12} then

d ≤ 31∧
((y = 1582 ∧m = 10)⇒ (d < 5 ∨ 14 < d))
else if m ∈ {4, 6, 9, 11} then d ≤ 30
else if m = 2 ∧ leapYear(y) then d ≤ 29
else if m = 2 ∧ ¬leapYear(y) then d ≤ 28
else False;

where

leapYear : IN→ IB
leapYear y △ 0 = rem(y , if y ≥ 1700 ∧ rem(y , 100) = 0

then 400 else 4)
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Summing up

• Given a datatype A and a predicate p : A→ IB, data type
declaration

T = A
inv x △ p x

means the type whose extension is

T = {x ∈ A : p x}

• p is referred to as the invariant property of T

• Therefore, writing a ∈ T means a ∈ A ∧ (p a).

• A itself can have an invariant, so the process is inductive on
the structure of types.
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Invariants entail proof obligations

Consider

Even = IN
inv x △ even x

where even n △ 〈∃ k :: n = 2k〉 and

twice : Even → Even

twice n △ 2n

Proof obligation

〈∀ x , y : even x ∧ y = twice x : even y〉 (54)

expresses the fact that function twice preserves even numbers.
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Invariants entail proof obligations

Given proposed model for operation store in the mobile phone
problem,

store : Call → ListOfCalls → ListOfCalls

store c l △ take 10 (c : [ a | a← l , a 6= c ])

the fact that ListOfCalls has invariant

ListOfCalls = Call⋆

inv l △ length l ≤ 10 ∧

〈∀ i , j : 1 ≤ i , j ≤ length l : (l i) = (l j)⇒ i = j〉

leads to proof obligation

〈∀ c , l : l ∈ ListOfCalls : store c l ∈ ListOfCalls〉 (55)
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Dealing with proof obligations

• In full-fledged formal techniques, one is obliged to provide a
mathematical proof that conjectures such as (56) do hold
for any a.

• Such proofs can either be performed as paper-and-pencil
exercises or, in case of very complex invariants, be supported
by theorem provers

• If automatic, discharging such proofs can be regarded as
extended static checking (ESC)

• As we shall see, all the above approaches to adding quality to
a formal model are useful and have their place in software
engineering using formal methods.
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PF-ESC

• The main novelty of our approach resides in the chosen
method of proof construction: first-order proof obligations are
subject to the PF-transform before they are reasoned about.

• This transformation eliminates quantifiers and bound variables
and reduces complex formulas to algebraic relational
expressions which are more agile to calculate with.

• Suitable relational encoding of recursive structures makes it
possible to perform non-inductive proofs over such
structures.
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However

• The PF-transform seems applicable to transforming binary
predicates only, easily converted to binary relations, eg.
φ(y , x) △ y − 1 = 2x which transforms to function
y = 2x + 1, etc.

• What about transforming predicates such as even in (54)?

• As already noted, (54) is a proposition stating that function
twice preserves even numbers.

• In general, a function A A
foo is said to preserve a given

predicate φ iff the following holds:

〈∀ x : φ x : φ (f x)〉 (56)
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Answer

First PF-transform scope of (54):

y = twice x ∧ even x

⇔ { ∃-one-point }

〈∃ z : z = x : y = twice z ∧ even z〉

⇔ { ∃-trading ; introduce Φeven }

〈∃ z :: y = twice z ∧ z = x ∧ even z
︸ ︷︷ ︸

z Φeven x

〉

⇔ { composition }

y(twice · Φeven)x

cf. diagram IN0

twice

��

IN0
Φevenoo

IN0
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Now the whole thing

〈∀ x , y : y = twice x ∧ even x : even y〉

⇔ { above }

〈∀ x , y : y(twice · Φeven)x : even y〉

⇔ { ∃-one-point }

〈∀ x , y : y(twice · Φeven)x : 〈∃ z : z = y : even z〉〉

⇔ { predicate calculus: p ∧True = p }

〈∀ x , y : y(twice · Φeven)x : 〈∃ z :: y = x ∧ even z ∧True〉〉

⇔ { ⊤ is the topmost relation }

〈∀ x , y : y(twice · Φeven)x : 〈∃ z :: y Φeven z ∧ z⊤x〉〉

⇔ { composition ; trading (5) }
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Now the whole thing

〈∀ x , y :: y(twice ·Φeven)x ⇒ y(Φeven · ⊤)x〉

⇔ { go pointfree (inclusion) }

twice · Φeven ⊆ Φeven · ⊤ (57)

cf. diagram

IN0

twice

��

IN0
Φevenoo

⊤

��
⊆

IN0 IN0
Φeven

oo
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In summary

In the calculation above, unary predicate even has been
PF-transformed in two ways:

• Φeven such that

z Φeven x △ z = x ∧ even z

— that is, Φeven is a coreflexive relation;

• Φeven · ⊤, which is such that

z(Φeven · ⊤)x ⇔ even z

— a so-called (left) condition.
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Coreflexives
The PF-transformation of unary predicates to fragments of id
coreflexives) is captured by the following universal property:

Ψ = Φp ⇔ (y Ψ x ⇔ y = x ∧ p y) (58)

Via cancellation, (58) yields

y Φp x ⇔ y = x ∧ p y (59)

A set S can also be PF-transformed into a coreflexive by
calculating Φ(∈S), cf. eg. the transform of set {1, 2, 3, 4}:

Φ1≤x≤4 =
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Boolean algebra of coreflexives

Building up one the exercises above, from (58) one easily draws:

Φp∧q = Φp · Φq (60)

Φp∨q = Φp ∪ Φq (61)

Φ¬p = id − Φp (62)

Φfalse = ⊥ (63)

Φtrue = id (64)

where p, q are predicates.

(Note the slight, obvious abuse in notation.)
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Basic properties of coreflexives

Let Φ, Ψ be coreflexive relations. Then the following properties
hold:

• Coreflexives are symmetric and transitive:

Φ◦ = Φ = Φ · Φ (65)

• Meet of two coreflexives is composition:

Φ ∩Ψ = Φ ·Ψ (66)

• Pre and post restriction:

R · Φ = R ∩⊤ · Φ (67)

Ψ · R = R ∩Ψ · ⊤ (68)
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Back to the twice/even example

We are now in position to get rid of ⊤ in (57):

twice ·Φeven ⊆ Φeven · ⊤

⇔ { Φeven ⊆ id }

twice ·Φeven ⊆ Φeven · ⊤ ∧ twice ·Φeven ⊆ twice

⇔ { ∩-universal (42) }

twice ·Φeven ⊆ Φeven · ⊤ ∩ twice

⇔ { post restriction rule (68) }

twice ·Φeven ⊆ Φeven · twice

cf. diagram

IN0

twice

��

IN0
Φevenoo

twice

��
⊆

IN0 IN0
Φeven

oo
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Proof obligations in the PF-style

In general:

Input/output property preservation (functions)

Proof obligation

〈∀ x : p x : q (f x)〉 (69)

stating that function f ensures property q on its output every
time property p holds on its input PF-transforms to

f · Φp ⊆ Φq · f cf. diagram A

f

��

A
Φpoo

f

��
B B

Φq

oo

(70)
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Predicates as “types”

We will write “type declaration”

Φq Φp
foo (71)

to mean (70).

Exercise 16: Show that (70) and

f · Φp ⊆ Φq · ⊤ (72)

are the same.

�

Exercise 17: Prove the equivalence

Φq Φp
idoo ⇔ q⇐ p (73)

�
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Exercises

Exercise 18: Infer from (71) and properties (37) to (48) the following
ESC (extended static checking) properties:

Φq Φp1 ∪ Φp2

foo ⇔ Φq Φp1

foo ∧ Φq Φp2

foo (74)

Φq1 ·Φq2 Φp
foo ⇔ Φq1 Φp

foo ∧ Φq2 Φp
foo (75)

�

Exercise 19: Using (72) and the relational version of McCarthy’s
conditional combinator which follows,

c → f , g = f ·Φc ∪ g ·Φ¬c (76)

infer the conditional ESC rule which follows:

Φq Φp
c→f ,goo ⇔ Φq Φp ·Φc

foo ∧ Φq Φp · Φ¬c
goo (77)

�
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Relationship with Hoare Logic

Let us show that Hoare triples such as

{p}P{q} (78)

are also instances of ESC proof obligations. First we spell out the
meaning of (78):

〈∀ s : p s : 〈∀ s ′ : s P // s ′ : q s ′〉〉 (79)

Then (recording the meaning of program P as relation [[P ]] on
program states) we PF-transform (79) into

Φp ⊆ [[P ]] \ (Φq · ⊤) (80)

thanks to the introduction of relational (left) division,

b (R \ S) a ⇔ 〈∀ c : c R b : c S a〉 (81)
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Relationship with Hoare Logic

Thanks to “al-djabr” rule

R · X ⊆ S ⇔ X ⊆ R \ S (82)

we obtain

[[P ]] · Φp ⊆ Φq · ⊤ (83)

equivalent to

[[P ]] · Φp ⊆ Φq · [[P ]]

which shares the same scheme as

f · Φp ⊆ Φq · f

earlier on.
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Summary

In general, we will write “type declaration”

Ψ Φ
Roo (84)

to mean

R · Φ ⊆ Ψ · R (85)

In words:

• Notation (84) can be regarded as the type assertion that, if
fed with values (or starting on states) “of type Φ”
computation R yields results (moves to states) “of type Ψ” (if
it terminates).

• So functional ESC POs and Hoare triples are one and the
same device: a way to type computations, be them specified
as (always terminating, deterministic) functions or encoded
into (possibly non-terminating, non-deterministic) programs.
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Background — two useful coreflexives

Domain:

δ R △ ker R ∩ id (86)

“Al-djabr” rule:

δ R ⊆ Φ ⇔ R ⊆ ⊤· Φ (87)

Range:

ρR △ imgR ∩ id (88)

“Al-djabr” rule:

ρ R ⊆ Φ ⇔ R ⊆ Φ ·⊤ (89)
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Relating coreflexives with conditions

Domain/range elimination:

⊤ · δ R = ⊤ · R (90)

ρR · ⊤ = R · ⊤ (91)

Mapping back and forward:

Φ ⊆ Ψ ⇔ Φ ⊆ ⊤ ·Ψ (92)

Closure properties:

R · Φ ⊆ S ⇔ R · Φ ⊆ S · Φ (93)

Φ · R ⊆ S ⇔ Φ · R ⊆ Φ · S (94)

Exercise 20: Show that

δ R ⊆ δ S ⇔ R ⊆ ⊤ · S (95)

holds.

�
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PO discharge by calculation

We close the lecture by discharging proof obligation (54) once
captured by type diagram

Φeven Φeven
twiceoo

We reason:

Φeven Φeven
twiceoo

⇔ { (71) }

twice · Φeven ⊆ Φeven · twice

⇔ { definition of even }

twice · Φeven ⊆ ρ twice · twice

⇔ { R = (ρR) · R }

twice · Φeven ⊆ twice

⇔ { “al-djabr” }

Φeven ⊆ twice◦ · twice

⇔ { func. kernels are reflexive }

True
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Fourth lecture

Schedule: Tuesday Feb 26th, 17h20-18h10

Learning outcomes:

• Discharging proof obligations via PF-transform. Pre/post
conditions. Invariants.

• Extended static checking in the PF-style. PF-calculation
of weakest pre-conditions for invariant preservation.
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Calculating Invariants and Preconditions

• Wherever a function f does not ensure preservation of
invariant inv , there is always a pre-condition pre which
enforces this at the cost of partializing f .

• In the limit, pre is the everywhere false predicate.

• As a rule, the average programmer will become aware of such
a pre-condition at runtime, in the testing phase.

• One can find it much earlier, at specification time, when
trying to discharge the standard proof obligation

〈∀ a : inv a : inv(f a)〉 (96)

which then extends to

〈∀ a : pre a ∧ inv a : inv(f a)〉 (97)
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PF-ESC instead of invent & verify

However,

• Bound to invent pre, we’ll hope to have guessed the weakest
such pre-condition. Otherwise, future use of f will be
spuriously constrained.

• Can we be sure of having hit the weakest pre-condition?

Our approach (PF-ESC) will be as follows:

• We take the PF-transform of inv(f a) in (97) — at data level
— and attempt to rewrite it to a term involving inv a and
possibly “something else”: the calculated pre-condition.

• This will be the weakest provided the calculation stays within
equivalence steps (as shown in the next slides).
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Weakest pre-conditions
Let us transform (71) according to the PF-calculus studied so far:

Φq Φp
foo

⇔ { (72) }

f ·Φp ⊆ Φq · ⊤

⇔ { (89) }

ρ (f ·Φp) ⊆ Φq

On the other hand,

f · Φp ⊆ Φq · ⊤

⇔ { (37) }

Φp ⊆ f ◦ ·Φq · ⊤

⇔ { coreflexives }

Φp ⊆ ⊤ ·Φq · f
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Weakest pre-conditions

Putting everything together, from Φq Φp
foo we obtain GC

ρ (f ·Φp)
︸ ︷︷ ︸

strongest
post-condition

⊆ Φq ⇔ Φp ⊆ ⊤ ·Φq · f
︸ ︷︷ ︸

weakest
pre-condition

(98)

Back to (97), to obtain the weakest pre-condition pre for f to preserve
invariant inv , we just have to factorize the overall WP over inv on the
input:

⊤ ·Φinv · f
︸ ︷︷ ︸

WP

= Φpre ·Φinv (99)

Back to points, this means converting (97) into an equivalence

〈∀ a :: (pre a) ∧ (inv a)⇔ inv(f a)〉 (100)

In summary: Φpre ·Φinv is not only sufficient but also necessary.
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Background

In general, the weakest (liberal) pre-condition operator is the upper
adjoint of the following “al-djabr” rule which combines two already seen
— range (89) and left division (81):

ρ (R ·Φ) ⊆ Ψ ⇔ Ψ Φ
Roo ⇔ Φ ⊆ R \ (Ψ · ⊤)

︸ ︷︷ ︸

R\•Ψ

(101)

Notation R \•Ψ is taken from [2]. The pointwise version wlp R ψ of
R \•Ψ is:

wlp R ψ △ 〈
∨

φ : 〈∀ b, a : b R a ∧ φ a : ψ b〉 : p〉
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Case study 1: PF-ESC at work

We want to calculate the WP for

add x l △ a : l

to preserve the no duplicates invariant on finite lists.

• First step: PF-transform X ⋆ to IN ⇀ X (simple relation
telling which elements take which position in list).

Then the no duplicates invariant on L is encoded as
ker L ⊆ id (L is injective)

Finally, add x L PF-transforms to

x · 1◦ ∪ L · succ◦ (102)

cf. back to points: {1 7→ x} ∪ {i + 1 7→ (L i) : i ← δ L}.
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Case study 1: PF-ESC at work

• Second step: we start from the right hand side inv(add x L)
of (100) and re-write it by successive equivalence steps until
we reach:

• condition inv l ...
• ... “plus something else” — the calculated weakest

pre-condition.

• Since the PF-transformed proof has to do with injectivity of
union of relations, the following fact

R ∪ S is injective ⇔

R is injective ∧ S is injective ∧ R◦ · S ⊆ id (103)

(easy to prove) is likely to be of use.
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Case study 1: PF-ESC at work

add x L has no duplicates

⇔ { cf. (102) etc }

x · 1◦ ∪ L · succ◦ is injective

⇔ { (103) }

x · 1◦ is injective ∧ L · succ◦ is injective ∧ (x · 1◦)◦ · L · succ◦ ⊆ id

⇔ { definition of injective (twice) ; “al-djabr” (37) }

1 · x◦ · x · 1◦ ⊆ id ∧ succ · L◦ · L · succ◦ ⊆ id ∧ x◦ · L ⊆ 1◦ · succ

⇔ { “al-djabr” (37,38) as much as possible }

x◦ · x ⊆ 1◦ · 1 ∧ L◦ · L ⊆ succ◦ · succ ∧ x◦ · L ⊆ 1◦ · succ

⇔ { kernel of constant function is ⊤; succ is an injection }

True ∧ L◦ · L ⊆ id ∧ x◦ · L ⊆ 1◦ · succ



Syllabus Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Closing Addendum

Case study 1: summary

We have thus calculated:

add x L has no duplicates ⇔ L is injective
︸ ︷︷ ︸

no duplicates in L

∧ x◦ · L ⊆ 1◦ · succ
︸ ︷︷ ︸

WP

PW-expansion of the calculated WP:

x◦ · L ⊆ 1◦ · succ

⇔ { go pointwise: (30) twice }

〈∀ n :: x L n⇒ 1 = 1 + n〉

⇔ { L models list l }

〈∀ n : n ∈ inds l : x = (l n)⇒ 1 = 1 + n〉

⇔ { 1 = 1 + n always false (n ∈ IN) }

〈∀ n : n ∈ inds l : (l n) 6= x〉
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Case study 2: PF-ESC at work

From the mobile phone directory problem we select preservation of
the no duplicates invariant by function

store c △ (take 10) · (c :) · filter(c 6=)

Remarks:

• It’s sufficient to show that (c :) · filter(c 6=) preserves
injectivity, since take n L ⊆ L (∀n) and smaller than injective
is injective

• Defined over PF-transformed lists, filter becomes

filter(c 6=)L △ (¬ρ c) · L (104)

where the negated range operator (¬ρ) satisfies property

Φ ⊆ ¬ρR ⇔ Φ · R ⊆ ⊥ (105)
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Case study 2: PF-ESC at work

c : (filter(c 6=)L) is injective

⇔ { case study 1, (104) }

(¬ρ c) · L is injective ∧ c◦ · (¬ρ c) · L ⊆ 1◦ · succ

⇐ { smaller than injective is injective }

L is injective ∧ c◦ · (¬ρ c) · L ⊆ 1◦ · succ

⇔ { converses }

L is injective ∧ L◦ · (¬ρ c) · c ⊆ succ◦ · 1

⇔ { (¬ρ c) · c = ⊥ by left-cancellation of (105) }

L is injective ∧ L◦ · ⊥ ⊆ succ◦ · 1

⇔ { bottom is below anything }

L is injective ∧True
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Case study 2: PF-ESC at work

Moral of this case study:

Although the implication in the second step of the
reasoning could put weakness of calculated pre-condition
at risk, we’ve calculated the weakest of all conditions
anyway (True).

Exercise 21: Show that (105) stems from “al-djabr” rule

Φ ⊆ ¬δ R ⇔ R ⊆ ⊥/Φ (106)

among others.

�
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Fifth lecture

Schedule: Wednesday Feb 27th, 15h00-15h50

Learning outcomes:

• Proof obligations in-the-large and in-the-small. Thinking
big writing less.

• The VFS (Verified File System) case study.

• The broad picture: integration with theorem provers and
model checkers

• Thinking “bigger” : invariants as coreflexive bisimulations
in a coalgebraic setting.



Syllabus Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Closing Addendum

Case study 3: Verified File System

A real-life case study:

• VSR (Verified Software Repository) initiative

• VFS (Verified File System) on Flash Memory — challenge put
forward by Rajeev Joshi and Gerard Holzmann (NASA JPL)
[7]

• Two levels — POSIX level and (NAND) flash level

• Working document: Intel R© Flash File System Core
Reference Guide (Oct. 2004) is POSIX aware.
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Case study 3: Verified File System
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Case study 3: Verified File System

The problem (sample):
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Verified File System Project

Sample of model’s data types (simplified):

System = {table : OpenFileDescriptorTable, tar : Tar}

inv sys △ 〈∀ ofd : ofd ∈ rng (table sys) : path ofd ∈ dom tar sys〉

where

OpenFileDescriptorTable = FileHandler ⇀ OpenFileDescriptor

Tar = Path ⇀ File

inv tar △ 〈∀ p : p ∈ dom tar : dirName(p) ∈ dom tar ∧

fileType(attributes(tar(dirName p))) = Directory〉

OpenFileDescriptor = {path : Path, ...}
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Verified File System Project

(Sample) API function:

FS DeleteFileDir : Path→ System→ (System × FFS Status)

FS DeleteFileDir p sys △

if p 6= Root ∧ p ∈ dom (tar sys) ∧ pre-FS DeleteFileDir System p sys

then (FS DeleteFileDir System p sys,FFS StatusSuccess)

else (sys,FS DeleteFileDir Exception p sys)

where

FS DeleteFileDir System : Path→ System→ System

FS DeleteFileDir System p (h, t) △

(h,FS DeleteFileDir Tar {p} t)

pre

〈 ∀ buffer
buffer ∈ rng h :

path buffer 6= p ∧ pre-FS DeleteFileDir Tar {p} t

〉
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Verified File System Project

Sample API function (continued):

FS DeleteFileDir Tar : PPath→ Tar → Tar

FS DeleteFileDir Tar s t △ tar \ s

pre 〈∀ p : p ∈ dom tar : dirName p ∈ s ⇒ p ∈ s〉;

where

dirName : Path→ Path

dirName p △ if p = Root ∨ len p = 1

then Root

else blast p

and so on. (NB: blast selects all but the last element of a list.)
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Invariant structural synthesis (coreflexives)

• Real-size problems show where complexity is, namely the intricate
structure involving nested datatype invariants.

• Need to calculate the associated coreflexives.

• Denoting by Fp the fact that data type constructor F is constrained
by invariant p, we will write eFp

to denote the coreflexive which
captures all constraints involved in declaring Fp , calculated by
induction on the structure of types:

eFp
= (eF) ·Φp (107)

eK = id (108)

eId = id (109)

eF×G = eF × eG (110)

eF+G = eF + eG (111)

eF·G = F(eG) (112)
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Invariant structural synthesis (coreflexives)

Example:

eSystem

= { definition of System }

e(OpenFileDescriptorTable×FStore)ri

= { (107) and datatype definitions }

(eFileHandler⇀OpenFileDescriptor × e(Path⇀File)pc
) · Φri

= { (108) and (107) }

(id × ePath⇀File · Φpc) · Φri

= { (108) }

(id × Φpc) ·Φri (113)

where we abbreviate System’s invariant by predicate ri (for “referential

integrity”) and FStore’s invariant by pc (for “paths closed”):
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Facing complexity

Need to “find structure” in the specification text:

• FS DeleteFileDir p has conditional “shape”

c → 〈f · Φp, k〉, 〈id , g〉 (114)

where
• c is the (main) if-then-else’s condition
• f abbreviates FS DeleteFileDir System p
• p is the precondition of f
• k abbreviates FFS StatusSuccess
• g abbreviates FS DeleteFileDir Exception p

What’s the advantage of pattern (114)?

See the “divide and conquer” rules which follow:
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Breaking complexity of POs

Further to (73), (75), (77):

• Trivial:

id Φ
Roo ⇔ True ⇔ Φ ⊥

Roo (115)

• Trading:

Υ Φ ·Ψ
Roo ⇔ Υ Ψ

R·Φoo (116)

• Composition (Fusion):

Ψ Φ
R·Soo ⇐ Ψ Υ

Roo ∧ Υ Φ
Soo (117)
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Breaking complexity of POs

• Split by conjunction:

Ψ1 ·Ψ2 Φ
Roo ⇔ Ψ1 Φ

Roo ∧ Ψ2 Φ
Roo (118)

— generalizes (75)

• Weakening/strengthening:

Ψ Φ
Roo ⇐ Ψ ⊇ Θ ∧ Θ Υ

Roo ∧Υ ⊇ Φ (119)

• Separation:

Υ ·Θ Φ ·Ψ
Roo ⇐ Υ Φ

Roo ∧ Θ Ψ
Roo (120)

— outcome of (119), (118)
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Breaking complexity of POs

• Splitting (functions):

Ψ×Υ Φ
〈f ,g〉oo ⇔ Ψ Φ

foo ∧ Υ Φ
goo (121)

• Splitting (in general):

Ψ×Υ Φ
〈R,S〉oo ⇔ Ψ Φ · δ S

Roo ∧ Υ Φ · δ R
Soo (122)

• Product:

Φ′ ×Ψ′ Φ×Ψ
R×Soo ⇔ Φ′ Φ

Roo ∧ Ψ′ Ψ
Soo (123)
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Breaking complexity of POs

• Conditional:

Ψ Φ
c→R,Soo ⇔ Ψ Φ ·Φc

Roo ∧ Ψ Φ ·Φ¬c
Soo (124)

which generalizes (74).

NB:

• Close relationship with Hoare logic axioms

— but note many equivalences instead of implications

Exercise 22: Use the PF-calculus to prove the correctness of the rules
given above.

�
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Verified File System Project

Checking FS DeleteFileDir :

eSystem×FFS Status eSystem
FS DeleteFileDir poo

⇔ { (114) }

eSystem × id eSystem

c→〈f ·Φp,k〉,〈id,g〉oo

⇔ { conditional (124) }

eSystem × id eSystem ·Φc

〈f ·Φp,k〉oo

∧

eSystem × id eSystem · Φ¬c

〈id,g〉oo
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Verified File System Project

⇔ { splitting (122,121) }

eSystem eSystem ·Φc

f ·Φpoo

∧

id eSystem ·Φc · δ (f ·Φp)
koo

∧

eSystem eSystem · Φ¬c
idoo

∧

id eSystem · Φ¬c
goo

⇔ { (115), (73) }
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Case study 3: Verified File System

eSystem eSystem · Φc

f ·Φpoo

⇔ { trading (116), unfold eSystem (113) }

(id × Φpc) · Φri (id × Φpc) ·Φri

f ·Φp ·Φcoo

⇐ { separating (120) }

Φri Φri

f ·Φp·Φcoo ∧ id × Φpc id × Φpc

f ·Φp·Φcoo

⇔ { trading (116) and implication c ⇒ p }

Φri Φri · Φc
foo ∧

id × Φpc (id × Φpc) ·Φc
foo
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Case study 3: Verified File System

• So much for PO calculation “in-the-large”.

• Going “in-the-small” means spelling out invariants, functions
and pre-conditions and reason as in the previous case studies

• Let us pick the first PO, Φri Φri · Φc
foo , for example.

• As earlier on, we go pointwise and try to rewrite ri(f (M,N))
— M keeps open file descriptors, N the file contents — into
ri(M,N) + a weakest precondition; then we compare the
outcome with what the designer wrote (Φc).
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Case study 3: Verified File System

Clearly,

ri(M ,N) △ ρ (path ·M) ⊆ δN

cf. diagram

FileHandler
M / OpenFileDescriptor

path
uullllllllllllll

Path
N

/ File

is a referential integrity constraint relating paths in open-file descriptors
and paths in the file store N . PF calculation will lead to

ri(M ,N) △ path ·M ⊆ N◦ · ⊤ (125)
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Case study 3: Verified File System

On the other hand, f (M,N) — that is
FS DeleteFileDir System p (M,N) — PF-transforms to
(M,N · ¬ρ p). Generalizing from single paths to sets S of paths:

ri(M,N · Φ¬S)

⇔ { (125) }

path ·M ⊆ (N · Φ¬S)◦ · ⊤

⇔ { converses (27,28, 65) }

path ·M ⊆ Φ¬S · N
◦ · ⊤

⇔ { (91), coreflexives (66), (·⊤) distribution }

path ·M ⊆ Φ¬S · ⊤ ∩ N◦ · ⊤

⇔ { ∩-universal (42) }
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Case study 3: Verified File System

path ·M ⊆ Φ¬S · ⊤ ∧ path ·M ⊆ N◦ · ⊤

⇔ { “al-djabr” ; (125) }

M ⊆ path◦ ·Φ¬S · ⊤
︸ ︷︷ ︸

wp

∧ ri(M ,N)

⇔ { going pointwise }

〈∀ b : b ∈ rng M : path b 6∈ S〉 ∧ ri(M ,N)

Summary:

• Thus we’ve checked (part) of the pre-condition. The other checks
are performed in a similar way. (See Addendum, slide 156.)

• Two levels of PO calculation: in-the-large (PO level) and
in-the-small (where PF-notation describes data).

• PO-level useful in preparing POs for a theorem prover, see diagram
which follows:
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Broad picture: a “all-in-one” strategy
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Final comments

• Algebra of POs bridges Hoare logic and type theory

• Close (formal) relationship with similar work in PF data

dependency theory [10], cf. Φ
R // Ψ with

f
R
→ g

where R models a set (eg. of tuples) and f and g are observations
(eg. sets of attributes), meaning

〈∀ t, t ′ : t, t ′ ∈ R : f t = f t ′ ⇒ g t = g t ′ 〉

Compare, for instance, (119) with the Decomposition axiom of
FDs:

h
R
→ k ⇐ h ≥ f ∧ f

R
→ g ∧ g ≥ k
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The “broad picture”

• Software systems are far more complex than API functions.

• In component-oriented design the programming unit is the
component, not the function.

• Components have state:

inv-B inv-C

A // // g B // // f
C // //

pre-g pre-f

Internal state

• The concept of invariant, for instance, makes sense relative
to the whole component, not just a particular function.
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The “broad picture”

A (generic) component p with input interface I
and output interface O

p : O ←− I

I
��
p

��
O

is a Mealy machine

B(Up × O) Up × I
poo (126)

where Up is the internal state and monad B captures a particular
behaviour pattern (eg. powerset for non-deterministic behaviour).
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Current work

• The concept of a coalgebra is a very convenient formal device
for characterizing software components.

• “Currying” mediates Mealy machines and (a special class of)
coalgebras, cf.

B(Up × O)I
︸ ︷︷ ︸

FUp

Up
coo (127)

• Elsewhere [9] we have shown that invariants are special cases

of bisimulations, which are written FR R
coo for

coalgebra c of “shape” F.

• Currently working (with Lúıs Barbosa and Alexandra Silva)
on scaling-up PO-reasoning from function to component level.

• Joint work with Claudia Necco and Joost Visser on
automating PF-calculation [8].
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Current work

“Predicates as types” view carries over universal constructs, for instance
functional products — recall (121):

Ψ Ψ ×Υ
π1oo π2 // Υ

Φ

f

ffLLLLLLLLLLLL

〈f ,g〉

OO

g

88rrrrrrrrrrrr

(128)

Note that the POs associated to the projections,

π1 · (Ψ×Υ) ⊆ Ψ · π1

π2 · (Ψ×Υ) ⊆ Υ · π2

are (PF-transformed) instances of the theorems for free [15] of the

corresponding (polymorphic) types. (Nothing to prove )
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Current work

“Predicates as types” view carries over folds/unfolds etc. For instance,
let us check the diagram of a fold:

µF

(|R|)

��

F(µF)
inoo

F(|R|)

��
Φp FΦp

R
oo

Φp µF
(|R|)oo

⇔ { definition (84) }

(|R |) ⊆ Φp · (|R |)

⇐ { relational cata-fusion (129) }

R · FΦp ⊆ Φp · R

⇔ { definition (84) }

Φp FΦp
Roo

(|T |) ⊆ S · (|R |) ⇐ T · FS ⊆ S · R (129)
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About the background

• This tutorial finds its roots in the excellent background for
CS research developed by the MPC (Mathematics of Program
Construction) group [1, 6, 3]

• For a good textbook on relation algebra, examples and
applications see [5]

• For other experiments on the PF-transform applied to
different CS theories see eg.

• Data dependency theory (databases) [10]
• Hashing [11]
• Algebraic/coalgebraic refinement [12, 4]
• Bisimulations [9]
• Separation logic [14]
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Closing

PF-transform “road-map”:

• The PF-transform is applicable to CS theories whose base concepts
are defined by complex pointwise formulæ — the “hard problem”

• The tradition is to develop a (PW) axiomatic theory able to do
without the complex semantic model

• The PF-transform not only makes the validation of such theory
much simpler but also makes direct reasoning in the model viable

• Last point particularly useful in the case of incomplete theories (eg.
separation logic)

Don’t hesitate: join the PF-community and start “thinking big”
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Addendum

ESC of “paths closed” invariant

id × Φpc (id × Φpc) · Φc
foo (130)

where (recall)

f = FS DeleteFileDir System p

= id × (FS DeleteFileDir Tar{p})

PF-transformed FS DeleteFileDir Tar :

(FS DeleteFileDir Tar S)N = N · Φ¬S (131)
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Addendum
PF version of pc is

pc N △ Directory · N ⊆ fileType · attributes · N · dirName(132)

cf. diagram

FileHandler
M / OpenFileDescriptor

path
uullllllllllllll

Path
N

/ File
attributes // Attributes

fileType

��
Path

N
/

dirName

OO

File
Directory

// FileType

and the corresponding code in Alloy:

pred FileStoreInvariant[fs: FileStore]{

(fs.tar).(File->Directory) in

(dirName).(fs.tar).attributes.fileType}
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Addendum

Picture of the whole model as far as data types are concerned,

OpenFileDescriptor

path

��

FileHandler
Mo

⊤

��
⊆

Path
N

/ File
N◦

oo attributes// Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileType

where the two rectangules express datatype invariants.
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Addendum

Strategy will be to ignore Φc for a moment and calculate the WP
for f to preserve id × pc ; then we compare Φc with the
pre-condition obtained. Thanks to (123), (130) becomes

Φpc Φpc
FS DeleteFileDir Tar{p}oo (133)

Below we generalize {p} to any set of paths S and use
abbreviations ft := fileType · attributes and d := Directory :

pc(FS DeleteFileDir Tar S N)

⇔ { (131) and (132) }

d · N · Φ¬S ⊆ ft · N · Φ¬S · dirName
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Addendum

⇔ { shunting }

d · N · Φ¬S · dirName◦ ⊆ ft · N · Φ¬S

⇔ { coreflexives versus conditions }

d · N · Φ¬S · dirName◦ ⊆ ft · N ∩ ⊤ · Φ¬S

⇔ { ∩-universal ; shunting }

d · N · Φ¬S ⊆ ft · N · dirName ∧ d · N ·Φ¬S · dirName◦ ⊆ ⊤ ·Φ¬S

⇔ { shunting ; ⊤ absorbs d }

d · N · Φ¬S ⊆ ft · N · dirName
︸ ︷︷ ︸

weaker than pc(N)

∧ N ·Φ¬S ⊆ ⊤ · Φ¬S · dirName
︸ ︷︷ ︸

WP

End of PF-calculation. Back to points:
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Addendum

• Pointwise WP is as follows:

〈∀ q : q ∈ dom N : q 6∈ S ⇒ (dirName q) 6∈ S〉

⇔ { logic }

〈∀ q : q ∈ dom N : (dirName q) ∈ S ⇒ q ∈ S〉

that is: if parent directory of existing path q is marked for
deletion than so q.

• For S := {p}:

〈∀ q : q ∈ dom N : (dirName q) = p⇒ q = p〉

⇔ { logic }

¬〈∃ q : q ∈ dom N : (dirName q) = p ∧ q 6= p〉
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Addendum

Closing:

• c is indeed stronger than calculated WP

• In particular, it doesn’t allow for Root deletion

• WP enables one to delete Root provided no other files exist in
the FS.

NB: POSIX standard is ambiguous in this matter...
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