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Abstract

� Effort to replace “à la Codd” database schema design (normalization
etc) by calculation based on simple (dually, injective) binary
relations.

� Simple relations relevant because database entities can be modelled
as finite such relations.

� (Pointfree) calculus simpler to use than the standard theory.
� Generic result which enables the refinement of recursive data

models
� Prospect of automatic SQL generation (using Strafunski / Haskell)

based on results so far.

Motivation

� SQL — data-processing standard “de facto”

� XML — abstract syntax “made popular”

� Can XML be trusted as a data-storage technology?

� Ad hoc XML � SQL conversion

� Need for reliable XML � SQL data exchange technology
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Example

(Haskell instead of XML, if you don’t mind):

type StringExp = Exp String String

data Exp v o = Var v |
Term o [Exp v o]

How do you SQL-archive StringExp data?

Example — SQL

CREATE TABLE SYMBOLS (
Symbol CHAR (20) NOT NULL,
NodeId NUMERIC (10) NOT NULL,
IfVar BOOLEAN NOT NULL
CONSTRAINT SYMBOLS_pk

PRIMARY KEY(NodeId,IfVar)
);

CREATE TABLE EXPRESSIONS (
FatherId NUMERIC (10) NOT NULL,
ArgNr NUMERIC (10) NOT NULL,
ChildId NUMERIC (10) NOT NULL
CONSTRAINT EXPRESSIONS_pk

PRIMARY KEY (FatherId,ArgNr)
);

Can you rely on this implementation?
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Overall idea

� Calculate implementations from specifications

��������� 	

 	��

 	 � �

 
�
�


 ��� �

by adding details in a controlled manner.
� Define a suitable ordering



on datatypes and develop

corresponding data refinement theory

Example of data refinement

Finite sets represented by finite lists:

� �
elems ���������

��������� � ����� �

�!�����"� � �
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Refinement inequation

����� � ���

�
	��
���
meaning that

- sets are “implemented” by lists

-
���

is able to “represent”
� � �

-
���

is “abstracted” by
� � �

-
���

is a refinement (“refines”)
� � �

Refinement inequations

�
is implemented by � , as witnessed by pair � ��� , iff

� 
 �
�

�
such that

� representation
�

is injective
� abstraction � is surjective
� that is,

� 
 � � ���

Not general enough (I)

In the following inequation

� 
 ��� �
���

��� �
expressing the fact that every element of datatype

�
can be represented by

a “pointer”,

-
� ��� �

is injective, but

- its converse
� � �

is partial (=not entirely defined)
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Not general enough (II)

Representations
�

need not be functions. Back to

��� � 
 ���
�

��� � �	�
relation

�
=

��� � �
� �
will be perfectly acceptable as a representation since

��� � �	� 
 ��� � �	� � � ���

because
��� � �	�

is a surjection.

Binary relation taxonomy

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)

Terminology: simple / entire relation instead of partial / total function (or
relation)

Taxonomy basis

Reflexive Coreflexive

ker
�

entire
�

injective
�

img
�

surjective
�

simple
�

where
� Reflexive relation:

����� �
� Coreflexive relation (or partial identity):

� � ���
� Kernel and image:

ker
� � � � 
 �

img
� � � 
 � ��
 �

ker

 � �����
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Principle of data abstraction

� � �

�

�where

� � �
�

is a surjective + simple abstraction relation

� � is entire and
�������

— it is said to be a representation for
�

.

The fact that
�

is injective follows from
�������

.

Summary

ker
� �����

entire
�
	

injective
�

representation
�

img
� � ���

surjective
��	

simple
�

abstraction
�

It follows that
�

is a right-inverse of
�

, that is

� 
 � � ���

This is proved by circular inclusion

� 
 � � ��� � � 
 �

in the next slide.
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Right invertibility

� 
 � � ��� 	 ����� � 
 �
� �

img
� �����

and ker
� ����� �

� 
 � � � 
 � � 	 � � 
 � � � 
 �
� �

converse of right conjunct
�

� 
 � � � 
 � � 	 � � 
 � � � � 
 � �
� � 
 � 
 �

and

 � � 
 �

are monotonic
�

� � � � 	 � � � �
� � � � � �

is assumed
�

TRUE

Functional abstractions

Quotation from [Mor90], chapter 17, pp. 173–174:

[It is] common for the coupling invariant to be functional from concrete
to abstract. [. . . ]
The general form for such coupling invariants, called functional
abstractions is

�������
	���
�����	 , (17.1)

where af is a function, called the abstraction function and dti is a
predicate, in which � does not appear, called the data-type invariant.
[. . . ]

That is,

� � � � 
 � � ��� � � �

Functional abstractions

� Galois abstractions — let
� � ��� � � � � � be Galois connected

functions where the connection is perfect on the “abstract side”,

� 
 � � �����

Example: hash-table representation of a data collection [OR04]
� Isomorphisms —

� �� �
�

�
such that

� � � �
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�
is a preorder

Reflexivity

� 
 �
���

���
Transitivity

� � �
�

�
� � � �

�

�
	 � � �

��
 �

� 
��

Proof of transitivity

a) Composition preserves simplicity and surjectiveness:

img

 � 
�
 � �����

� �
expand

� ���
; converses

�
� 
 


img

 � 
 � � � ���

� � 

is simple and surjective

�

img
� �����

� � �
is simple and surjective

�
��� �����

b)
� 
 � � 
 � 
�
 � �

by monotonicity.

Structural data refinement

For � a relator,

� � �

�

�

� � � � � �
� �

� �
� Easy proof next slides.

� Also valid for � -ary relators such as � , � etc.
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Structural data refinement

a) Abstraction:

img ��� ���
� � image definition ; relators commute with converse �

����� � � ��� 
 ��� ���
� � relators commute with composition �

��� � � 
 ���
� � �

is an abstraction �
�
	��

� � relators commute with 	��
�
	��

Structural data refinement

b) Representation:

� � � ��� ��� �
� � relators commute with converse �

� � � ��� � � �
� � relators are monotone �

� � � �
� � �

is a representation for
� �

TRUE

By the way

Datatypes such as
� � �

are



postfix points [Bac00], cf.

��� � 
 � � ��� ��� �
��� � �

��� �

� � � ��� ��

� � � � ��� � � � � ��� � ��� � � � � � ��� � � � �

(hylomorphisms on finite sets).
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Abstract database models

� A relational database is a tuple of finite relations
� Finite simple relations model many-to-one (M:1) relationships (inc.

primary key relationships)
� Finite simple+injective relations model one-to-one (1:1)

relationships

Notation:
� ���

�
: all simple relations from

�
(the key) to � (the data of

interest) — cf. (if also finite) FiniteMap a b in Haskell,
map

�
to � in VDM-SL.

� � ��� � : all injective relations from
�

to � — cf. (if also finite and
simple) inmap

�
to � in VDM-SL,

“Maybe” transpose

Useful isomorphism


 � � � ��� �� ���
�


�� 
 �

�

converts simple relations into

 � � �

-valued functions (
� � � � �

):

� � � � � 

	 � � � 
 � � � � � 	����

NB: generalizes to generic transpose [OR04]

. . . and exponentials

Multiple-key decomposition / synthesis:
�
� � ���

�� � � �


 ��� � ��
����
�� � ��� � ��� �


�
 ��� � ��� � 

�� � 
�� 
 � 
 �


 �
�

� ��
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Calculating abs/reps

Altogether, the downwards isomorphism

�� 
 � 
 
 ��� � � � 
 �

is a convenient shorthand for a less readable pointwise abstraction
invariant:

� � 
�� 
 � 
 
 � � � � � 
 � � ���
� �

. . . relational calculus . . .
�



	 � � � �
dom

� � � �
dom


 � 	 � 	 � 

	 � � � � � 	 �

NB: thanks to generic transpose, notation
�

extends to other classes of
relation.

Converse of simple is injective

� � ����� ��� �
	 ���
isomorphism 


��� � � ��� �
above 


	 ��� � ���
�� �

isomorphism is
	 ��� � 


	 ����� ��� �

12



Refinement by decomposition

� ����� � ���
���
’ping simple relations:

� � �
�

� 
 
 ���
� � � 
 �

�
� �

� ����� ���

��� ��� �
	 � �
where 	 � � � �
������ 
�� �� 
 � ��� 
�� �� 
 � �

� ����� ��� ������ 	 � �
�

��� � � � � ��� �

where, for injective � ,

�
� � ������ 
 ��
 � 
 
 
 � � �

Refinement by decomposition


 � � � �
�

� 
 
 ���
� � � 
 �

�
� �

� � ������� ���

������� ���
where

� � ������� ��� � 	 
 � � � 
 � � 
 � �� 
 � �
������� ��� � � 
 
�
 ��� 
 � � 
 � � 
 ���

NB:
������� ��� 
 � � ������� ��� �����

, since img
� � �

img
� � �����

.

Refinement by decomposition

Nested simplicity:


�� � 
 �
� � ��� � � 
 
��

�
� � � 
 �

�

 ��� � ���

� � ����� ���

����� ���
Definitions of ������� � and  � ������� � to follow from next slide’s
calculation
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Calculation

����� � ��� � ��� � �
�� ��� �
	���
 transpose �

������� � ��� � ������� � �
� ��� �
	���
 -(right)strength is involved in the abstraction �

����� ��� � � � ��� � ��� �
�� � splitting �

��� ��� � � � � ��� � � �
�� ��� �
	���
 transpose and above �

��� � � � � � ��� � � � �

Getting away with finite lists

Several other



laws, eg.

� � 
 �
�

� �

� ��� � ��� �"���

� � � �
such that, for instance,

� ��� � ��� �"��� � � � 	 � � � � � 
 � � � � � 

	 � � � � 
 � ��� � �
� � � � � 
 � � ��� � � 

	 ����� � � 
 � ����� � � � � � � 	 � � �

Getting away with recursion

Given
� � �� �!� �

� � �

���
one has

� � 
 
 �#" � " �
$ %'& (
)�*�+-,/.10 0

� "

�
for " a data type of “heap addresses”, or “pointers”, such that " �� � �

.

14



Abstraction function

� Main rôle in representation is played by simple � -coalgebra
� " � " , understood as a (finite) piece of “linear storage”, a “heap”
or a “database” file.

� �
(recall

�
notation from above), of type


 � � � " � ����������	 , is
nothing but the � -anamorphism combinator:

� � � 
 � � �
���

"

��


�#"


� 
 ��
 �
� � � 
 � � ��

 � � 	��
��� 
 
 � 	 � 
 


Partiality of implementation

Abstraction invariant
� � � 
 
 ��� �

— that is,
� � 
 ��
 � �

— will hold only if
� � �

dom



, and
� the accessibility relation for




" "
���

��� ������ � � 
 


is well-founded and closed ( " � "
� �

is the membership of � .)
( Many details omitted here! )

Back to the
����������� �"!$#

example

Since

� � � ��� �&% ��� � � 	�� 
 � � � ��� � � � � � ��� � � 	 � �

we have:

� � � ��� �&% ���

 �

remove recursion
�


�
 � � � ��� � � � � � ��� � � " � � � " � � "

 �

remove finite lists
�


�
 � � � ��� � � � � � ��� � � 
 " �
� � ���

� " � � "
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Example continued


 �
recall


 � � � �
�

� 
 
 � �
� � � 
 �

�
� � �


 � � � ��� �
� " � � 
�
 � � � ��� � � 
 " �

� � ���
� " � � "


 �
remove nested �

�

 � � � ��� �

� " � � 
 � � � ��� � � " � � 
 " �

 � � � " ��� � "

�� � � � � �� � � �

 � � � ��� �

� " � � � 
 " �

 � � � " ��� � "

�� �
recall


 �
�

� � 
 �� �
� � ��� �


 � � � ��� �
�

 � � " ���

$ %/& (
����� 
���� �

� 
 " �

 � � � " ���

$ %/& (
	�

����	 ����� ��� �

� "

Conclusions

� Database schema design as a special case of “do it by calculation”
data refinement

� Calculational alternative to state-of-the-art casuistic practice
stemming from set-theoretic “normalization theory”

� Many more laws available, eg.
�
�

� �� � �
cf.

newtype Set a = MkSet (FiniteMap a ())

in the FiniteMap / Set.lhs Haskell libraries.
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