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Opening questions

• Are we doing computer science research in the
right way?

• Are we using the right notation, language?

• Does more technology mean better science?

• “Is computer science science?” (Denning, 2005)
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Science? Pre-science?

In an excellent book on the history of scientific technology,

“How Science Was Born in 300BC and Why It Had to Be
Reborn” (Springer, 2003),

Lucio Russo writes:

The immense usefulness of exact science consists in providing
models of the real world within which there is a guaranteed
method for telling false statements from true. (...) Such
models, of course, allow one to describe and predict natural
phenomena, by translating them to the theoretical level via
correspondence rules, then solving the “exercises” thus
obtained and translating the solutions obtained back to the
real world.

Disciplines unable to build themselves around “exercises” are
regarded as pre-scientific.
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Scientific engineering (e = m + c)

Also from Russo’s book :

Vertical lines mean abstraction, horizontal ones mean calculation:

engineering = model first, then calculate
(e = m + c)
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Theory? Practice?

Donald Knuth:

My experience has been that theories are often more
structured and interesting when they are based on
real problems; somehow they are more exciting than
completely abstract theories will ever be.

(Quoted from The Dangers of Computer-science Theory.
Standford University, 1971)

This kind of position explains the Grand Challenges in
Computing initiative.
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Grand Challenge Initiative

• Healthy trend in formal methods (FM) research driven by
the idea of a Grand Challenge (GC).

• Triggered by eminent computer scientists T. Hoare & J. Misra.

• VSTTE conference (“Verified Software: Theories, Tools,
Experiments”) created as response to the challenge.

• VSTTE’05: Hoare proposes that time to start long term
international cooperation research projects has arrived.

• Outcome to be gathered in a Verified Software Repository
(VSR).

• No funding.
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Verified Software Repository

Mondex — A verified electronic purse hosted on a smart card.
Players: Bremen (OCL); Escher Technologies
(PerfectDeveloper); MIT (Alloy); Macao/DTU
(Raise); Newcastle (p-Calculus); Southampton
(Event-B); York (Z).

Pacemaker — based on a previous generation pacemaker
specification released by Boston Scientific (BSC).
Aims at production of verified pacemaker software,
designed to run on specified PIC hardware.
Players (thus far): Aharus (VDM++); BSC
(BLESS); UFRGN (Z, PerfectDeveloper). UPEN
(Uppaal, ADL).
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Verified Software Repository

Verified File System (VFS)
— Verified subset of
POSIX suitable for
flash-memory hardware
with strict fault-tolerant
requirements to be used
by forthcoming NASA’s
JPL missions.
Players (thus far):
Augsburg (KIV); MIT
(Alloy); Minho (Alloy etc);
Southampton (Event-B);
York (Z/Eves).
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VFS @ Minho

First effort was concerned with verifying Intel R© Flash File System
Core Reference Guide (API):

(Permission to reproduce this excerpt kindly granted by Intel

Corporation.)
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VFS @ Minho

Formal model unveiled some ambiguities in the documentation, eg.

• Can the root directory be removed?

Surprised to see the POSIX System Interface Standard (2004)
itself vague in this respect:

The rmdir() function shall remove a directory whose name is
given by path. The directory shall be removed only if it is an
empty directory. If the directory is the root directory or the
current working directory of any process, it is unspecified
whether the function succeeds, or whether it shall fail and set
errno to [EBUSY].

Publications: see (Oliveira, 2009), (Ferreira and Oliveira, 2009)
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VFS @ Minho (recent)

GCI still suffering from lack of comparative work:

• We’ve chosen the KIV Augsburg model (Schierl et al., 2009)
to compare our work with.

• Alloy emulation of Augsburg model — subject of a Master
thesis by Fernandes (2010) available soon.

• Going abstract: high-level model in Alloy of the most
interesting part of KIV model, which has to do with the
journaling, wear leveling and power loss recovery
mechanisms.

• Formal design and calculational approach (as explained later
in this talk)
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VFS @ Augsburg (KIV)

• Standard: They adhere to UBIFS (Unsorted Block Image File
System) — a journaled file system developed by Nokia +
Univ. Szeged that works on top of UBI (a wear-leveling and
volume management system for flash devices).

• Tool: Karlsruhe Interactive Verifier (KIV) — a tactical
theorem prover developed at the Univ. of Karlsruhe.

Main source: a nice paper

A. Schierl, G. Schellhorn, D. Haneberg, W. Reif Abstract specification of
the UBIFS file system for flash memory. LNCS volume
5850, pages 190–206. Springer, 2009.

supported by a very detailed website:
www.informatik.uni-augsburg.de/swt/projects/flash.html
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Our (first) approach

Verification life-cycle made of several steps:

• Build and animate the file system model (VDM++)

• Automatic generation of verification proof obligations (PO)

• PO model-checking step (Alloy)

• PO discharge step (HOL)

(Diagram next slide.)
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Our (first) approach



Context VFS Going abstract RA Diagrams FLASH Alloy What next FAQs References References

What we have learnt

Mea culpa:

• Too technological

• Too many tools

• Tool interoperability at target in the GCI but hard to
accomplish in practice

• Even if successful technology-wise: “push-button proofs
(alone) considered harmful”

• Lack of proof awareness — proofs with too many (often
hundreds, thousands) of steps.

Questions:

• How to reduce such complex models and proofs to something
small (readable) and elegant?
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Abstract modeling

There is a clear need for:

• Abstraction

• Notations in which you write less to say more

• Calculi to perform (readable) proofs as in high-school algebra.

My current answer to such needs is the

Relation algebra (RA)

which underlies the Algebra of Programming (Bird and de Moor,
1997). Why?
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Abstract modeling

There is a clear need for:

• Abstraction

• Notations in which you write less to say more

• Calculi to perform (readable) proofs as in high-school algebra.

My current answer to such needs is the

Relation algebra (RA)

which underlies the Algebra of Programming (Bird and de Moor,
1997). Why?
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Why Relation Algebra (RA)

• Abstract models capture nothing but the essence of given
problems expressed in terms of relationships among objects
of interest.

• So, relational models are natural and stem from natural
language itself, cf. sentences such as eg.

John loves Mary

of the same shape as mathematical relationship

0 ≤ 1

(“0 is at most 1”), and so on. (Note the infix notation.)
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Why Relation Algebra (RA)

• The algebra of binary relations replaces logic deduction by
inequational reasoning.

• Such calculations are pointfree, saving ink by dropping
variables, quantifiers, variable substitution etc.

• Such was the motivation of mathematicians like Alfred Tarski
(1901-83) who had a life-long struggle with quantified
notation (too complex for his needs).
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Why Relation Algebra (RA)

A bit of history:

• RA actually the first attempt to formal knowledge
representation, carried out by Augustus de Morgan
(1806-71) in his

On the syllogism: IV, and on the logic of relations

read on April 23, 1860 to the the Cambridge Philosophical
Society. This predates logic itself.

• In fact, Peirce (1839-1914) invented quantifier notation to
explain de Morgan’s algebra of relations

• De Morgan’s pioneering work was ill fated: the language
invented to explain his RA became eventually more popular
than RA itself.

• Tarski was among those who revived RA.



Context VFS Going abstract RA Diagrams FLASH Alloy What next FAQs References References

On the syllogism: IV (...)

Binary relations:

[...] Let X ..LY signify that X is some one of the objects of
thought which stand to Y in the relation L, or is one of the
Ls of Y .

Relational composition:

[...] When the predicate is itself the subject of a relation, there
may be a composition: thus if X ..L(MY ), if X be one of the
Ls of one of the M s of Y , we may think of X as an ‘L of M’
of Y , expressed by X ..(LM)Y , or simply by X ..LMY . [...][So]
brother of parent is identical with uncle, by mere definition.

Relational converse:

[...] The converse relation of L, L−1, is defined as usual: if
X .. L Y , Y .. L−1 X : if X be one of the Ls of Y , Y is one of
the L−1 s of X .
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Binary relation essentials

Binary relations are typed:

Arrow A
R // B denotes a binary relation from A

(source) to B (target), where A,B are types. Writing

B A
Roo means the same as A

R // B .

Infix notation (such as verbs in natural language), eg.:

John Loves Mary

0 ≤ π

b R a (in general)

(See Freyd and Scedrov (1990) for the foundations of typed RA.)
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Composition and converse

Composition “... is R of some S of...”:

B A
Roo C

Soo

R·S

gg

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (1)

Converse of R (or R in “passive form”): for all a, b,

A B
R◦oo B A

Roo

a(R◦)b ⇔ b R a (2)

Note how (1) removes ∃ when applied from right to left.
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Polymorphic relations

Top

B A
>oo is the largest relation of its type — b>a

always holds (this is de Morgan’s “is coexistent with”
relation)

Bottom

B A
⊥oo is the smallest relation of its type — b⊥a is

always false

Identity

A A
idoo is the smallest equivalence relation of its

type — b id a holds iff b = a
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The “at most” ordering

Each type B Aoo forms a complete Boolean algebra (briefly
speaking), whose ordering captures universal quantification:

R ⊆ S ⇔ 〈∀ b, a : b R a : b S a〉 (3)

Comments:

• Read R ⊆ S as “R is at most S”, that is, “all Rs are Ss”.

• Note how (3) removes ∀ when applied from right to left.
(“Pointfree” transform).

• What we have thus far is enough for much abstract
modelling. . .

• Tarski would say: “Isn’t [this] a nice thing ‘pour épater les
logiciens-bourgeois’?” (Givant, 2006)
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Diagrams

Since relations are arrows, we can draw diagrams describing
constraints, for instance

Descriptor

path

��

Handle
FToo

>
��

⊆

Path File
FS◦

oo

depicting constraint

path · FT ⊆ FS◦ · > (4)

where FS is a file store, FT is the open-file table and path yields
the path of an open file descriptor. What does (4) mean, in
predicate logic? See next slide.
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From the “pointfree” (RA) to the “pointwise” (FOL)

We calculate:

path · FT ⊆ FS◦ · >
⇔ { ‘at most’ ordering (3) }

〈∀ p, h : p(path · FT )h : p(FS◦ · >)h〉

⇔ { composition (1) }

〈∀ p, h : 〈∃ d :: d FT h ∧ p = path d〉 : p(FS◦ · >)h〉

We are left with p(FS◦ · >)h — see next slide.
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From the “pointfree” (RA) to the “pointwise” (FOL)

p(FS◦ · >)h

⇔ { composition again (1) }

〈∃ x :: p(FS◦)x ∧ x>h〉

⇔ { converse ; x>h always holds }

〈∃ x :: x FS p ∧True〉

⇔ { trivia }

〈∃ x :: x FS p〉

Altogether, path · FT ⊆ FS◦ · > unfolds into (next slide):
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From the “pointfree” (RA) to the “pointwise” (FOL)

〈∀ p, h : 〈∃ d :: d FT h ∧ p = path d〉 : 〈∃ f :: f FS p〉〉

Informally:

d_

path

��

h
�FToo
_

>
��

⊆
p �

FS
// f

If h is the handle of a open-file descriptor d holding path
p, then p points to some existing file f .

In short:

Non-existing files cannot be opened. (Referential
integrity)
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Model constraints are diagrams

Another example:

Path

FS

��

Path
≥oo

FS

��
⊆

File File>
oo

that is FS · ≥ ⊆ > · FS

where p ≤ p′ means p is a sub-path of p′ and whose meaning is

Mother-directories always exist.

Summary:

Properties such as referential integrity, prefix-closure
and many others are captured by easy-to-grasp RA
expressions depicted by diagrams.
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Model constraints are diagrams

Other examples (in general):

• M, N domain-disjoint:

M · N◦ ⊆ ⊥

• M, N domain-coherent:

M · N◦ ⊆ id

• Domain of M strictly above that of N:

M◦ · > · N ⊆ >
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Flash file store refinement

The model of a flash-memory file-store is far more complex than
what has been hinted above, given extra non-functional
requirements such as:

• Performance: core meta-data is stored in central memory
(RAM) to decrease update latency.

• Wear leveling: no delete/write cycles so as to prolong the
service life of this erasable storage media.

• Power-loss recovery: was a way to add robustness to the
system against faults of this kind, a backlog (journal) of the
operations that have been performed is stored in the device.
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Journaled FLASH store snapshot

In a picture (quoted from Schierl et al. (2009)):

large file systems, UBIFS takes another approach: When committing file system
data, it stores a copy of the RAM index on the flash memory (then called flash
index ), and records all nodes written after the last commit in a journal (called
log). This way, to create the RAM index at mount time UBIFS can use the flash
index as a base and add addresses for all nodes referenced in the log (a process
called replay). This correlation is shown in Fig. 3.

Fig. 3. RAM index, flash index, flash store and journal

To create a new node, it is written to an unused address in the flash store
and simultaneously added to the log. Afterwards, its address is stored in the
RAM index for further access to its key. This way, the data is safe, even if the
RAM index gets lost without a commit e. g. caused by a power failure, because
the correct state of the RAM index can be restored by information from flash
index, flash store and log.

This method allows to create new and overwrite existing nodes. However,
deleting nodes is not possible because it would require pure index operations
(delete a key from the index). Therefore, UBIFS uses specialized delete nodes
which are written to the flash store, but cause deletion from the RAM index
when replayed (marked as DEL5 in Fig. 3).

When performing a replay in the situation of Fig. 3, the contents of the flash
index are copied to the RAM index. When replaying address 6, the 6 is stored
in the RAM index as new address for key KEY3. The same goes for address 7,
while 8 adds KEY1b to the index. Address 9 contains a deletion entry that causes
KEY4 to be deleted from the index.

The figure also shows the need for garbage collection: addresses 1, 3 and 5

store data which are no longer in the index and therefore can be reused.

5 UBIFS uses inode nodes with link count 0 or dentry nodes with destination inode
number 0 to delete the corresponding keys.
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Journaled file store snapshot

Note how updating (eg. key KEY 3) and deletion (eg. key KEY 4)
actually entail new entries in the FLASH (thus the
counter-intuitive fact that deletion calls for extra free space):

large file systems, UBIFS takes another approach: When committing file system
data, it stores a copy of the RAM index on the flash memory (then called flash
index ), and records all nodes written after the last commit in a journal (called
log). This way, to create the RAM index at mount time UBIFS can use the flash
index as a base and add addresses for all nodes referenced in the log (a process
called replay). This correlation is shown in Fig. 3.

Fig. 3. RAM index, flash index, flash store and journal

To create a new node, it is written to an unused address in the flash store
and simultaneously added to the log. Afterwards, its address is stored in the
RAM index for further access to its key. This way, the data is safe, even if the
RAM index gets lost without a commit e. g. caused by a power failure, because
the correct state of the RAM index can be restored by information from flash
index, flash store and log.

This method allows to create new and overwrite existing nodes. However,
deleting nodes is not possible because it would require pure index operations
(delete a key from the index). Therefore, UBIFS uses specialized delete nodes
which are written to the flash store, but cause deletion from the RAM index
when replayed (marked as DEL5 in Fig. 3).

When performing a replay in the situation of Fig. 3, the contents of the flash
index are copied to the RAM index. When replaying address 6, the 6 is stored
in the RAM index as new address for key KEY3. The same goes for address 7,
while 8 adds KEY1b to the index. Address 9 contains a deletion entry that causes
KEY4 to be deleted from the index.

The figure also shows the need for garbage collection: addresses 1, 3 and 5

store data which are no longer in the index and therefore can be reused.

5 UBIFS uses inode nodes with link count 0 or dentry nodes with destination inode
number 0 to delete the corresponding keys.
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FLASH abstract model in a diagram

Generic model

K
FI ,RI

vvllllllllllllllllll

R

!DDDDDDDDDDDDDDDDDDDDD

N J / A
FS // K × (D + 1)

π2
��

π1

OO

(D + 1)
∈ // D

(5)

where A (memory addresses), K (keys) and D (data) can be
regarded at any level — (eg. K = Path, K = inode number , etc).
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Abstract model in a diagram

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D

Concrete states:

FS — FLASH store

RI — RAM index

FI — FLASH index

J — Journal (sequence of addresses)

Abstract states:

R — Abstract K -D relationship being implemented.
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Abstract model in a diagram

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D

Data types:

D + 1 — accommodates both valid data (D) and the DEL
mark (1) intended for recording data deletion.
Membership relation d ∈ x picks data from a
non-DEL entry x .

K × (D + 1) — accommodates pairs (k, d) of keys and (maybe)
data; projections π1 and π2 such that π1(k, d) = k
and π2(k, d) = d .
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Alloy

Bringing Alloy in — why?

• Need to obtain feedback
about our model

• Need to know as soon as
possible if building an
inconsistent model

• Counter-examples very
useful in case of nonsense
proof-obligations

• Alloy’s pointfree subset is
very close to RA

Thus the minimalist verification
life-cycle on the right:

Alloy
Model "Checking"

PF-calculus
Proof

OK
Success

PF-notation
Refinement

Model refinedFound flaw

Refinement validated Check proof steps
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Abstract model diagram in Alloy

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D

Abstract states:

sig AS { r : K → lone D }

Concrete states:

sig CS {
j : N → lone A,
fs : A → lone Entry,
fi : K → lone A,
ri : K → lone A

}
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Abstract model diagram in Alloy

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D

K × (D + 1)

sig Entry { key : one K, value : one DataCell }

D + 1

abstract sig DataCell {}
one sig Del extends DataCell {}
sig Data extends DataCell { data: one D }
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Multiplicities in Alloy + taxonomy

where

lone — at most one

some — at least one

one — exactly one
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The same — mathematically

Topmost criteria:

binary relation

VVVVVVVVVVVVVVVVVV

KKKKKKKKKK

ssssssssss

iiiiiiiiiiiiiiiiii

injective entire simple surjective

Definitions:

⊇ id ⊆ id

kerR entire R injective R
img R surjective R simple R

kerR = R◦ · R
img R = R · R◦
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Abstract model as depicted by Alloy
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Abstraction invariant

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D

R = af (FS ,FI ,RI , J)

where abstraction function is

af (FS ,FI ,RI , J) 4 (active FS) · RI (6)

for

A
active FS // D 4 ∈ · π2 · FS (7)
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Abstraction invariant in Alloy

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D

Abstraction function af (FS ,FI ,RI , J) 4 (active FS) · RI

fun af[cs: CS] : K → D { (cs·ri)·(cs·fs·active) }

Auxiliary function active FS 4 ∈ · π2 · FS

fun active[x: CS·fs] : A → D { x·value·data }

(Note that reverse order in which Alloy chains the arguments of
relational composition.)
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Concrete invariant

Recall the class of simple relations (partial functions), where

A
S // B is simple iff S · S◦ ⊆ id which, once variables are

added, means

〈∀ b, b′ : 〈∃ a :: bSa ∧ b′Sa〉 : b = b′〉

(=S is univocal, deterministic). Clearly, we want FS , J, RI , FI
simple.

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D
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Concrete invariant
Recall FLASH non-functional requirements such as wear leveling
and power loss recovery. In the event of a power loss RI will be
lost. The redundancy of FS (5) is intended for recovery, provided
consistency clause

RI ⊆ index FS (8)

is added to the concrete invariant, where

K
index FS // A 4 (π1 · FS)◦ (9)

fun index[x: CS·fs] : K → A { ˜(x·key) }

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D
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Concrete invariant
Recovery possible only if there is a function which rebuilds RI
from the other, persistent (FLASH-stored) relations. First attempt:

RI = index FS

Doesn’t work! index FS = (π1 · FS)◦ is in general injective but not
simple. Why? Keeping track of all addresses which have been
involved in recording data for a given k, information is missing
about which addresses correspond to the most recent updates.

KFI ,RI

ssggggggggggggggggg

R

'OOOOOOOOOOOOOOOOOO

N J / A
FS

// K × (D + 1)
π2��

π1
OO

(D + 1)
∈ // D

Rules of thumb:

1. R◦ simple iff R injective

2. R◦ entire iff R surjective
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Bringing journal into the play

We need to reduce the non-determinism of index FS by selecting
only the most recent updates. This is where the journal helps,

A A
≥Joo 4 J · ≥ · J◦ (10)

ordering addresses by comparing their relative positions in J, larger
positions meaning more recent updates:

a≥J b ⇔ 〈∃ t, t ′ :: aJt ∧ bJt ′ ∧ t ≥ t ′〉

Then we use the relational “shrink” combinator to express the
selection of the most recent update per key:

RI = index FS � (≥J)

Let us explain what it means.
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Intuition about R � S

Example of R � S in data-processing:
Mark Student

10 John
11 Mary
12 John
15 Arthur

 � ≥ =

Mark Student

11 Mary
12 John
15 Arthur

Example of R � S in list-processing: given a sequence IN
S // A ,

IN
nub S // A 4 (S◦ �≤)◦

removes all duplicates while keeping the first instances. (IN could
be regarded as a time stamp.)
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Definition of R � S

Given relation B A
Roo and

optimization criterion B B
Soo on its

outputs,

A

R
��

R�S

����
��

��
�

B B
S

oo

define R � S satisfying universal property:

X ⊆ R � S ⇔ X ⊆ R ∧ X · R◦ ⊆ S (11)

This ensures R � S as the largest
sub-relation X of R such that, for all
b′, b ∈ B, if there exists a ∈ A such that
b′Xa ∧ bRa, then b′Sb holds (“b′ better
than b”).

a_

R
��

>
X

��~~
~~

~~
~

b′ b
�

S
oo
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Algebra of R � S

Chaotic optimization:

R �> = R (12)

Impossible optimization:

R �⊥ = ⊥ (13)

Ensure simplicity (determinism):

R � S is simple ⇐ S is anti-symmetric (14)

Select determinism:

R � id = largest deterministic fragment of R (15)
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Gaining what?

• No (explicit) recursion. (Hidden in the R � S combinator.)

• No need for inductive proofs.

• Deductive calculation as in high school algebra, thanks to
distributive, permutative properties, eg.

(R ∪ S) � U = (R � U) ∪ (S � U) ⇐ R · S◦ ⊆ ⊥

• Theory reusable elsewhere (eg. currently using R � S in
calculating greedy algorithms from specifications expressed
by Galois connections).
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Back to VFS — the replay function

Finally, power-loss recovery is performed by the so-called replay
function,

replay(FS ,FI , J) 4 (active FS) / (index FS � (≥J))

where there is a final stage of
filtering deleted keys out
resorting to another combinator

S / R 4 S◦ · > ∩ R

which picks that part of R which
“chains” with S . (Read S / R as
“R if S is defined”; ∩ denotes
relation intersection.)

K

index FS
��

index FS�≥J

����
��

��
�

A

active FS ��?
??

??
??

A≥J

oo

D
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Concrete invariant

Ensures that, at any time, replay recovers the current RI ,

ci(FS ,FI ,RI , J) 4 RI = replay(FS ,FI , J) ∧
J is injective ∧
eqdef (J◦,FS)

where

• J injective ensures ≥J anti-symmetric (cf. RI deterministic);

• eqdef (R,S) ensures that R and S are equally defined.

The last requirement is still too strong: J is bound to cover the
whole FS at any time and thus power-loss recovery of RI by the
replay function will thus take longer and longer as J grows.
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FLASH index (FI) gets into the play

• From time to time, J should be cleared up while saving the
contents of RI persistently.

• Such is the purpose of FI (flash index), a component of the
state model which has played no role in the model so far.

• In this way, J will keep only the “difference” between the RI
and its cache FI , very often outdated.

• Introducing FI requires a commit operation which basically
updates the FI with the contents of RI and clears J, as
specified by post-condition:

J ′ = ⊥
FI ′ = RI

FS remains unchanged

RI remains unchanged
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Concrete invariant (final version)

Caching RI into FI adds further complexity to the replay
operation,

replay(FS ,FI , J) = (active FS) / (FI † ((J◦ / (index FS)) � (≥J)))

— where † denotes relational overriding — but has the advantage
of replaying only the operations that happened after the last check
point (commit).

Pragmatics: need for extra term J◦/ in the definition is quite
subtle: it was prompted to us by a painful counter-example
generated by the Alloy model-checker.
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Device full (garbage collection)

Specified by post-condition,

J,FI ,RI remains unchanged

FS ′ = FS ∩ > · RI ◦

this operation reclaims all FS entries inaccessible to RI , ie. those
which mark deletions or outdated information, consequence of the
wear-levelling principle. With points, the garbage-collected flash
store is such that

x FS ′a ⇔ x FS a ∧ 〈∃ k :: a RI k〉

Wear-leveling’s implications in the model are clearly shown by the
complexity of one of the usually most simple CRUD operations —
deletion — to be given next.
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Delete operation

Alloy:

pred Delete[cs,cs’: CS, s: set K] {
some n: K → lone A, m: N → lone A {

injective[n, A] and injective[m, A]
no n·(cs·fs) and n·ran = m·ran
n·dom = s and cs·j·Top·(˜m) in ˆ(ordering/prev)

cs’·j = cs·j + m
cs’·fs = cs·fs + n·del
cs’·ri = (cs·fs·dom − s)·(cs·ri)
cs’·fi = cs·fi

}
}

where

fun del[n: K → A] : A → Entry
{ { a: n·ran, e: Entry | e·key in n·dom and e·value = DEL } }
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Verification

Life-cycle:

• This generates (among others) proof obligation:

assert po47 {
all cs,cs’: CS, s : set K |

(ci[cs] and Delete[cs,cs’,s]) ⇒ cs’·ri = cs’·replay
}

• Alloy finds no counter-examples

• We thus proceed to manual proof (next slide)
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Calculation
Nine (deductive) steps:

replay(FS ′,FI ′, J ′)

= { substitutions enabled by post-condition }

replay(FS ∪ del N,FI , J ′)

= { definition of replay ; active distributes over union }

(active FS ∪ active(del N)) / (index (FS ∪ del N) � (≥J′))

= { orthogonality ; index distributes over union ; del }

(active FS) / ((index FS ∪ N) � (≥J′))

... { 5 steps omitted for presentation purposes }

RI · (6∈ S) ∪ ⊥

= { post-condition }

RI ′
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On the RA-Alloy interplay

Comment by a referee:

(...) difficult proof steps model-checked first ... seems
like an excellent idea, but how do you know when to
model-check, wait until your proof is running into
trouble? If this is still a matter of good mathematical
judgement, this should be made clear.

Our answer is a quite pragmatic design principle:

Whatever you are going to do in applied RA,
model-check it first. Silly errors are very likely in complex
designs — even using RA :-)

(Recall design of final version of replay .)
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Lessons learnt

• Smart notation better than heavy machinery

• Abstraction as main ingredient of scientific engineering

• GCI the right way to go:

• builds communities
• enables comparative work
• pushes you favourite method to its limits
• has social impact

If you know of a GC in our area of work — just embrace it!
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What next

From (another) referee:

(...) engineering practitioners have mathematical
maturity but cannot be expected to be widely
educated on abstract mathematics. (...)
The authors need to plan on writing a textbook that
explains the approach, in much the same manner as
the various textbooks for Z, starting from first
principles (ZF set theory and first order logic), if they
really expect the approach to see significant industrial
use.
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What next

• Fine — the book is (slowly) under way. . .

• Meanwhile, teaching experience has been gathered in the last
three years in teaching RA (with applications) to MSc
students, as a module of the MFES (“Métodos Formais em
Engenharia de Software”) unit — slides available from

wiki.di.uminho.pt/twiki/bin/view/Education/MFES/

• Interested in relational thinking? Join the club — you are
already 150 years late! (2010-1860=150)
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Questions and answers

Question: do you advocate returning to manual proofs, full stop?

Answer: No — the size and complexity of today’s
problems make hand-proving alone unrealistic. What is
advocated is relational thinking, a change in the way
we think about software.

Question: why Alloy? Couldn’t other model-checkers be used
instead?

Answer: Hmm... perhaps not — Alloy’s main inspiration
is Tarski’s stuff (much more relevant than the Z
inspiration). In particular, Alloy’s pointfree subset is very
close do RA.
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Questions and answers

Question: how reliable (formal) is your translation between RA
and Alloy?

Answer: Manual but systematic; a translation tool has
just become available :-)

N. Macedo Translating Alloy specifications to the
point-free style. Master’s thesis, Minho
University, 2010. (Submitted.)

Question: does theorem proving (TP) still find a place in your
approach?

Answer: Of course it does! But the level of proofs needs
to raise up to RA-styled proofs. Höfner and Struth
(2008) show that TP such as Prover9 already work at
this level.
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Questions and answers

Question: is RA expressive enough to tackle “big” problems such
as those of the GCI?

Answer: Yes – and it gives you room to “invent” new
combinators (such as R � S) and exploit their algebra —
this saves much work and structures the reasoning.

Question: what is the relationship between RA and the database
homonym “à la Codd”?

Answer: Codd’s multi-ary relation theory instantiates
RA, once its set-theoretic foundations are “pointfreed”

Question: can other families of logics, for instance temporal
logic be pointfreed in RA?

Answer: Yes – Raymond Boute (2009) got a best paper
award at FM’09 (Eindhoven World Congress) doing so.
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Questions and answers

Question: what about probabilistic modelling, Markov chains and
the like?

Answer: RA is in many respects a linear-algebra (LA),
as binary relations are just Boolean matrices.
Composition instantiates matrix multiplication and
converse matrix transposition. So RA is much closer to
LA than predicate logic.

Question: you rely much on diagrams; could UML diagrams be
used instead?

Answer: UML diagrams are informal and thus hard to
reason about; our diagrams are central to the underlying
allegory theory — they can even be used as proofs
(Freyd and Scedrov, 1990).
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