Calculate databases with ‘simplicity’

JN. Oliveira
DI/U.Minho Braga, Portugal

IFIP 2.1 #59 Meeting,
Nottingham, UK

September 2004

Abstract

o Effort to replace “a la Codd” database schema design (normalization
etc) by calculation based on simple (dually, injective) binary
relations.

e Simple relations relevant because database entities can be modelled
as finite such relations.

e (Pointfree) calculus simpler to use than the standard theory.

e Generic result which enables the refinement of recursive data
models

e Prospect of automatic SQL generation (using Strafunski / Haskell)
based on results so far.

Motivation

SQL — data-processing standard “de facto”

e XML — abstract syntax “made popular”

Can XML be trusted as a data-storage technology?

Ad hoc XML « SQL conversion

Need for reliable XML <+ SQL data exchange technology




Example

(Haskell instead of XML, if you don’t mind):
type StringExp = Exp String String
data Exp v o = Var v |

Termo [Exp v 0]

How do you SQL-archive St ri ngExp data?

Example — SQL

CREATE TABLE SYMBOLS (
Synbol  CHAR  (20) NOT NULL,
Nodel d  NUMERI C (10) NOT NULL,
| f Var BOOLEAN NOT NULL
CONSTRAI NT SYMBOLS pk
PRI MARY KEY(Nodel d, I f Var)
)

CREATE TABLE EXPRESSI ONS (
Fatherld NUMERI C (10) NOT NULL,
Ar gNr NUMERI C (10) NOT NULL,
Childld NUMERI C (10) NOT NULL
CONSTRAI NT EXPRESSI ONS_pk
PRI MARY KEY (Father!d, ArgNr)
)

Can you rely on this implementation?




Overall idea

e Calculate implementations from specifications
X

XI

XII

Spec

INININ A

Imp

by adding details in a controlled manner.

e Define a suitable ordering < on datatypes and develop
corresponding data refinement theory

Example of data refinement

Finite sets represented by finite lists:

F = elems
(1,2]

{1,2/[2, 1]

I

\[11271]




Refinement inequation

P A < A*
\/
elems
meaning that

sets are “implemented” by lists

A* is able to “represent” 7; A

A~ is “abstracted” by 7 A

A~ is a refinement (“refines”)P; A

Refinement inequations

A is implemented by B, as witnessed by pair f, r, iff

such that
e representation r is injective
e abstraction f is surjective
e thatis,

Not general enough (I)

In the following inequation

i9
expressing the fact that every element of datatype A can be represented by
a “pointer”,
- r =14y isinjective, but
- its converse 7 is partial (=not entirely defined)




Not general enough (Il)

Representations » need not be functions. Back to

elems
relation R = elems® will be perfectly acceptable as a representation since

elems - elems® = id

because elems is a surjection.

Binary relation taxonomy

relation
injective entire simple surjective
representation function abstraction
injection surjection
bijection (isomorphism)

Terminology: simple / entire relation instead of partial / total function (or
relation)

Taxonomy basis

| | Reflexive | Coreflexive ]

ker R entire R injective R
img R || surjective R simple R

where
e Reflexive relation: id C R
e Coreflexive relation (or partial identity): R C id

e Kernel and image:

ker R R°-R
imgR = R-R° (=ker(R%))




Principle of data abstraction

where

F
e A< Bisasurjective + simple abstraction relation

e Risentireand R C F° —itis said to be a representation for
F.

The fact that R is injective follows from R C F°.

Summary

ker R =id entire R A injective R representation R
img F' =id || surjective F A simple F abstraction F

It follows that R is a right-inverse of F, that is
F-R = i
This is proved by circular inclusion
F-RCidCF-R

in the next slide.




Right invertibility

F-RCid NidCF-R
{ img F = id and ker R = id}

F-RCF-F°AR°-RCF-R

{ converse of right conjunct }

F-RCF-F°ANR°-RCR’°-F°
<= { (F-) and (R°-) are monotonic }
RCF° ARCF®

{ R C F°isassumed }

TRUE

Functional abstractions

Quotation from [Mor90], chapter 17, pp. 173-174:

[It is] common for the coupling invariant to be functional from concrete
to abstract. [...]
The general form for such coupling invariants, called functional
abstractions is

a=afc A dtic, (17.1)

where af is a function, called the abstraction function and dti is a
predicate, in which a does not appear, called the data-type invariant.

[...]
That s,

F = af - [dti]

Functional abstractions

e Galois abstractions —let R, F := f °, f be Galois connected
functions where the connection is perfect on the “abstract side”,

fof=id
Example: hash-table representation of a data collection [OR04]
e |somorphisms —

= B suchthat r=f°




< is a preorder

Reflexivity
id
A< 4
~—_
id
Transitivity
R S SR
A~ < B A B~ < c=4_ <
G F.-G

Proof of transitivity

a) Composition preserves simplicity and surjectiveness:
img (F -G) =1id

{ expand img ; converses}
F.-(imgG)-F°=id

{ G is simple and surjective}

Il

img F = id

{ F is simple and surjective}
id = id

b) S-R C (F - G)° by monotonicity.

Structural data refinement

For F a relator,

R FR
A~ < B = FA < FB
\_/
F FF

e Easy proof next slides.

¢ Also valid for n-ary relators such as x, + etc.




Structural data refinement

a) Abstraction:

img (F F)

= { image defi nition ; relators commute with converse }
(F(F®)) - (FF)

= { relators commute with composition }
F(F°-F)

= { Fis an abstraction }
Fid

= { relators commute with id}

id

Structural data refinement

b) Representation:

FR C (FF)°

{ relators commute with converse }
FR C F(F°)
<« { relators are monotone }

R C F°

{ R s arepresentation for F' }

TRUE

By the way

Datatypes such as P A are < postfix points [Bac00], cf.
ins®

/\
A < 1+AXPA

v

[ R,ins®] ins id+1id x [ R,ins® ]

B 1+AxB
R

(hylomorphisms on finite sets).

10




Abstract database models

o A relational database is a tuple of finite relations

e Finite simple relations model many-to-one (M:1) relationships (inc.
primary key relationships)

e Finite simple+injective relations model one-to-one (1:1)
relationships

Notation:

e B+ A: all simple relations from A (the key) to B (the data of
interest) — cf. (if also finite) Fi ni t eMap a b in Haskell,
map A to B inVDM-SL.

e B« A: allinjective relations from A to B — cf. (if also finite and
simple) i nmap A t o B in VDM-SL,

“Maybe” transpose

Useful isomorphism
(B+1)4 ~ B—A
v

r
converts simple relations into (- + 1)-valued functions (€= 47):
f='R = (bRa = (fa=i1b))

NB: generalizes to generic transpose [OR04]

...and exponentials

Multiple-key decomposition / synthesis:
A~—BxC(C
{r}

1

1

{ curry }
(A+1)9)”

{(€)"}
(A—0C)?

1

11




Calculating abs/reps

Altogether, the downwards isomorphism
(€)?-curry-T

is a convenient shorthand for a less readable pointwise abstraction
invariant:

S = (€)-(curry(T'9))
= { ...relational calculus ...}
(b,c)edomS = cedom(Sh) A S(b,c)=Sbc

NB: thanks to generic transpose, notation S extends to other classes of
relation.

Converse of simple is injective

BxC<+ A

{ (-°) isomorphism }
A—=Bx(C

{ above }
(A4=0)F

{ isomorphism is (_°)Z }

(C+ A)B

IR

IR

1%

12




Refinement by decomposition

Zip/unzip'ping simple relations:
unjoin
/_\
Bx(C~—A < (B—A) x (C— A)

where join = (., .)
(R,S) = (s} -R)N(n5-8)
unjoin def (m1 +— id, wo — id)

where, for injective f,

9= F = (g)-f)

Refinement by decomposition

uncojoin
/\
(B+C)— A < (B+— A) x (C+ A)

where cojoin
uncojoin = {((i1-), (i3*))
cojoin = U-((i1-) x (i2-))

NB: cojoin - uncojoin = id, since img i; Uimg iz = id.

Refinement by decomposition

Nested simplicity:
unnjoin
/\
njoin

calculation

(Dx(C—B)~—A < (D~ A)x(C+—(AxB))

Definitions of njoin and unnjoin to follow from next slide’s

13



Calculation

(D x (C— B)) — A

IR

{ Maybe transpose }
(D x(C+B)+1)*
{ Maybe-(right)strength is involved in the abstraction }

IN

((D+1) x (C~B)A
{ splitting }
(D+1)4 x (C = B)4

IR

IR

{ Maybe transpose and above }

(D — A) x (C ~ A x B)

Getting away with finite lists

Several other < laws, eg.
seq2index

AT < AL
\_/
list
such that, for instance,

{(a,1), (,2), (a,3)}

seq2index [a, b, a]

list {(a,11),(b,12),(a,33)} = [a,b,q]
Getting away with recursion
Given out
— >
F =~ F uF
e EFa
mn
one has
WF T < (FK—K)xK

———r
\/ “heap'!

F
for K a data type of “heap addresses”, or “pointers”, such that K = IN.

14




Abstraction function

e Main role in representation is played by simple F-coalgebra
F K — K, understood as a (finite) piece of “linear storage”, a “heap”
or a “database” file.

e F (recall F notation from above), of type (uF — K)F X5 s
nothing but the F-anamorphism combinator:

HF — F(uF)
(@
pX.in-(FX)-H

T
|

FH [ [ F(FH)
K

F

FK

Partiality of implementation

Abstraction invariant t = F(H, k) —thatis, t = (FH)k — will hold only if
e k€ domH, and
e the accessibility relation for H

<H
K<~—K

def

<H €r-H

€F
is well-founded and closed (K <—— F K is the membership of F.)

( Many details omitted here! )

Back to the String Exp example

Since
StringExp = pX.(String + String x X*)
we have:
StringExp
< { remove recursion }
((String + String x K*) — K) x K
< { remove finite lists }

((String + String x (K — IN)) — K) x K

15




Example continued

< {recall(B+C)— A< (B—A)x (C+—A)}
(String — K) x ((String x (K — IN)) — K) x K
< { remove nested ~— }

(String — K) x (String — K) x (K — (IN x K)) x K
{ Ax A= A%}

IR

(String — K)* x (K — (IN x K)) x K
{ recall (A—C)? 2 A+~ B xC}

IR

EStm’ngl— (2 x K)),XSKI_ (IV x K)ZXK

SYMBOLS EXPRESSIONS

Conclusions

e Database schema design as a special case of “do it by calculation”
data refinement

e Calculational alternative to state-of-the-art casuistic practice
stemming from set-theoretic “normalization theory”

e Many more laws available, eg.

1—-A =~ 7PA
cf.
newtype Set a = MkSet (FiniteMap a ())

in the FiniteMap / Set.lhs Haskell libraries.

16




