
From boilerplated requirements to Alloy: half-way
between text and formal model

Daniel Cadete, Alcino Cunha, José M. Faria,
José N. Oliveira and André Passos

Techn. Report TR-HASLab:04:2012

Jul. 2012

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt

TR-HASLab:04:2012
From boilerplated requirements to Alloy: half-way between text and formal model
by Daniel Cadete, Alcino Cunha, José M. Faria,

José N. Oliveira and André Passos

Abstract

Getting system requirements right is still one of the highest challenges in critical
systems development. Having different kinds of stakeholders involved demands
for a common language of communication, which hinders the use of formal lan-
guages.

This document presents an approach that links natural language requirements
and formal languages through boilerplates — a set of predefined templates with
gaps to fill. The methodology is supported by PROVA, a tool that automatically
translates the (boilerplated) requirements into Alloy, enabling early detection of
ambiguities and inconsistencies through model checking.

From boilerplated requirements to Alloy: half-way
between text and formal model

Daniel Cadete, Alcino Cunha, José M. Faria,
José N. Oliveira and André Passos

Jul. 2012

Abstract

Getting system requirements right is still one of the highest chal-
lenges in critical systems development. Having different kinds of
stakeholders involved demands for a common language of commu-
nication, which hinders the use of formal languages.

This document presents an approach that links natural language
requirements and formal languages through boilerplates — a set of
predefined templates with gaps to fill. The methodology is supported
by PROVA, a tool that automatically translates the (boilerplated) re-
quirements into Alloy, enabling early detection of ambiguities and in-
consistencies through model checking.

1

From boilerplated requirements to Alloy: half-way
between text and formal model

Daniel Cadete1, Alcino Cunha1, José M. Faria2, José N. Oliveira1, and André
Passos2

1 High Assurance Software Lab / INESC TEC, Univ. Minho
{dcadete,alcino,jno}@di.uminho.pt haslab.di.uminho.pt

2 Educed Lda, Portugal
{jmf,abp}@educed-emb.com www.educed-emb.com

Abstract. Getting system requirements right is still one of the highest challenges
in critical systems development. Having different kinds of stakeholders involved
demands for a common language of communication, which hinders the use of
formal languages. This paper presents an approach that links natural language
requirements and formal languages through boilerplates – a set of predefined
templates with gaps to fill. The methodology is supported by PROVA, a tool that
automatically translates the (boilerplated) requirements into Alloy, enabling early
detection of ambiguities and inconsistencies through model checking.

1 Introduction

Behavior failures in mission- or safety-critical systems may have very severe
consequences. Thus developing and verifying these kinds of system poses sig-
nificant challenges to engineers. Considerable effort has been put into software
verification and source code testing. Yet, contrary to the general public percep-
tion, most software failures are not due to bugs introduced in the coding stage:
by far, the largest class of serious software problems can be traced to errors
made in the eliciting, specification, and analysis of requirements [4].

A key source for mistakes arises from the fact that requirements Instead,
they are written by system experts and exchanged among the different stake-
holders of the project in natural language. Quite easily, requirements texts are
not clear and developers misinterpret them.

Much research has been carried out to develop techniques that trim down
ambiguity and lack of precision in requirements documents. Notable examples
include works in the automatic evaluation of the quality of the requirements
text [8], in the identification of patterns leading to ambiguity [5], procedures for
rewriting requirements [7], and definition of controlled languages for require-
ments specification [6]. These approaches are valuable for improving the way
requirements are written and communicated between stakeholders. They miss,
however, to evaluate the correctness of the specified requirements.3

3 The work in controlled natural languages is admittedly too broad to survey in a few
words; for an excellent starting reference please refer to http://sites.google.com/

The introduction of formal technologies in the global process can provide
rigorous and machinery support for correctness verification, identifying incon-
sistencies, ambiguities, and omissions. Their adoption in industry faces, how-
ever, a number of difficulties. Above all and most referred, the average soft-
ware analyst is illiterate in formal methods4. This paper proposes a technique
for formalizing requirements while hiding this complexity from the user, who
keeps writing the requirements in natural language form. The idea is to com-
bine the use of so-called boilerplated text [2] with formal modeling, enabling
early detection of ambiguities and inconsistencies through model checking. The
methodology is supported by PROVA, a tool that automatically translates the
(boilerplated) requirements into Alloy [3].

2 Approach: Boilerplated requirements

Deriving computer programs from textual requirements remains a challenging
and error-prone activity despite the many attempts to (semi)automate the pro-
cess. The gap between what the user requires and the final code

Requirements // Code

simply is too wide, creating a space for misinterpretation. It is generally ac-
cepted that such a gap should be split into two shorter paths by putting an ab-
stract model of the system to be designed in between:

Requirements // Abstract model // Code

Such an intermediate step can be achieved with variable degree of formality,
be this a mathematical model, a UML collection of diagrams, or other. Many
will find the first step still too hard, calling again for something in between.
Boilerplated text [2] can be of help in this respect, leading to:

Requirements // Boilerplates // Abstract model // Code (1)

In a sense, a boilerplate is nothing but parametric text (i.e. text with placehold-
ers to be filled in) bridging the gap between unconstrained and semi-formal
expression. While reducing ambiguity, it offers a stable ground for automatic
translation to formal notation, while keeping the natural language appearance.

Building a suitable and comprehensive boilerplate repository remains a chal-
lenge. The rationale in [2] is to find (statistically) frequent patterns in textual
requirements. This leaves, however, still open the problem of generating models
or code from such a framework. The alternative we propose relies on finding
such patterns not in textual data but rather in formal models:

site/controllednaturallanguage, or the annual conference in the field, http:
//attempto.ifi.uzh.ch/site/cnl2012.

4 Even when tools are available alleviating the burden of understanding a formal method, very
often the formulæ which encode the problem are too complex, as well explained in [1].

Requirements
(free text)

// Boilerplates
(constrained text)

��

Code
(or UML/OCL, etc)

Formal models
(eg. Alloy)

ii 44OO

We identify repetitive formal specification patterns in modeling languages
and derive boilerplates from them. Clearly, this method calls for expertise in
formal methods, but once a boilerplate is enrolled in the repository one knows
that (a) it corresponds to an abstract model proved useful, and (b) the derivation
of such a model from instances of the boilerplate is ensured by construction.

In the current paper we adopt Alloy [3] as our formal language and main in-
spiration for boilerplate construction. Its simplicity reduces pattern inspection a
great deal and captures both ontological/structural aspects and dynamic require-
ments. Alloy’s navigation style emerging from its “dot join” notation is much
closer to natural language than quantifier-full sentences in first order logic. Al-
loy also enables model checking, a way to grant early feedback to the user.

3 Boilerplates Repository
The proposed boilerplates can either be structural, declaring the entities in the
domain and relationships between them, or behavioral, specifying how the de-
clared relationships should behave over time. Currently, structural boilerplates
follow the grammar:

structural ::= every entity shall have [mult] [fixed] [attribute] entity
| quantifier entity shall contain [mult] [fixed] [attribute] entity
| quantifier entity is a entity
| quantifier entity shall be able to action entity

mult ::= one | at most one | some
entity ::= noun, attribute ::= adjective | noun, action ::= verb

The following relationships are taken into account: association (shall have);
composition (shall contain); generalization (is a). Associations and com-
positions can optionally be declared as immutable (fixed), and be given an
explicit attribute name and multiplicity. We also allow the specification of a
capability (shall be able to), meaning that an entity can somehow act upon
another entity. Structural boilerplates are translated to Alloy as follows:

Jevery e1 shall have m fixed a e2K ≡ sig e1 { a : JmK e2 }
sig e2 { }

Jevery e1 shall have m a e2K ≡ sig e1 { a : e2 JmK→ Time}
sig e2 { }

Jevery e1 shall contain m fixed a e2K ≡ sig e1 { a : JmK e2 }
sig e2 { e1 : lone e1 }
fact { e1 = ˜e2 }

Jevery e1 shall contain m a e2K ≡ sig e1 { a : e2 JmK→ Time}
sig e2 { e1 : e1 lone→ Time}
fact { all t : Time | e1.t = ˜(a.t) }

Jq e1 is a e2K ≡ sig e1 extends e2 { }
sig e2 { }

Jevery e1 shall be able to a e2K ≡ sig e1 { a : e2 lone→ Time}
sig e2 { }

Translation of multiplicities is trivial and is omitted. We only present the
translation of boilerplates with an explicit attribute name. If not present, the
name of the targeted entity is used as default. The rules only describe how each
boilerplate is translated in isolation. The results of translating different boiler-
plates are then combined with a coalesced sum operator ⊕ that, among other
things, merges different declarations for the same signature, as exemplified be-
low:

sig A { r : B }
sig B { } ⊕ sig A { s : C }

sig C { } =
sig A { r : B, s : C }
sig B, C { }

sig A { r : B }
sig B { } ⊕ sig A { r : C }

sig C { } =
sig A { r : B + C }
sig B, C { }

One of the hallmarks of Alloy is it simplicity. In particular, there is no pre-
defined syntax to model dynamic behavior, and the atoms that populate model
instances are all immutable. A typical workaround to this limitation is to in-
troduce a special signature to identify global system states (or different points
in time). Then, to specify a mutable relation an extra state (or time) column is
added to its signature. Following this strategy, we will introduce a special sig-
nature Time in the generated model. To model traces, we will use a predefined
Alloy model to impose a total order on Time atoms.

To exemplify in more detail, the translation of a composition boilerplate is
as follows: besides the relation between a component and its part, we also intro-
duce a contained relation from the part to its component with the name of the
former, allowing us to unambiguously mention it in the behavioral requirements.
This relation must be simple, i.e. have multiplicity lone, since a part cannot be
shared between components, and should be symmetric in relation to the con-
tains relation. If the composition is mutable, both these relations are extended
with Time and the aforementioned constraints become invariants over execu-
tion traces. As an example of composition consider the following requirement
on channels:

JEvery Channel shall contain MessagesK ≡
sig Channel {message : Message set→ Time }
sig Message { channel : Message lone→ Time }
fact { all t : Time | channel .t = ˜(message.t) }

The behavioral boilerplates are inspired by the popular navigational style
of Alloy, where the most common constraints enforce the cardinality or inclu-

sion of sets computed by navigating using the relational composition operator.
This navigational style is elegantly captured in English by the possessive form,
leading to the boilerplates described in the following grammar:

behavioral ::= lset shall [not] be ([in] the rset | empty)
lset ::= every (entity | attribute) {attribute}

| the attribute {attribute} of the lset
rset ::= the (entity | attribute) {attribute}

| the attribute {attribute} of the rset
entity ::= noun, attribute ::= adjective | noun | verb

We allow possessive forms to be constructed both with the possessive apos-
trophe or preposition of. Likewise to structural boilerplates, the grammar de-
scribes the actual boilerplates as passed to the translation layer. For instance,
the usage of the possessive apostrophe is irrelevant for the translation to Alloy
and, although enforced by PROVA, is omitted from the grammar and erased
prior to translation. For improved readability, we also allow an attribute to be
followed by its target entity, but again these elements are erased before trans-
lation. Reference to a capability in a behavioral boilerplate should resort to the
past participle, this being also replaced by the original verb before translation.
Behavioral requirements can be translated to Alloy as follows:

Jl shall be rK ≡ fact { all t : Time, JlKε = JrK}
Jl shall be in rK ≡ fact { all t : Time, JlKε in JrK}

Jl shall not be rK ≡ fact { all t : Time, JlKε ! = JrK}
Jl shall not be in rK ≡ fact { all t : Time, JlKε not in JrK}

Jl shall be emptyK ≡ fact { all t : Time, JlKno}
Jl shall not be emptyK ≡ fact { all t : Time, JlKsome}

Jthe a1 . . . al of every lKm ≡ Jevery l a1 . . . alKm

Jthe b1 . . . bn of the rK ≡ Jthe r b1 . . . bnK
Jevery e a1 . . . alKm ≡ x : e , y : x.Ja1K.Jal−1K |m y.JalK
Jevery a a1 . . . alKm ≡ y : univ.JaK.Ja1K.Jal−1K |m y.JalK

Jthe e b1 . . . brK ≡ x.Jb1K.JbrK
Jthe b b1 . . . brK ≡ univ.JbK.Jb1K.JbrK

JaK ≡
{

a if a immutable
a.t otherwise

Translation of possessives formed with of are reduced to the case of se-
quences of attributes separated by the possessive apostrophe. For the moment,
we only allow the specification of invariant behavior. Thus, all generated facts
begin with an universal quantification over Time. Mutable relation identifiers
will then be projected over this quantified variable. Sequences of attributes are
essentially translated using composition. Should the lhs sequence begin with
an entity an universally quantified variable x is introduced in the context to be
reused in the translation of the rhs if the same entity is again referred to (al-
though our context free grammar does not mention it, a different entity cannot
be mentioned in the rhs). An example of such behavioral requirement is the
following on channels of a partition kernel:

JThe destination of every Channel ′s messages shall be
the partition of the Channel ′s destinationK ≡

all t : Time | all x : Channel , y : x.(message.t) |
y.destination = x.destination.partition

If the lhs does not begin with an entity, then we just get the all range of the
relation modeling the first attribute by precomposing it with the universal set
univ . To translate requirements that test the cardinality of a set, the translation of
the lhs receives an extra argument (in superscript) denoting the the multiplicity
test that should be inserted. If the boilerplate is an inclusion (or equality) test,
this parameter is set to nil. A possible example is

JThe channel of every sent Message shall be emptyK ≡
all t : Time | all x : univ.(send .t) | no x.(channel .t)

Notice the usage of the target entity of the capability to enhance the sen-
tence. As explained above, this is erased prior to the translation by PROVA.

4 Summary and Current Work
It is largely recognized by industry that the price of correcting an error grows
exponentially in later life-cycle stages and that detecting and correcting errors
at the requirements stage is of very high value. PROVA offers the translation
from boilerplated requirements to Alloy. We claim that Alloy’s navigational
style offers a language with greater proximity to natural language than, e.g.,
first order logic. Ongoing work includes further development of boilerplates
for dynamic behavior, namely through boilerplates that constrain valid traces in
Alloy and correspond directly to LTL formulæ in Temporal Alloy.

References
1. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-

state verification. In Proc. of the 21st international conference on Software engineering, ICSE
’99, pages 411–420, New York, NY, USA, 1999. ACM.

2. M. Elizabeth C. Hull, K. Jackson, and J. Dick. Requirements engineering. Springer, 2005.
3. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-

bridge Mass., 2006. ISBN 0-262-10114-9.
4. D.A. MacKenzie. Mechanizing Proof: computing, risk, and trust. MIT Press, 2001.
5. R. Ramos, E. Piveta, J. Castro, J. Araujo, A. Moreira, P. Guerreiro, M. Pimenta, and R. T.

Price. Improving the quality of requirements with refactoring. In VI Simposio Brasileiro de
Qualidade de Software - SBQS2007, Porto de Galinhas, 2007.

6. C. Videira and A. R. da Silva. Patterns and metamodel for a natural-language-based require-
ments specification language. In O. Belo, J. Eder, J. F. Cunha, and O. Pastor, editors, CAiSE
Short Paper Proceedings, CEUR Workshop Proceedings. CEUR-WS.org, 2005.

7. K. S. Wasson. Clear requirements: improving validity using cognitive linguistic elicitation
and representation. PhD thesis, Charlottesville, VA, USA, 2006. Adviser-Knight, J.

8. W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated quality analysis of natural
language requirement specifications. In Proceeding of the PNSQC Conference, 1996.

