Calculate databases with 'simplicity'

J.N. Oliveira DI/U.Minho 🗘 \land Braga, Portugal

> IFIP 2.1 #59 Meeting, Nottingham, UK

> > September 2004

Abstract

- Effort to replace "à la Codd" database schema design (normalization etc) by **calculation** based on simple (dually, injective) binary relations.
- Simple relations relevant because database entities can be modelled as finite such relations.
- (Pointfree) calculus simpler to use than the standard theory.
- Generic result which enables the refinement of recursive data models
- Prospect of automatic SQL generation (using Strafunski / Haskell) based on results so far.

Motivation

- SQL data-processing standard "de facto"
- XML abstract syntax "made popular"
- Can XML be trusted as a data-storage technology?
- Ad hoc XML \leftrightarrow SQL conversion
- Need for reliable XML ↔ SQL data exchange technology

Example

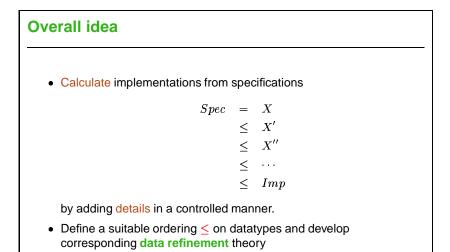
```
(Haskell instead of XML, if you don't mind):
```

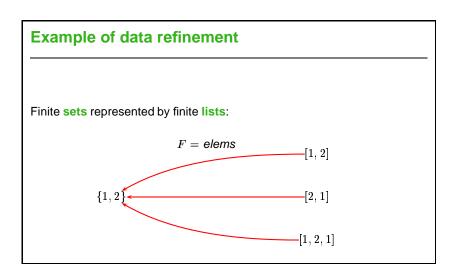
type StringExp = Exp String String

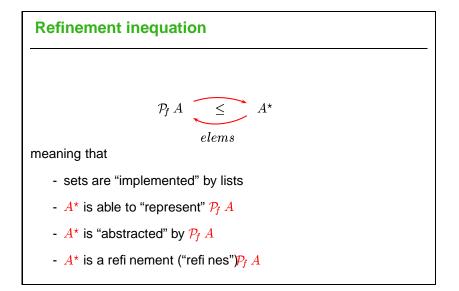
data Exp v o = Var v | Term o [Exp v o]

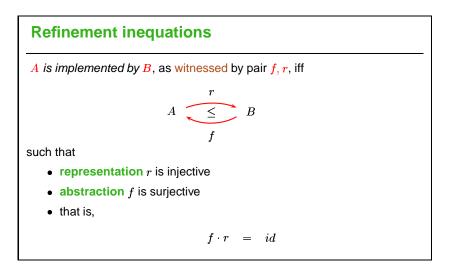
How do you SQL-archive StringExp data?

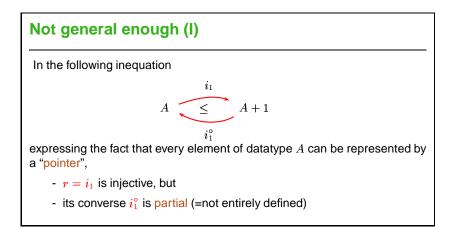
```
Example — SQL
   CREATE TABLE SYMBOLS (
          Symbol CHAR (20) NOT NULL,
          Nodeld NUMERIC (10) NOT NULL,
          IfVar BOOLEAN NOT NULL
          CONSTRAINT SYMBOLS_pk
                   PRIMARY KEY(NodeId,IfVar)
          );
   CREATE TABLE EXPRESSIONS (
          FatherId NUMERIC (10) NOT NULL,
          ArgNr NUMERIC (10) NOT NULL,
          ChildId NUMERIC (10) NOT NULL
          CONSTRAINT EXPRESSIONS_pk
                   PRIMARY KEY (FatherId,ArgNr)
          );
Can you rely on this implementation?
```

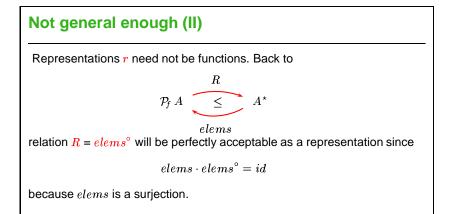


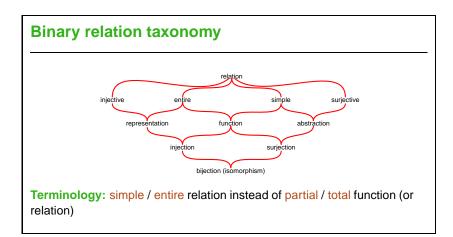


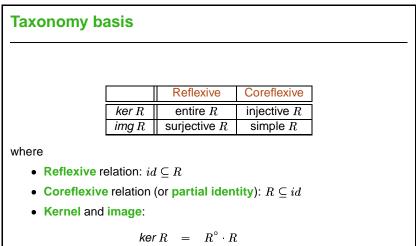




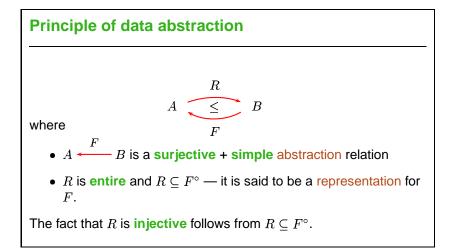






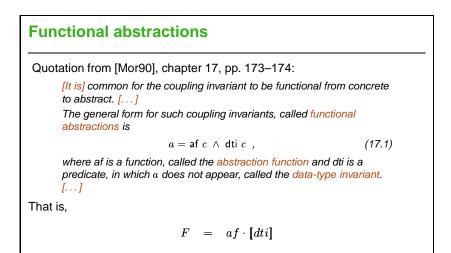


$$\operatorname{img} R = R \cdot R^{\circ} \quad (= \operatorname{ker} (R^{\circ}))$$



Summary			
ke	er $R = id$	entire $R \land$ injective R	representation R
im	gF = id	surjective $F \land$ simple F	abstraction F
It follows t	hat R is a I	ight-inverse of <i>F</i> , that is	
		$F\cdot R = id$	
This is pro	oved by circ	ular inclusion	
		$F\cdot R\subseteq id\subseteq F\cdot R$	
in the nex	t slide.		

Right invertibility
$$F \cdot R \subseteq id \land id \subseteq F \cdot R$$
 \equiv $\{img F = id and ker R = id\}$ $F \cdot R \subseteq F \cdot F^{\circ} \land R^{\circ} \cdot R \subseteq F \cdot R$ \equiv $\{converse of right conjunct\}$ $F \cdot R \subseteq F \cdot F^{\circ} \land R^{\circ} \cdot R \subseteq R^{\circ} \cdot F^{\circ}$ \leftarrow $\{(F \cdot) and (R^{\circ} \cdot) are monotonic\}$ $R \subseteq F^{\circ} \land R \subseteq F^{\circ}$ \equiv $\{R \subseteq F^{\circ} \text{ is assumed}\}$ TRUE



Functional abstractions

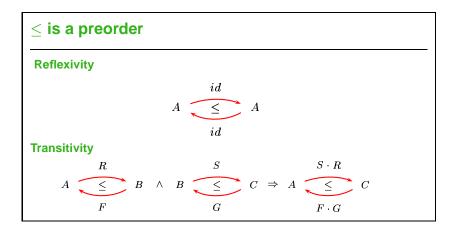
 Galois abstractions —let R, F := f^b, f be Galois connected functions where the connection is perfect on the "abstract side",

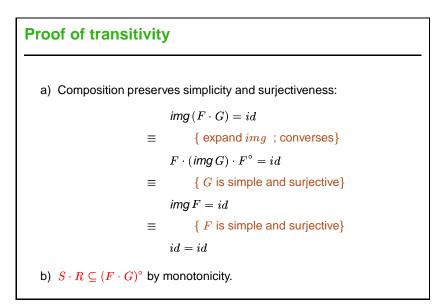
$$f\cdot f^{\flat}=id$$

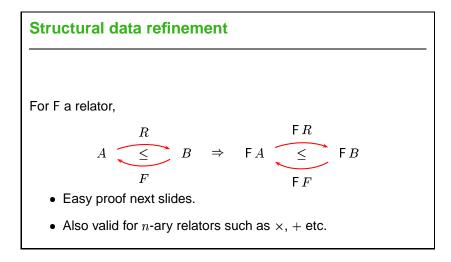
Example: hash-table representation of a data collection [OR04]

• Isomorphisms —

$$A \xrightarrow{r} B \quad \text{such that} \quad r = f^{\circ}$$



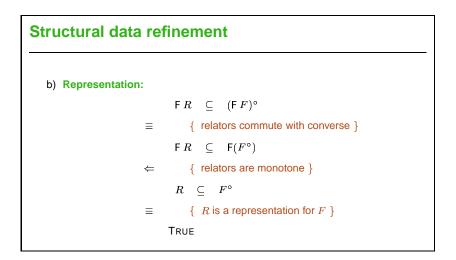


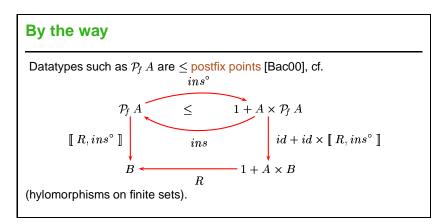


Structural data refinement

a) Abstraction:

img(F F) $= \{ image definition ; relators commute with converse \}$ $(F(F^{\circ})) \cdot (F F)$ $= \{ relators commute with composition \}$ $F(F^{\circ} \cdot F)$ $= \{ F \text{ is an abstraction } \}$ F id $= \{ relators commute with id \}$ id



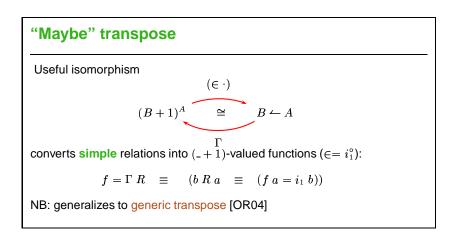


Abstract database models

- A relational database is a tuple of finite relations
- Finite simple relations model many-to-one (M:1) relationships (inc. primary key relationships)
- Finite **simple+injective** relations model one-to-one (1:1) relationships

Notation:

- *B* ← *A* : all simple relations from *A* (the key) to *B* (the data of interest) —cf. (if also finite) FiniteMap a b in Haskell, map *A* to *B* in VDM-SL.
- B ↔ A : all injective relations from A to B —cf. (if also finite and simple) inmap A to B in VDM-SL,



$\begin{array}{l} \dots \text{ and exponentials} \\ \hline \text{Multiple-key decomposition / synthesis:} \\ & \cong & A \leftarrow B \times C \\ & \cong & \{ \ \Gamma \ \} \\ & & (A+1)^{B \times C} \\ & \cong & \{ \ curry \ \} \\ & & ((A+1)^C)^B \\ & \cong & \{ \ (\in \cdot)^B \ \} \\ & & (A \leftarrow C)^B \end{array}$

Calculating abs/reps

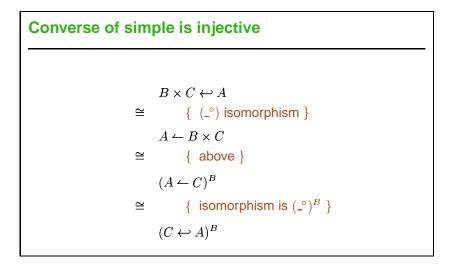
Altogether, the downwards isomorphism

 $(\in \cdot)^B \cdot curry \cdot \Gamma$

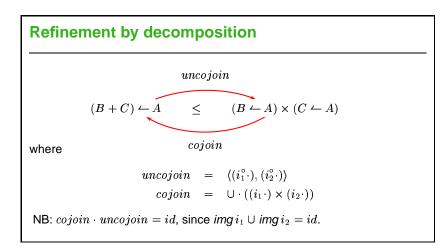
is a convenient shorthand for a less readable pointwise abstraction invariant:

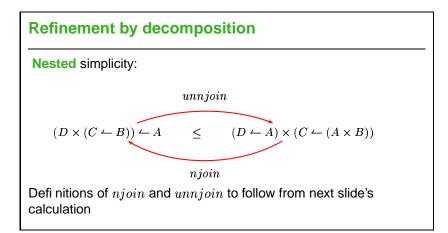
 $\overline{S} = (\in \cdot) \cdot (curry(\Gamma S))$ $\equiv \{ \dots \text{ relational calculus } \dots \}$ $(b,c) \in \operatorname{dom} S \equiv c \in \operatorname{dom}(\overline{S} b) \wedge S(b,c) = \overline{S} b c$

NB: thanks to generic transpose, notation \overline{S} extends to other classes of relation.

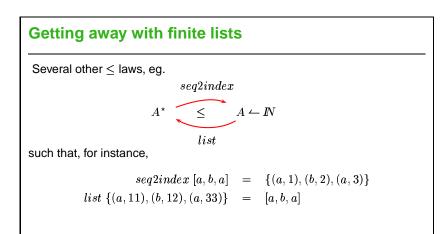


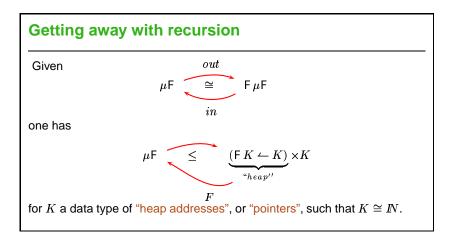
Refinement by decomposition Zip/unzip'ping simple relations: unjoin $B \times C \leftarrow A$ \leq $(B \leftarrow A) \times (C \leftarrow A)$ where $join = \langle \neg, \neg \rangle$ $\langle R, S \rangle$ $\stackrel{\text{def}}{=}$ $(\pi_1^\circ \cdot R) \cap (\pi_2^\circ \cdot S)$ unjoin $\stackrel{\text{def}}{=}$ $\langle \pi_1 \leftarrow id, \pi_2 \leftarrow id \rangle$ where, for injective f, $g \leftarrow f \stackrel{\text{def}}{=} (g \cdot) \cdot (\cdot f^\circ)$





Calculation $(D \times (C \leftarrow B)) \leftarrow A$ $\cong \{ Maybe \text{ transpose } \}$ $((D \times (C \leftarrow B)) + 1)^A$ $\leq \{ Maybe \text{-(right)strength is involved in the abstraction } \}$ $((D + 1) \times (C \leftarrow B))^A$ $\cong \{ \text{ splitting } \}$ $(D + 1)^A \times (C \leftarrow B)^A$ $\cong \{ Maybe \text{ transpose and above } \}$ $(D \leftarrow A) \times (C \leftarrow A \times B)$





Abstraction function

- Main rôle in representation is played by simple F-coalgebra
 F K ← K, understood as a (finite) piece of "linear storage", a "heap" or a "database" file.
- *F* (recall *F* notation from above), of type (μF ← K)^(F K ← K), is
 nothing but the F-anamorphism combinator:

Partiality of implementation

Abstraction invariant t = F(H, k) —that is, $t = (\overline{FH})k$ —will hold only if

- $k \in dom H$, and
- the accessibility relation for H

$$K \xleftarrow{\prec_{H}} K$$
$$\prec_{H} \stackrel{\text{def}}{=} \in_{\mathsf{F}} \cdot H$$
is well-founded and closed ($K \xleftarrow{\in_{\mathsf{F}}} \mathsf{F} K$ is the membership of F.)
(Many details omitted here!)

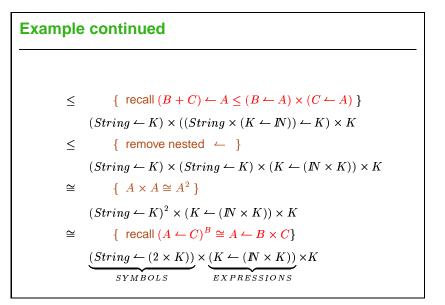
Back to the *StringExp* **example**

Since

$$StringExp = \mu X.(String + String \times X^{\star})$$

we have:

$StringExp \\ \leq \{ \text{ remove recursion } \} \\ ((String + String \times K^*) \leftarrow K) \times K \\ \leq \{ \text{ remove finite lists } \} \\ ((String + String \times (K \leftarrow \mathbb{N})) \leftarrow K) \times K \end{cases}$



Conclusions

- Database schema design as a special case of "do it by calculation" data refinement
- · Calculational alternative to state-of-the-art casuistic practice stemming from set-theoretic "normalization theory"
- Many more laws available, eg.

 $1 \leftarrow A \cong \mathcal{P}A$

cf.

newtype Set a = MkSet (FiniteMap a ())

in the FiniteMap / Set.Ihs Haskell libraries.