Computing for Musicology

(Course code: F104N5)

0. Introduction to the course

J.N. Oliveira

Dept. Informática, Universidade do Minho Braga, Portugal

March 2009 (last update: September 2025)

Licenciatura em Música Universidade do Minho Braga

Informatics...

Informatics, computers... What is this for?

- A computer is a machine that does very laborious things for us...
- ... very quickly ...
- ... without getting annoyed ...
- ... and without making mistakes!

Informatics...

Informatics, computers... What is this for?

- A computer is a machine that does very laborious things for us...
- ... very quickly ...
- ... without getting annoyed ...
- ... and without making mistakes!

Computing — hardware, software, ...

Computing:

- Hardware the physical machine itself
- **Software** the tools, programs, applications which run on top of the hardware

Questions:

- What is **software**?
- Where do **programs** come from?
- Programming: invention? construction?

Computing — hardware, software, ...

Computing:

- Hardware the physical machine itself
- **Software** the tools, programs, applications which run on top of the hardware

Questions:

- What is software?
- Where do programs come from?
- Programming: invention? construction?

Software: where do programs come from

There are a number of misconceptions concerning computer programming, in particular:

- Programming is (very) difficult
- Only bright people can program a computer
- Programming is sheer "art" you have to be one of the elected few who understand it...

Teaching programming

Nonsensel It turns out that

- Computer programs emerge from ordinary mathematics
- Teaching computer programming could start around K12, if not earlier, as an activity close to mathematics training

And it is analogous to **composing music**.

Teaching programming

Nonsense! It turns out that

- Computer programs emerge from ordinary mathematics
- Teaching computer programming could start around K12, if not earlier, as an activity close to mathematics training

And it is analogous to composing music.

What does it mean to program?

Analogy:

Computer programming

Example:

Computer programming

Programming:

Languages?

Humans talk to each other using natural **languages**.

Talking to a **machine** is not very different — we also need "languages".

Kinds of Language

But such languages need to be **understandable** by machines.

Kinds of Language

We need languages

- to describe **objects**
- to give the machines **instructions** for them to perform **actions** which we regard as useful.

Thus the classification:

- Domain specific languages (DSLs) which describe objects, eg. music, text,
 videos, web sites and so on
- Programming languages which instruct machines how to replace humans and perform actions.

DSLs

We shall get in touch with the following DSLs/systems:

- ABC for describing music
- MarkDown for describing websites
- LaTeX for describing text
- OpenShot for describing videos

Everything will be web-based: no need for installing anything.

ABC: a DSL for denoting music

Concerning music, we will resort to one called

Programming

Concerning **programming**, we will resort to one called

Haskell

available from the **Jupyter** server at DIUM.

Programming

Let us try it!

Numbers

Numbers

We could see that it all behaves like an ordinary calculator as far as numbers are concerned.

Is this all Haskell and Jupyter have to offer?

No...

