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Universidade do Minho

Computing theories refactoring via the PF-transform:
the data dependency case study

Sumário da lição de sı́ntese preparada para provas de Agregação nos termos do Decreto-Lei n.o

239/2007 de 19 de Junho.

Braga, Dezembro de 2008



ii



Computing theories refactoring via the PF-transform: the

data dependency case study

José Nuno Fonseca de Oliveira

Dezembro de 2008

iii



iv



Contents

About this Document vii

1 Introduction 1
1.1 Need for transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introducing the PF-transform 4

3 Related Work 6

4 Applying the PF-transform to data dependency 7

5 Two generic (pointfree) definitions 11

6 Calculating with pointfree functional dependencies 13

7 Calculating with pointfree multivalued dependencies 15

8 Epilogue 16

9 Conclusions 17

10 Future Work 18

References 19

A Appendix 22

v



vi



About this Document

Portuguese Act 239/07 dated June 19th, 2007, establishes conditions for academics to obtain the “Agrega-
ção” title, a degree in the Portuguese academic system comparable to the Habilitation in other European
countries.

According to clause (c) of article 5 and number 4 of article 13 of the same act, a seminar or lecture must be
delivered by the candidate, addressing a topic in the scope of the chosen field of knowledge or specialization
area. This talk is part of an examination process which should assess the merit of the scientific work of the
candidate, his/her research skills and his/her ability to carry out independent research.

This document is provides the summary of the intended lecture required by clause (c) of article 8 of Act
239/07. The topic chosen for the lecture has to do with recent research concerns and teaching efforts of the
candidate. In broad terms, the talk will address an area of fundamental interest to the success of software
engineering as a scientific body of knowledge: the ability to calculate programs from abstract models. More
specifically, it focuses on a particular theory of great relevance in computing since it started three decades
ago: data dependency theory used in relational database design.

This two-tiered structure of the talk is intended for an audience of both specialists and non-specialists.
Readers are referred to an accompanying paper [35] recently submitted to an international journal in the
field, for many technical details which are omitted for economy of presentation.

For a detailed explanation of the antecedents of the approach and pedagogical considerations on how to
incorporate it in computing curricula, based on the local experience at Minho University in the last twenty
years, readers are also referred to “twin” report [32] submitted for the fulfillment of clause (b) of article 5 of
Act 239/07.
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1 Introduction

“Certaines personnes ont [l’affectation] d’éviter en apparence toute espèce de calcul, en
traduisant par des phrases fort longues ce qui s’exprime très brièvement par l’algèbre, et ajoutant
ainsi à la longueur des opérations, les longueurs d’un langage qui n’est pas fait pour les ex-
primer. Ces personnes-là sont en arrière de cent ans.”

Evariste Galois (1831)

This lecture has to do with the foundations of software engineering. Why bother about such founda-
tions? To begin with, let us inquire ourselves about the phrase software engineering itself. The terminology
seems to date from the Garmisch NATO conference in 1968, from whose report [26] we quote the following
excerpt:

In late 1967 the Study Group recommended the holding of a working conference on Software Engineering. The phrase
‘software engineering’ was deliberately chosen as being provocative, in implying the need for software manufacture
to be based on the types of theoretical foundations and practical disciplines, that are traditional in the established
branches of engineering.

Provocative or not, the need for sound theoretical foundations has clearly been under concern since the
very beginning of the discipline. However, how “scientific” do such foundations turn out to be, now that
four decades have since elapsed?

In an excellent essay on the origins of scientific technology, Russo [41] establishes a simple criterion to
verify whether a particular technology is “scientific” or not: just check whether one can compile a manual
of exercises for it; if this is not possible, it’s certainly not a scientific body of knowledge. Such a seemingly
naı̈ve principle is made more precise in the following quotation excerpted from [41] and illustrated in Fig. 1:

The immense usefulness of exact science consists in providing models of the real world within which there is a
guaranteed method for telling false statements from true. (...) Such models, of course, allow one to describe and
predict natural phenomena, by translating them to the theoretical level via correspondence rules, then solving the
“exercises” thus obtained and translating the solutions obtained back to the real world. (...) There is, however,
another possibility, much more interesting: moving freely within the theory, and so reaching points not associated to
anything concrete by correspondence rules. From such a point in the theoretical model one can often construct the
corresponding reality, thus modifying the existing world.

It is the second part of this excerpt — which tallies with the witty remark “scientists discover the world that
exists; engineers create the world that never was” by aerospace engineer Theodore Von Karman 1 — that leads
us from science to technology. Put in other words, science is about understanding how (existing) things
work and technology is about ensuring that some desirable (new, or previously unknown) things happen
reliably. Properties of real-world entities are identified which, once expressed by mathematical formulæ,
become abstract models which can be queried and reasoned about.

The recent terminological explosion in the software engineering field rooted on the word “model” 2

clearly tells software designers aware of the relevance of (abstract) modeling. However, is such an emphasis
on modeling enough to entrust software design as a scientific technology? Certainly not, the main problem
residing in the fact that it is hard (if not at all impossible) to reason about (=“solve exercises” in Russo’s
terms) many such models.

This is surely a handicap of widespread modeling techniques based on (naı̈ve) pictures, such as happens
with entity-relationship (ER) diagrams [12] in database design and with several kinds of diagram in the
UML [11], for instance. By contrast, Petri nets [40] provide an example of modeling technique based on
pictures (graphs) which do have a theoretical meaning amenable to formal reasoning. However, even in
the golden world of mathematically sound models life is not at all easy. The modeling strategy itself raises
a kind of notation conflict between descriptiveness (ie., adequacy to describe domain-specific objects and

1This remark is quoted from the version of http://www.discoverengineering.org available at the time of writing.
2See for instance UML (=”Unified Modeling Language”), MDE (=”model driven engineering”), MDA (=”model driven architec-

ture”), MBT (=”model-based testing”) and so on.
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Figure 1: Picture extracted from [41] where its caption goes as follows: The role of scientific technology. Dark-shaded circles on the
concrete (lower) plane represent objects from nature or prescientific technology. Their counterparts on the theoretical (upper) plane are linked via
logical deductions (arrows) to many other constructs, which may or may not have a concrete counterpart. Some of these theoretical constructs give
rise, via correspondence rules (dashed lines), to new concrete objects (lightly shaded circles on the lower plane).

properties, inc. diagrams or other graphical objects) and compactness (as required by algebraic reasoning
and calculation “exercises”).

Take the fields of programming language semantics and program refinement, for instance. Both are
expressed in logics rooted on the predicate calculus and naı̈ve set theory, leading to models of both specifi-
cations and programs and to proof rules helping to move from the former to the latter. However, just glance
through a textbook or paper on such subjects and compare the visual aspect of maths displays with those
of a book on physics or engineering mathematics: the former will look far more complex than the latter;
“exercises” won’t be solved by simple and elegant calculations. Altogether, the theories behind software
don’t look smart enough.

What can we do, then, faced with such (apparently) immature theories? What’s our advice to the eager
software practitioner trying to discharge, for instance, a complex proof which emerges from the application
of one such theory to a real-life situation? There are essentially two ways to proceed. One is typical of the
computer age in which we live today: just ask a theorem prover or model checker to help you; the other
(more akin to traditional paper and pencil reasoning) will try and reduce the complexity of the argument
to be proven, so that each step in such a (reduced) proof becomes “size-minded”.

Clearly, such a reduction effort has to go further than merely re-structuring the proof in lemmas and
auxiliary results. The main problem resides in the fact that computer programs, and the formal logics used
to reason about them, involve too “fine-grained” notations which quantify over “too little”. For instance,
suppose one’s problem is to find a program able to perform some particular task, eg. sorting. In the scientific
method, such a program should emerge as solution to some equation prescribing its behaviour (model).
Such an equation would quantify over programs and specs, of course. However, when it comes to doing
the actual work, one is dumped to a lower level of abstraction where variables and quantifiers range over
data values such as linked lists, pointers, array locations and the like. It is at this lower pointwise level that
the models of facts to prove grow too detailed, enormous and unmanageable.

1.1 Need for transforms

The kind of notational problem mentioned just above is not wholly new in the history of science. Elsewhere
in physics and several branches of engineering, for instance, people have learned to overcome lack of cal-
culation agility by changing “mathematical space”, for instance by moving (temporarily) from the t-space
(t for time) to the s-space in the Laplace transformation (fig. 2). Quoting Kreyszig [22], p.242:
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t-space s-space

Given problem

y′′ + 4y′ + 3y = 0
y(0) = 3
y′(0) = 1

//

Subsidiary equation

s2Y + 4sY + 3Y = 3s + 13

��
Solution of given problem

y(t) = −2e−3t + 5e−t

Solution of subsidiary equation

Y = −2

s+3
+ 5

s+1

oo

Figure 2: Example of Laplace transformation (quoted from [22]).

The Laplace transformation is a method for solving differential equations (...) The process of solution consists of three
main steps:

1st step. The given “hard” problem is transformed into a “simple” equation (subsidiary equation).

2nd step. The subsidiary equation is solved by purely algebraic manipulations.

3rd step. The solution of the subsidiary equation is transformed back to obtain the solution of the given
problem.

In this way the Laplace transformation reduces the problem of solving a differential equation to an algebraic prob-
lem.

Note Kreyszig’s notion of complexity reduction: the original problem model reduces to an algebraic model
which is solved by ordinary school algebra. The question arises: is there a s-space equivalent for the predi-
cate calculus?

That the integral/differential calculus and the predicate calculus may have something in common can
be observed by putting, for instance, the following two expressions side by side 3:

〈

∫

x : 0 ≤ x ≤ 10 : x2 − x〉

〈∀ x : 0 ≤ x ≤ 10 : x2 ≥ x〉

However, we cannot infer from this notation analogy that a formal correspondence exists between the two
calculi. What we can do is to try and find an algebraic space such that (a) predicates can be translated into
algebraic expressions; (b) quantifiers disappear along the translation process by imploding into operations
of the target algebraic calculus; (c) the laws in such a calculus share the spirit and shape of school algebra
captured by easy-to-use rules such as eg.

x+ y ≤ z ⇔ x ≤ z − y (1)

3We adopt the Eindhoven quantifier notation and calculus [5, 4] whereby 〈∀ x : R : T 〉 and 〈∃ x : R : T 〉 mean, respectively
“for all x in range R it is the case that T ” and “there exists at least one x in range R such that T ”.
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which enables one to “shift” symbols (eg. y just above) or sub-expressions from one side of an inequality to
the other by changing signs.

Why do we adhere to this kind of rule? Surely there is a cultural factor: such rules have been used for
centuries in calculations, since (at least) the “al-gabr” rule of On the calculus of al-gabr and al-muqâbala by Abû
Al-Huwârizmı̂, the famous 9c Persian mathematician from whose name words such as algebra, algorithm etc.
have been coined.

It was with great excitement that European mathematicians re-discovered this calculation style in the
16c (see eg. [28]) as a kind of transform of classical geometry-explicit reasoning. Much later, “al-gabr”
rules were found to generalize to other areas of mathematical reasoning and became known as Galois
connections [38], after the work of the famous French mathematician. It is only at this stage that their
potential for calculation and genericity are eventually appreciated. For instance, instead of providing an
explicit definition for integer division (eg. as a while-loop or recursive function), one may calculate with its
defining property

〈∀ d, n, q ∈ IN :: q × d ≤ n ⇔ q ≤ n/d〉
n d
r q

(2)

that is, with the “al-gabr” rule (Galois connection) which defines its behaviour. (See [42] for the derivation
of the integer division algorithm based on (2) alone.)

Why can one be so confident of the accuracy of such implicit definition? From school we know that n/d
is the largest whole number q (quotient) such that q × d approximates n, the difference being referred to as
the remainder. Note that this is precisely what (2) means: by reading the equivalence from right to left (⇐)
and substituting q := n/d we obtain q× (n/d) ≤ n meaning that n/d is one such approximation; by reading
it from left to right, we obtain implication q × d ≤ n ⇒ q ≤ n/d, which means that n/d is largest among all
such approximations q.

2 Introducing the PF-transform

Rules such as (2) are not exclusive to number theory. Moving away from numbers, let us consider facts
such as

"a" isPrefixOf "ab"

Archimedes diedIn Syracuse

TRUE ∈ {TRUE, FALSE}

all captured by the idea of a binary relation (between strings, between of people and towns and between
Booleans and sets of Booleans, in the examples given).

No other concept traverses human knowledge more ubiquitously than that of a relation, from philoso-
phy to mathematics, to information systems — think eg. of relational databases — and so and so on. Let us,
in general, write b R a to denote the fact that item b is related to item a in relation R, that is, that pair (b, a)
is in R. Let R · S denote the composition of R and S (read “R · S” as “R after S”) defined in the obvious
way: b(R · S)c holds wherever there exists at least one mediating a such that bRa and aSc both hold.

It is easy to check that R · S has a multiplicative flavour: it is associative (albeit not commutative), it
distributes over the union of two relations (R∪ S) and it has a unit element, the identity relation id defined
in the obvious way: b id a iff b = a. Given such a multiplicative flavour, one may question: is there any
reasonable notion of relation division which one could put in parallel with (2)? It turns out that one just has
to re-interpret ≤ in (2) as relation inclusion and write:

〈∀ X,S,R : : R ·X ⊆ S ⇔ R ⊆ S/X〉 (3)

where X , S and R refer to binary relations. Now, what does S/X mean? By replaying our reading of (2)
above, it will be the largest relation whose pre-composition with X (best) approximates S. Can one write
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this in a more tangible way? It can be shown that S/X is the relation whose pointwise meaning is

a(S/X)b ⇔ 〈∀ c : b X c : a S c〉 (4)

The economy of notation S/X compared to its expansion as a universal quantification is obvious, as hap-
pens with the expansion of relational composition into the existential quantification implicit in its definition,

b(R · S)c ⇔ 〈∃ a :: bRa ∧ aSc〉 (5)

and with that of relation inclusion as another universal quantification:

R ⊆ S ⇔ 〈∀ a, b : b R a : b S a〉 (6)

Note how the right hand sides of the three maths displays above already fulfill one of our wishes
recorded earlier on about a transform for the predicate calculus similar to the Laplace transform: the quan-
tified expressions disappear once variables are dropped, imploding into operators of the target calculus.
Moreover, reasoning about such combinators dispenses with their quantification counterparts: ‘pointfree”
rules such as eg. (3) are enough 4.

The phrase Pointfree transform (or PF-transform for short) will hereafter denote this process of transform-
ing predicate calculus expressions into their equivalent binary relation representations. Given a binary
predicate p(b, a) we will denote by [[p]] the binary relation such that b[[p]]a ⇔ p(b, a) holds, for all suitably
typed a and b. We have a problem, though: how do we transform a unary predicate u into a binary relation?
We just build the relation [[u]] such that

b[[u]]a ⇔ (b = a) ∧ (u a) (7)

holds. That is, [[u]] is the relation that maps every a which satisfies u (and only such a) onto itself. Clearly,
such relation is a fragment of the identity relation: [[u]] ⊆ id.

Relations at most id are referred to as coreflexive relations 5. They are extremely useful in calculations
because they act as data filters. For instance, suppose we need to transform the following variant of (5)

〈∃ a : u a : b R a ∧ a Sc〉

where predicate u establishes the range of the quantification. It can be easily checked that

R · [[u]] · S (8)

is the desired extension to relational composition. Coreflexives can also model sets in the obvious way: the
PF-meaning of a set S is coreflexive [[λa.a ∈ S]], that is,

b[[S]]a ⇔ (b = a) ∧ a ∈ S (9)

4Already in the case of integer division it can be shown that (2) alone is enough to calculate properties such as eg.
(n/m)/d = n/(d × m), for instance, dispensing with suprema reasoning, remainders and the like [43].

5Some standard terminology arises from the id relation: a (endo) relation R (often called an order) will be referred to as reflexive iff
id ⊆ R holds and as coreflexive iff R ⊆ id holds.
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The following table 6

Pointwise Pointfree

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
〈∀ x : : x R b⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦ ·R · g)a

TRUE b ⊤ a
FALSE b ⊥ a

(10)

includes the most common relational operators associated to the PF-transform. Lowercase symbols (eg.
f, g) stand for relations which are functions and R◦ denotes the converse of R, that is, the relation such that
a(R◦)b holds iff bRa holds. (By the way, note that converse is involutive

(R◦)◦ = R (11)

and commutes with composition

(R · S)◦ = S◦ · R◦ (12)

in a contravariant way.) The two variants of division “/” and “\” in (10) arise from the fact that relation
composition is not commutative, the “al-gabr” rule for R \ S being similar to (3):

R ·X ⊆ S ⇔ X ⊆ R \ S (13)

Divisions involving functions can be expressed via composition and converse alone, since h \ R = h◦ · R
and R / h◦ = R · h hold. So, the “al-gabr” rules for functions are easier to express 7

f ·R ⊆ S ⇔ R ⊆ f◦ · S (14)

R · f◦ ⊆ S ⇔ R ⊆ S · f (15)

and bear particular resemblance with school algebra: like numbers in (1), functions can be shifted around
in relational expressions by “changing sign” (which in the relational context means taking converses).

Relations ⊤ (“top”) and ⊥ (“bottom”) are respectively the largest (smallest) relations of their type. But,
what do we mean by the type of a relation? The answer can be found in the section which follows.

3 Related Work

The idea of encoding predicates in terms of relations was initiated by De Morgan in the 1860s and followed
by Peirce who, in the 1870s, found interesting equational laws of the calculus of binary relations [39]. The
pointfree nature of the notation which emerged from this embryonic work was later further exploited by

Tarski and his students [44]. In the 1980’s, Freyd and Ščedrov [16] developed the notion of an allegory (a
category whose morphisms are partially ordered) which finally accommodates the binary relation calculus

6We will drop brackets [[ ]] wherever clear from the context.
7These are often referred to as shunting rules [10].
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as special case. In this context, a relation R is viewed as an arrow (morphism) B A
Roo between sets B

andA, respectively referred to as the target and source types ofR. Composition of such arrows corresponds
to relational composition (5), identity is id, and relational expressions can be “type-checked” by drawing
diagrams such as in category theory.

Such advances in mathematics were meanwhile captured by the Eindhoven computer science school
in their development of program construction as a mathematical discipline [1, 6, 14, 10, 5] enhanced by
judicious use of Galois connections, as already illustrated above.

Our view of this approach as a kind of Laplace transform for logics was first expressed in [29]. Such a
transform (the PF-transform) has henceforth been applied to several areas of the software sciences, namely
relational database schema design [30, 2, 13], hashing [36], software components [7], coalgebraic reasoning
[8], algorithmic refinement [37], data refinement [13, 34], separation logic [46] and extended static checking
[33].

The remainder of the lecture will be devoted to yet another example of application of the PF-transform
which we have been studying since [31] and which we regard as a particularly expressive illustration of
the power of the PF-transform: data dependency theory [25]. This theory, which is at the heart of relational
database design, is pointwise (as most theories in computing are). In [35] we explain how to “re-factor” such
a theory via the PF-transform, leading to a calculational style instead of reasoning about (sets of) tuples in
conventional “implication-first” logic style.

It turns out that the theory becomes more general, more structured and simpler. Elegant expressions
replace lengthy formulæ and easy-to-follow calculations replace pointwise proofs with lots of “· · ·” nota-
tion, case analyses and natural language explanations for “obvious” steps. Pointfree re-factoring also leads
to a generalization of data dependency theory which paves the way to interesting synergies with other
branches of computer science. In the sequel we provide a glimpse of [35] which omits many technical de-
tails in order to retain what really matters: the evidence that computing theories are indeed sharpened by
PF-transformation.

4 Applying the PF-transform to data dependency

In database design, the complex structure of the objects and entities to be modelled demands much on
descriptiveness, thus entailing the need for graphical notations (already mentioned) and verbose program-
ming notations such as Cobol [3] and SQL [20]. When it comes to reasoning about the semantics of such dia-
grams or notations, predicate/temporal logics and naı̈ve set theory are the most common formal resources.
However, such pointwise notations involving operators as well as variable symbols, logical connectives,
quantifiers, etc. are not handy enough for calculations.

In standard relational data processing, real life objects or entities are recorded by assigning values to
their observable properties or attributes. A database file is a collection of such attribute assignments, one
per object, such that all values of a particular attribute (say i) are of the same type (say Ai). For n such
attributes, a relational database file R can be regarded as a set of n-tuples, that is, R ⊆ A1 × . . . × An. A
relational database is just a collection of several such n-ary relations.

Data dependency theory is based essentially on two concepts: that of a functional dependency (FD)
and that of a multi-valued dependency (MVD). Both are central to standard database theory, where they
addressed in an axiomatic way. Maier [25] provides the following definition for FD-satisfiability:

Definition 1 Given subsets x, y ⊆ S of the relation scheme S of a n-ary relation R, this relation is said to satisfy
functional dependency x→ y iff all pairs of tuples t, t′ ∈ R which “agree” on x also “agree” on y, that is,

〈∀ t, t′ : t, t′ ∈ R : t[x] = t′[x] ⇒ t[y] = t′[y] 〉 (16)

(Notation t[a] adopted in (16) means “the value exhibited by attribute a in tuple t”.)
2
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Formula (16), with its logical implication inside a two-dimensional universal quantification, is not par-
ticularly graceful. Designs involving many FDs at the same time would be hard to reason about if based on
(16) alone. This situation gets worse when the more general (and useful) concept of a multi-valued depen-
dency (MVD) is addressed. This is defined by Maier [25] as follows:

Definition 2 Given subsets x, y ⊆ S of the relation scheme S of an n-ary relation R, this relation is said to satisfy
the multi-valued dependency (MVD) x→→ y iff, for any two tuples t, t′ ∈ R which “agree” on x there exists a tuple
t′′ ∈ R which “agrees” with t on x and y and “agrees” with t′ on z = S − xy, that is,

〈∀ t, t′ : t, t′ ∈ R : t[x] = t′[x]
⇓

〈∃ t′′ : t′′ ∈ R : t[xy] = t′′[xy] ∧
t′′[z] = t′[z]

〉

〉 (17)

holds. 2

Reference [9] gives the alternative definition of MVD which follows:

Definition 3 Given subsets x, y ⊆ S of the relation scheme S of an n-ary relation R, let z = S − xy. R is
said to satisfy the multi-valued dependency (MVD) x→→ y iff, for every xz-value ab, that appears in R, one has
Y (ab) = Y (a), where for every k ⊆ S and k-value c, function Y is defined as follows:

Y (c) = {v | 〈∃ t : t ∈ R : t[k] = c ∧ t[y] = v〉}

2

Notation is overly simplified in this definition. In fact, function Y should be equipped with two extra
parameters, attribute k and relation R itself. So, the precise assertion that R satisfies MVD x→→ y is

〈∀ a, b : 〈∃ t : t ∈ R : t[xz] = ab〉 : YR,x(a) = YR,xz(ab)〉 (18)

as is illustrated in the following picture:

x y z

t a c b
t′′ a c b′

t′ a c′ b′

t′′′ a c′ b

(19)

Despite its complexity, the MVD concept is central to one of the main ingredients of relational data
refinement: the principle of lossless decomposition [25] whereby complex data models can be factored into
relational databases. Such a complexity has lead database theorists to develop FD/MVD-theory in an ax-
iomatic style, based on the so-called Armstrong axioms, which can be used as inference rules for such de-
pendencies. Equivalent axioms have been found which make FD/MVD checking more efficient. However,
most database practitioners use this theory while ignoring its foundations. Even textbooks such as [45] and
[17] do not go very deep into the subject. Can this be accepted?

Our approach is to regard such standard set-theory-formulated database concepts as “hard” problems
(in the sense of [22]) to be transformed into “simple”, subsidiary equations dispensing with points and involv-
ing only binary relation combinators. As in the Laplace transformation, these are solved by purely algebraic
manipulations and the outcome is mapped back to the original (descriptive) mathematical space wherever
required.

Note the advantages of this two-tiered approach: intuitive, domain-specific descriptive formulæ are
used wherever the model is to be “felt” by people. Such formulæ are transformed into a more elegant, simple

8



and compact — but also more cryptic — algebraic notation whose single purpose is easy manipulation in
calculations.

First of all, we need to settle some notation. LetR be a n-ary relation with schema S, t be a tuple inR and
a be an attribute in S. Tuples can be regarded as inhabitants of n-dimensional Cartesian products, either in
the standard format (eg. A1 × · · · × An) or in “rich syntax format” equipped with tuple constructors and
selector (field) names, one per attribute. From our perspective, it doesn’t matter which of these alternatives
is adopted, since in both cases attributes are modelled by (projection) functions. Since this view extends
smoothly to collections of attributes, we can regard x and y in (16) as functions and write:

〈∀ t, t′ : t, t′ ∈ R : (x t) = (x t′) ⇒ (y t) = (y t′) 〉

Assuming the universal quantification implicit, we launch PF-transformation as follows:

t ∈ R ∧ t′ ∈ R ∧ (x t) = (x t′) ⇒ (y t) = (y t′)

⇔ { PF-transform rule b(f◦ · R · g)a ⇔ (f b)R(g a) twice (10) }

t ∈ R ∧ t′ ∈ R ∧ t(x ◦ · x )t′ ⇒ t(y ◦ · y )t′

⇔ { (9) twice }

t = u ∧ t[[R]]u ∧ t′ = u′ ∧ t′[[R]]u′ ∧ t(x ◦ · x )t′ ⇒ t(y ◦ · y )t′

⇔ { ∧ is commutative; substitution of equals for equals; coreflexives }

t[[R]]u ∧ u(x ◦ · x )u′ ∧ u′[[R]]
◦

t′ ⇒ t(y ◦ · y )t′

⇔ { going pointfree via composition and relation inclusion (6) }

[[R]] · (x ◦ · x ) · [[R]]◦ ⊆ y ◦ · y

⇔ { rules (14) and (15) }

y · [[R]] · x ◦ · x · [[R]]
◦

· y ◦ ⊆ id

⇔ { converse versus composition (12) followed by (20) below }

img (y · [[R]] · x ◦) ⊆ id

The step just above introduces the image operator on relations

imgR = R · R◦ (20)

which is useful in characterizing two properties of relations: surjectivity, which holds on a relation R wher-
ever imgR is reflexive, and simplicity, which holds wherever imgR is coreflexive.

Based on this terminology, we can restate definition 1 as follows: a n-ary relation R as in definition 1
satisfies FD x→ y iff the y, x-projection of [[R]]

y · [[R]] · x ◦ (21)

is simple.
There is another, even simpler alternative to this pointfree FD definition, which diverts from the calcu-

lation above in the last two steps:

[[R]] · (x ◦ · x ) · [[R]]
◦

⊆ y ◦ · y

⇔ { composition is associative }

([[R]] · x ◦) · (x · [[R]]◦) ⊆ y ◦ · y

9
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Figure 3: Binary relation taxonomy

⇔ { converses (11, 12) }

(x · [[R]]
◦

)◦ · (x · [[R]]
◦

) ⊆ y ◦ · y

⇔ { introduce ordering ≤ defined below (22) }

y ≤ x · [[R]]◦

⇔ { converse of coreflexive is itself (symmetry) }

y ≤ x · [[R]]

The pre-ordering on relations resorted to above,

R ≤ S ⇔ kerS ⊆ kerR (22)

compares the kernels of both relations in reverse order, where

kerR = R◦ · R (23)

provides a measure of how defined and/or injective a relation is. In particular, a relation is said to be entire
(a term preferred to totally defined in the standard terminology [10]) iff its kernel is reflexive and injective iff
its kernel is coreflexive.

Clearly, R ≤ S means that R is less injective or more defined than S, since ker measures both properties. In
case of functions, f ≤ g unambiguously means that f is less injective than g. Therefore, y ≤ x · [[R]] above
will mean that y is less injective or more defined than x pre-conditioned by [[R]] (a coreflexive). But y is
a function and functions are entire (and simple) relations (see the taxonomy of figure 3). In words, R will
satisfy FD x→ y iff attribute y “distinguishes” tuples in R less than attribute x does.

We defer to section 6 the assessment of the calculational advantages of these two pointfree definitions
of a functional dependency and move on to PF-transforming definition 2 of a multi-valued dependence
(MVD). Recall from above that we have two alternative definitions of MVD, as captured by logical formulæ
(17) and (18).

The task of calculating the pointfree transform of (17) is considerably softened by rule (8) given earlier
on, which generalizes relational composition. We remind the reader that x and y are attributes which will
be regarded as projection functions, as will any combination of (sets of) attributes, eg. xy — which is such
that t[xy] = (t[x], t[y]). We address the existential quantification of (17) first:

〈∃ t′′ : t′′ ∈ R : t[xy] = t′′[xy] ∧ t′′[z] = t′[z]〉

⇔ { (8) for u := (∈ R), and so on }

t(kerxy · [[R]] · ker z)t′

Once we insert this in the overall formula,

〈∀ t, t′ : t, t′ ∈ R : t[x] = t′[x] ⇒ t(ker xy · [[R]] · ker z)t′ 〉 (24)

10



we realize it could be PF-transformed into an instance of relational inclusion (6) should the universal quan-
tifier not be bound to range over tuples t, t′ in R. This can be overcome via the following extension to

(6): given two binary relations B A
R,Soo and two predicates ψ and φ (coreflexively denoted by Ψ and Φ,

respectively), then PF-transform rule

〈∀ b, a : (φ b) ∧ (ψ a) : b R a⇒ b S a〉 ⇔ Φ ·R · Ψ ⊆ S (25)

holds.
The application of this rule to (24), for φ = ψ = (∈ R), will yield

[[R]] · (kerx) · [[R]] ⊆ (kerxy) · [[R]] · ker z

which is equivalent to

(xy · [[R]] · x◦) · (x · [[R]] · z◦) ⊆ xy · [[R]] · z◦ (26)

once kernels are expanded via (23) and projection functions are shifted-around via “al-gabr” rules (14, 15)
as much as possible. In this way we obtain diagram

A

xy

��

x
++VVVVVVVVVVVVVVVVV A

[[R]]
oo

x

ttiiiiiiiiiiiiiii

z

��

X

xy·[[R]]·x◦

xxqqqqqqqqqqqqqqqqqq

⊆

X × Y Z
xy·[[R]]·z◦

oo

x·[[R]]·z◦

eeJ
JJ

JJ
JJJ

JJ
J
J
JJ

JJ
J

(27)

which provides an alternative meaning for MVD-satisfiability: relation R will satisfy x →→ y iff projection
xy · [[R]] · z◦ “factorizes” through x, for instance





x y x

t a c a
t′ a c′ a



 ·





x z

t a b
t′ a b′



 ⊆













x y z

t a c b
t′′′ a c′ b
t′′ a c b′

t′ a c′ b′













holding about (19).

5 Two generic (pointfree) definitions

A significant advantage of the allegorical view of relations [16, 10] is the fact that these are typed, that is,
relational expressions can be type-checked and made parametric. So our first efforts go towards generalizing
the types of the PF-terms obtained for both FDs and MVDs in the previous section.

Already in diagram (27) nothing is said about types A,X, Y and Z , the implicit interpretation being that
A is the type of each tuple in R and that this “includes” types X,Y and Z where attribute x, y and z take
values, respectively. But note that diagram (27) still type-checks if [[R]] is replaced by an arbitrary (endo)
relation and x, y and z are regarded as arbitrary functions of the types captured by the arrows. The same
applies to projection (21), where coreflexive [[R]] can actually be generalized to any binary relation R:

11



B

y

��

A
Roo

x

��
C D

y·R·x◦

oo

Altogether, we are led to the following PF-transformed (generalized) notions of FD and MVD, where the
use of “harpoon” arrows (⇀) instead of standard arrows is intended to stress the generalization 8:

Definition 4 Binary relation B A
Roo is said to satisfy the “x⇀y” functional dependency — written x

R
⇀y —

iff the y, x-projection of R, defined

πy,xR
def
= y ·R · x◦ (28)

is simple (Fig. 3) or, equivalently, iff

y ≤ x · R◦ holds, cf. B

y

�� x·R◦

$$JJ
JJ

JJ
JJ

J A
Roo

x

��
C D

(29)

Function x (resp. y) will be mentioned as the left side or antecedent (resp. right side or consequent) of FD x
R
⇀y.

2

Definition 5 Given endo-relation A A
Roo and three functions X A

xoo , Y A
yoo and Z A

zoo ,

multivalued dependency x
R

⇀⇀z y holds (note the subscript z) if and only if

R · (kerx) ·R ⊆ (kerxy) · R · ker z (30)

holds, which is equivalent to

xy · R · x◦ · x · R · z◦ ⊆ xy ·R · z◦ (31)

itself the same as

(πxy,xR) · (πx,zR) ⊆ πxy,zR (32)

cf. (28). For symmetric R 9, (30) can be further re-written into

ker (x · R◦) ⊆ (kerxy) ·R · ker z (33)

As with FDs, x (resp. y) will be referred to as the antecedent (resp. consequent) of MVD x
R

⇀⇀z y. Function z will
be mentioned as the context 10.
2

8See [35] for some technical details left out at this point.
9R is symmetric iff R = R◦. Coreflexives are symmetric.

10The context of the standard definition [25] is fixed to z = S − yx, that is, z embodies all attributes other than x and y.
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6 Calculating with pointfree functional dependencies

Our generalization of FDs to binary relations paves the way to interesting synergies with other notions in
mathematics and computing. Among those presented in [35], we pick up the following, which illustrates,
in this particular context and in a rather simple way, the role of Russo’s dashed lines in fig. 1. The question

is: what does it mean for a function h to satisfy FD f
h
⇀f? The (easy) reasoning steps which follow illustrate

the “al-gabr” style of (exercise like) calculation which for a moment makes us think we are still at school
playing with classical algebra:

f
h
⇀ f

⇔ { (29) }

f · h◦ ≤ f

⇔ { (22, 23) and converses }

h · (ker f) · h◦ ⊆ ker f

⇔ { shift h, h◦ to the right hand side (14, 15) }

ker f ⊆ h◦ · (ker f) · h

⇔ { go pointwise (10) while renaming ker f to ∼f }

〈∀ b, a :: b∼fa ⇒ (h b)∼f(h a)〉 (34)

The renaming in the last step is intended to make explicit the fact that kernels of functions are equiva-
lence relations [35]. Conversely, any equivalence relation can be regarded as the kernel of a (not unique, in
general) function. And (34) can be recognized as the statement that h is compatible with ∼f , that is, that ∼f

is a congruence with respect to h. As shown in [35], this extends to multiple arguments and heterogeneous
compatibility 11, leading us to conclude that functional dependencies extend congruences relationally.

Reference [35] also shows the prominent role of the injectivity preorder (22) in FD PF-calculations, in
particular in generalizing Armstrong’s axioms [25]. An eloquent example is the calculation of axioms F3
(Additivity or Union) and F4 (Projectivity) in a single row, as a linear series of equivalences:

f
R
⇀ gh

⇔ { (29) }

gh ≤ f ·R◦

⇔ { see (35) below }

g ≤ f ·R◦ ∧ h ≤ f · R◦

⇔ { (29) twice }

f
R
⇀g ∧ f

R
⇀h

The fact assumed in the second step is an instance of Galois connection

〈R,S〉 ≤ T ⇔ R ≤ T ∧ S ≤ T (35)

where 〈R,S〉 denotes the pairing of two relations, recall (10). In the case of functions, 〈f, g〉 has the same
meaning as fg, since (a, b)〈f, g〉x equivales a = f x ∧ b = g x. The interested reader will see in [35] how easy
it is to infer (35) and other rules about the ≤ preorder from the laws of standard binary relation calculus.

11Cf. the Σ-congruences of [19].
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PF-transformation makes one aware of the “further structure” of the FD concept which is systematically
ignored by the standard theory due to a too narrow view of things. In particular, because antecedents and
consequents are viewed as sets of attributes, no further structuring of these is considered apart from union
(tupling) and difference. By promoting such attributes to arbitrary functions we can exploit other functional
combinators, eg. composition, parameterization, etc.

Below we provide a sample of facts calculated in [35] which exploit such further structure. The first of
these

x
R
⇀ y ⇔ f · x

R
⇀ f · y ⇐ f is injective (36)

shows that injective functions are left-cancelable in FDs. Another fact exhibits a close relationship between
FDs and (binary) relational projection (28) which enables observer function “trading” between a projection
and a (composite) FD:

h
πg,f R
⇀ k ⇔ (h · f)

R
⇀ (k · g) (37)

A third fact,

x
R
⇀ y ⇔ Fx

FR
⇀ Fy (38)

shows how a parametric type F (relator [6]) can be introduced or removed from a given FD.
Facts (37,38) play not only with antecedents and consequents but also with the target relation R. This

cannot be found in full generality in the standard theory because, once again, relations are viewed as sets
of tuples manipulated by a limited set of operators (eg. intersection, selection, projection etc). Even a fact
as basic as FD composition

f
S·R
⇀ h ⇐ f

R
⇀g ∧ g

S
⇀h (39)

is absent from the standard theory, despite its being very easy to calculate:

f
R
⇀ g ∧ g

S
⇀h

⇔ { (29) twice }

g ≤ f ·R◦ ∧ h ≤ g · S◦

⇒ { ≤-monotonicity of ( ·S◦) ; converses }

g · S◦ ≤ f · (S · R)◦ ∧ h ≤ g · S◦

⇒ { ≤-transitivity }

h ≤ f · (S ·R)◦

⇔ { (29) again }

f
S·R
⇀ h

Note in passing that, together with the obvious

f
id
⇀ f (40)

FD composition (39) sets up a category whose objects are functions f , g, etc. and whose arrows f
R // g

are relations satisfying f
R
⇀g.
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7 Calculating with pointfree multivalued dependencies

MVDs are less intuitive and technically more complex than FDs, a fact already mirrored in the PF-transforma-
tion (definition 5) of the MVD concept as given in definition 2.

The main advantage of definition 5 is the freedom given to context z which leads new results or to more
general versions of standard results as given in [35]. Our choice in this summary falls on the proof of the
theorem of lossless decomposition on relations satisfying MVDs, one of the main results of the standard theory
[25]:

Theorem 1 For coreflexive R, MVD x
R

⇀⇀z y holds iff R decomposes losslessly into two relations with schemata xy
and xz, respectively:

x
R

⇀⇀z y ⇔ (πy,xR) 1 (πz,xR) = πyz,xR (41)

2

Maier [25] proves this theorem 12 in “implication-first” logic style, in two parts — if followed by only if
— involving existential and universal quantifications over no less than six tuple variables t, t1, t2, t

′

1, t
′

2, t3.
The second part involves a proof by contradiction.

The PF proof which follows (taken from [35]) is again another series of equivalences which merges the if
and only if proofs in a single calculation. This is based on the fact that joining two projections which share
the same antecedent function, say x, is nothing but binary relation pairing (10):

(πy,xR) 1 (πz,xR)
def
= 〈y · R · x◦, z ·R · x◦〉 (42)

The calculation of (41) goes as follows:

(πy,xR) 1 (πz,xR) = πyz,xR

⇔ { (42) ; (28) three times }

〈y · R · x◦, z · R · x◦〉 = yz ·R · x◦

⇔ { since 〈X, Y 〉 · Z ⊆ 〈X · Z, Y · Z〉 holds by monotonicity }

〈y · R · x◦, z · R · x◦〉 ⊆ yz ·R · x◦

⇔ { “split twist” rule (49) — twice ; converses }

〈y · R · x◦, id〉 · x ·R◦ · z◦ ⊆ 〈y, x ·R◦〉 · z◦

⇔ { instances of split-fusion — see (50) and (52) in the appendix }

〈y · R · x◦, x · x◦〉 · x ·R · z◦ ⊆ 〈y, x〉 · R · z◦

⇔ { instances of split-fusion: see (51) and (52) in the appendix }

(〈y, x〉 · R · x◦) · (x · R · z◦) ⊆ 〈y, x〉 ·R · z◦

⇔ { (31) }

x
R

⇀⇀y

12This is Theorem 7.1 in [25].
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8 Epilogue

In its original set-theoretic setting, the equivalence between lossless decomposition and MVDs has been
known for thirty years. So, what has been gained with its (pointfree) re-statement presented in the current
document, after all?

If we compare our calculations to early ways of expressing the same results — see eg. references [15]
and [9] — it is clear that in the latter a sheer amount of detail is overlooked in short-circuitous, almost
telegram-like proofs, which are trusted on the basis of an almost informal common understanding of naı̈ve
set theory.

This includes the use of two, seemingly equivalent, definitions for MVD, one universally quantified
over pairs of tuples (17) and the other universally quantified over data values (18) and based on a set-
valued function. While the latter is typical of earlier publications in the field (eg. [15, 9]), the former is
favoured in textbooks such as [25].

No dedicated proof has been produced — to the best of the author’s knowledge — of the equivalence of
these two definitions. Below we calculate this equivalence as our last exercise on data dependency theory
refactoring, this time involving transposition, a device commonly used in the PF-relational calculus:

f = Λ R ⇔ (bRa ⇔ b ∈ f a) (43)

This establishes the well-known fact that every binary relation R can be converted into a (set-valued) func-
tion ΛR, Λ being known as the power-transpose isomorphism [10]. This means that any set-valued function
(eg. Y in definition 3) can be regarded as the power-transpose of some binary relation. Substitution f := Λ R
in (43) yields the so-called Λ-cancellation law b ∈ (ΛR)a ⇔ bRa , that is,

∈ · (ΛR) = R (44)

which means that (ΛR)a yields exactly the set of all b which are related to a by R.
The theory behind relation transposition can be found in eg. [10, 36]. For our purposes below, it is

enough to recall from [35] a follow-up of (44),

R · T ⊆ S ⇔ (ΛR) · T ⊆ (ΛS) (45)

and the following generalization to arbitrary x, y and z of rule MVD0 (Complementation) of [9]:

x
T

⇀⇀z y ⇔ x
T

⇀⇀y z ⇐ T is coreflexive (46)

The proof below of the equivalence between the two given definitions of MVD is, for coreflexive rela-
tions, a calculation which re-writes Maier’s definition [25] into [9]’s:

x
T

⇀⇀z y

⇔ { (46) since T is coreflexive }

x
T

⇀⇀y z

⇔ { (31) }

y · T · x◦ · x · T · xz◦ ⊆ y · T · xz◦

⇔ { product-cancellation ; T = T · T ◦ since T is coreflexive }

y · T · x◦ · π1 · xz · T · T ◦ · xz◦ ⊆ y · T · xz◦

⇔ { introduce image and power-transpose, cf. (20, 45) }
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Λ(y · T · x◦ · π1) · img (xz · T ) ⊆ Λ(y · T · xz◦)

⇔ { Λ(R · f) = (ΛR) · f ; then introduce λg,fT = Λ(g · T · f◦) }

( λy,xT ) · π1 · img (xz · T ) ⊆ λy,xzT

⇔ { “al-gabr” (14) , since λy,xT · π1 is a function }

img (xz · T ) ⊆ (λy,xT · π1)
◦ · λy,xzT

⇔ { go pointwise noting that xz · T is simple ; rule b(f◦ · R · g)a ⇔ (f b)R(g a) (10) }

〈∀ k : k img (xz · T ) k : (λy,xT · π1)k = (λy,xzT )k〉

⇔ { rule (48) in the appendix }

〈∀ k : 〈∃ t : t ∈ T : (xz t) = k〉 : (λy,xT · π1)k = (λy,xzT )k〉

⇔ { rename k := (b, a) and simplify }

〈∀ a, b : 〈∃ t : t ∈ T : xz t = (a, b)〉 : (λy,xT ) a = (λy,xzT )(a, b)〉

We have thus reached (18), the only difference being that function Y generalizes to

λg,f = Λ · πg,f (47)

that is, to the power-transpose of projection (28). So, while Y groups y-values only, λ’s two parameters
cater for any such groups of values:

(λg,fR)a = {g b | 〈∃ a : : b R a ∧ c = f a〉}

The reader is referred to [35] for a comprehensive account of (generic) FD and MVD theory in the PF-
style, which extends the examples given in this report.

9 Conclusions

[Symbolisms] have invariably been introduced to make things easy. [...] by the aid
of symbolism, we can make transitions in reasoning almost mechanically by the eye,
which otherwise would call into play the higher faculties of the brain. [...] Civilisation
advances by extending the number of important operations which can be performed
without thinking about them.

Alfred Whitehead (1911)

Pragmatism often leads computer scientists to support the position that, once mathematical evidence of
some relevant fact or result is found, that’s enough: there is no point in finding “better” ways of providing
such evidence, even in the case of clumsy, long-winded, off-putting proofs. Others will think differently:
the “better” the proof, the more enduring the result it supports will be. This raises the question: what does
“better” mean in this context?

Mathematical evidence is of a social nature: no fact can be regarded as mathematically sound without
others checking and acknowledging it. (This is, after all, common to any creative initiative: no work of art
can be regarded as such without having a public, for instance.) So, the quality of mathematical evidence is,
first of all, measured by the likelihood of others reading and understanding such evidence. Long-winded,
awkward-looking proofs with little structure, full of case analyses and “dot-dot-dot” notation are likely to
reduce the number of readers able to reach the endpoint of one’s arguments.

This is not, however, a simple matter of size, since a mathematical argument cannot be reduced arbi-
trarily without its loosing substance or changing meaning. How does one then learn how to build graceful
arguments and formalisms?

Building up on the analogy with art briefly touched above, this question may look as naı̈ve as others
like “How do I learn to write symphonies as graceful as Mozart’s?” Works such as Gasteren’s [18], for instance,
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provide examples of supple arguments which conquer readers instead of defeating them. After all, such
economy between intent and contents has to do with beauty and elegance. Learning how to achieve such a
balance may take one’s lifetime.

This lecture addresses the topic of effectiveness of formal reasoning in computer science from a different,
less philosophical, perspective. The idea is that of mastering (or circumventing) the antagonism between
the descriptive and the reasoning sides of computer science notation. Finding the mythical formalism where
both co-exist seems difficult in general: description requires verbosity, calculation requires agility. A bridge
between the two seems to be the notion of a mathematical transform mapping the descriptive notation to
the agile notation back and forth.

My field of experimentation in this context has been the application of the pointfree (PF) transform to
computer science foundations traditionally stated in pointwise logics and set theory. The transform consists
in removing logic quantification as much as enabled by internalization of logic patterns into combinators
of the binary relation calculus. This leads to a kind of “theory re-factoring” in terms of more general and
more graceful formulations of the original concepts, leading to easy-to-follow, school-algebra-like proofs.

The choice of target theory in this lecture fell over data dependency theory, the kernel of relational
database design. The (apparently odd) decision of explaining n-ary relations in terms of binary relations
(contrary to the intuition that binary is just a special case of multi-ary) is the main ingredient of the re-
factoring, followed by the plain application of the PF-transform to descriptive, predicate calculus formulæ,
leading to equivalent relational expressions which are calculated with and mapped back to the predicate
calculus.

My main conclusion is that data dependency theory would perhaps have been built rather differently
should it be based on such a transformation in the first place. It is the complexity of formulæ (16) and (17)
that has led database theorists to invest into an axiomatic theory based on inference rules, closures of sets
of dependencies, issues such completeness and soundness and so on, instead of calculating directly over the
definitions themselves, as we have shown it can be done once the definitions are PF-transformed.

The section which follows lists some topics left open by our experiments on PF-transformed data-
dependency theory and on the PF-transform itself.

10 Future Work

The proposed change in reasoning style is essential to data-dependence theory refactoring as a whole, in
order to meet current standards in software design by calculation [10] and fulfill the original research aims
of its pioneers, as expressed in [9] three decades ago: a general theory that ties together dependencies, relations
and operations on relations is still lacking. Surely, the whole theory has advanced enormously in the thirty
years which separate us today from such highly innovative work. However, the intended generic theory
has not yet become available because its kernel concepts have remained too specific.

To the best of my knowledge, the research addressed in this lecture is the first comprehensive study of
pointfree transformed data dependency theory. But, in a sense, the contribution is more qualitative than
quantitative, as much work remains to be done. For instance, other kinds of data dependency (eg. join
dependencies [25], difunctional dependencies [21]) have not been dealt with at all. Besides full coverage of
MVD theory and normal forms [25], null-values and partial information present another challenge, whereby
antecedent and consequent functions of FD/MVDs become partial (ie. pure functions give place to simple
relations). At first sight, the Maybe-transpose of [36] has potential to map this new situation back to the one
already dealt with in the current lecture, but semantically things are not that straightforward, as [25] takes
some time to explain. Reference [24] provides an interesting update on this problem.

As far as the PF-transform itself is concerned, more experiments have to be carried out before one finds
a practical “road map” for “theory PF-refactoring”. At this moment, my feeling about the approach is
captured by the following guidelines:

• start with coreflexive models of the existing theory;
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• generalize coreflexives to arbitrary binary relations, “as much as possible” as far as types are con-
cerned;

• fine-tune the generalization by restricting to functions and “seeing what happens” (functions are one
way relations which help in disambiguating arrow direction).

The prospect of automating the approach is already in the research agenda, see eg. [27]. Last but not
least, going further on and formalizing the analogy with the Laplace transform (which so far has only been
hinted at) would be a fascinating piece of research in mathematics and computer science in itself, and one
which would put the vast storehouse in order, to use the words of Lawvere and Schanuel [23], wherefrom one
gets firm advice on how to handle analogy in mathematics:

Since 1945, when the notion of ’category’ was first precisely formulated, these analogies have been sharp-
ened and have become explicit ways in which one subject is transformed into another.

In these difficult times of widespread pre-scientific software technology, putting the PF transform under the
same mathematical umbrella as other integral transforms such as Laplace’s would also be rather reassuring
in its enhancing the way software sciences are (or could be) framed within engineering mathematics as a
whole.
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A Appendix

This appendix quotes from [35] some results of the relational calculus which are referred to in the main
text. The first is a specialization of (8), for R a function f and S its converse, whereby one PF-transforms
the image of preconditioned f · Φ (a coreflexive):

b(f · Φ · f◦)c ⇔ b(img (f · Φ))c

⇔ b = c ∧ 〈∃ a : φ a : b = f a〉 (48)

The following is known in [35] as the “split twist” rule:

〈R,S〉 · T ⊆ 〈U, V 〉 ·X ⇔ 〈R, T ◦〉 · S◦ ⊆ 〈U,X◦〉 · V ◦ (49)

Finally, for simple or coreflexive relations one has:

〈R, T 〉 · S = 〈R, T · imgS〉 · S ⇐ S is simple (50)

〈R,S〉 · S◦ = 〈R · S◦, imgS〉 ⇐ S is simple (51)

〈R,S〉 · Φ = 〈R,S · Φ〉 ⇔ Φ is coreflexive (52)

The reader is referred to [35] for proofs and further details.
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