
Algebraic and Coalgebraic Methods in Software
Development

J.N. Oliveira (UM)

Foundations of Computing
2016-17 (updated: 2017/18)

Back to basics Categories Diagrams Probabilism Equations Monads References

1st Module: Basic
category theory for the

software sciences

Back to basics Categories Diagrams Probabilism Equations Monads References

Questions

Software is pre-science — formal but not fully calculational

Software is too diverse — many approaches, lack of unity

Software is too wide a concept — from assembly to quantum
programming

Can you think of a unified theory able to express and reason
about software in general?

Put in another way:

Is there a “lingua franca” for the software sciences?

Back to basics Categories Diagrams Probabilism Equations Monads References

Check the pictures...

Back to basics Categories Diagrams Probabilism Equations Monads References

Check the pictures

(Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)

Back to basics Categories Diagrams Probabilism Equations Monads References

Check the pictures

Back to basics Categories Diagrams Probabilism Equations Monads References

Check the pictures

Which graphical device have you found common
to all pictures?

Your answer is likely to match what comes next...

Back to basics Categories Diagrams Probabilism Equations Monads References

Arrows everywhere

Arrows! Thus we identify a (graphical) ingredient common to
describing (several) different fields of human activity.

For this ingredient to be able to support a generic theory of
systems, mind the remarks:

• We need a generic notation able to cope with very distinct
problem domains, e.g. process theory versus database theory,
for instance.

• Notation is not enough — we need to reason and calculate
about software.

• Semantics-rich diagram representations are welcome.

• System description may have a quantitative side too.

Back to basics Categories Diagrams Probabilism Equations Monads References

Back to basics

Recall your basic school maths. In set theory, for instance,

you wrote A ⊆ B meaning to say that A is a subset of B.

Back to basics Categories Diagrams Probabilism Equations Monads References

Back to basics

Quite often one also uses arrows

B

A

OO

to say the same thing, A ⊆ B.

Graphical notations (Venn diagrams, arrow notation) are useful.

Take, for instance,

A ⊆ A holds (reflexivity)
C ⊆ B and B ⊆ A then C ⊆ A holds (transitivity)
A ⊆ B and B ⊆ A then B = A (anti-symmetry)

Back to basics Categories Diagrams Probabilism Equations Monads References

Back to basics

Diagram for the transitive property:

A

B

__

C

OO

WW

Diagrams for the other two properties:

A
��

A

= B\\

Back to basics Categories Diagrams Probabilism Equations Monads References

Back to basics

Divisibility — write n v m to say that n divides m (in N).

Natural number divisibility basic facts:

n v n holds (reflexivity)
n v m and m v k then n v k holds (transitivity)
n v m and m v n then m = n (anti-symmetry)

Again we may use arrows and diagrams to say the same thing,
e.g.

k moo

n

OO``

to mean the middle property (and so on).

Back to basics Categories Diagrams Probabilism Equations Monads References

Back to basics

Statement 2 v 6 is valid but but it provides no evidence about
why such a relationship holds.

We argue:

• 3 · 2 = 6 ;

• that is, ∃ k = 3 such
that k · 2 = 6;

• that is, 6 is a multiple of
2.

In general,

n v m iff ∃ k st m = k · n

Why so much ado for so
little? How about drawing

m

n

k

OO

to mean the same? Take k as
the witness — evidence,
proof — of the divisibility
relationship.

Back to basics Categories Diagrams Probabilism Equations Monads References

Back to basics

This helps in providing evidence of the properties themselves by
calculating new witnesses from given witnesses.

Such is the case of
transitivity

k m
boo

n

a

OO

b·a

cc

and reflexivity:

n

n
1

OO

Moreover:

n

1

n

OO

since 1 divides any number (etc).

A graphical, constructive way of
stating divisibility properties.

Back to basics Categories Diagrams Probabilism Equations Monads References

Back to basics

Thus two well-known properties
of multiplication, associativity

c · (b · a) = (c · b) · a (1)

and identity

1 · a = a · 1 = a (2)

are depicted aside in
diagrammatic form.

q

k

c
OO

m
boo

c·b
bb

n

a

OO

b·a

bb

m m
1oo

n

a

OO

n
1

oo
a

OO
a

cc

Note how the arrows type numbers with other numbers.

Back to basics Categories Diagrams Probabilism Equations Monads References

Why is this relevant?

We shall say that numbers depicted in this way, as arrows
(between other numbers in this case) satisfying properties (1) and
(2), form a category.

Again, “much ado for nothing”? Wait and see — the
concept of a category will prove very powerful and
generic.

Another way to put it, more computer science oriented:

Arrow m n
koo means that number k has become

typed by an input type n and an output type m (all
natural numbers).

Types play a major role in scientific software engineering, as we
shall see.

Back to basics Categories Diagrams Probabilism Equations Monads References

Another category of numbers

This example of a category is “boring” — there are natural
numbers everywhere, both labelling the arrows and their endpoints.

Is there any other construction in mathematics or computer science
which we could describe by arrows

m n
koo

where n, m are still natural numbers, but k is not one such
number?

Yes — the Wikipedia describes one (click this link) as shown in the
next slide.

http://en.wikipedia.org/wiki/Matrix

Back to basics Categories Diagrams Probabilism Equations Monads References

Matrices as arrows

Recall matrix multiplication:

Index-wise definition

Cij =
2∑

k=1

Aik × Bkj

The same in arrow notation

3 2
Aoo 3

Boo

C=A·B

ff
Index-free notation

C = A · B

Back to basics Categories Diagrams Probabilism Equations Monads References

Matrices as arrows

Given

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn


m×n

m n
Aoo

B =

b11 . . . b1k
...

. . .
...

bn1 . . . bnk


n×k

n k
Boo

define

m n
Aoo k

Boo

A·B

gg

as matrix A multiplied by matrix B.

Back to basics Categories Diagrams Probabilism Equations Monads References

Matrices as arrows

As is well-known, matrix
multiplication is associative,

C · (B · A) = (C · B) · A (3)

with identity

id · A = A · id = A (4)

Each identity matrix

n n
idoo is the diagonal of

size n, that is, idj ,i 4 j = i
under the (0, 1) encoding of
the Booleans (aside).

idn =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


n×n

n n
idnoo

Back to basics Categories Diagrams Probabilism Equations Monads References

Matrices as arrows

Summary:

• Matrices form a category whose objects are matrix

dimensions and whose arrows m n
Aoo , n k

Boo are the
matrices themselves.

• Composition A · B is matrix-multiplication.

• Each arrow m n
Aoo tells that matrix A has n-columns and

m-rows.

• We say n is the input type of A and m the output type.

• Every identity n n
idoo is the 1-diagonal of size n.

• Arrows (matrices) of types n 1
Aoo and 1 n

Aoo are
known as (respectively) column and row vectors.

Back to basics Categories Diagrams Probabilism Equations Monads References

What a category is

A category C is a mathematical structure made of arrows between
objects (the end-points of arrows) where

• The set of arrows between two objects m and n is denoted by
C (m, n).

• Writing n m
aoo , m

a // n or a ∈ C (m, n) means the
same.

• Given arbitrary arrows b ∈ C (k , n) and a ∈ C (m, k), the
composite arrow b · a always exists and belongs to C (m, n).

• The identity arrow n
id // n always exists, for each object n.

• Composition is associative (1) with id as unit (2).

Arrows are often called morphisms. C (m, n) are termed homsets.

Back to basics Categories Diagrams Probabilism Equations Monads References

Three categories thus far

Category Objects Arrows Composition

N naturals naturals multiplication
M naturals matrices MMM
I sets ⊆ see below

Note that the homset

• M (m, n) may contain an arbitrary number of matrices

• N (m, n) contains either none or just one natural number, n
m if

it exists

• I (A,B) contains either none or just one arrow, which we have
denoted by ⊆; thus composition chains two ⊆ facts.

Back to basics Categories Diagrams Probabilism Equations Monads References

The category of sets

Next we add to the group the very well-known category S of sets
and functions between sets — for many people, the category “par
excellence”:

Category Objects Arrows Composition

N naturals naturals multiplication
M naturals matrices MMM
I sets ⊆ see above
S sets functions function composition

Category S is the theoretical basis of functional programming.

The details of S are given in the following slide.

Back to basics Categories Diagrams Probabilism Equations Monads References

The category of sets

In the S category,

• the identity A
id // A

in S is the copy-the-input
function id (a) = a ;

• arrow composition

X
f // Y

g // Z is
the expected
(g · f) (x) = g (f (x))
pictured aside.

(g · f) x = g (f x)

Homset S (X ,Y) is the set of all (total) functions from X to Y .

Back to basics Categories Diagrams Probabilism Equations Monads References

Functional programming

Some programming languages implement category S in a rather simple
way, notably Haskell:

Prelude> :type id

id :: a -> a

Prelude> :type (.)

(.) :: (b -> c) -> (a -> b) -> a -> c

Thus, for instance,

Prelude> id "Hello"

"Hello"

Prelude> id 3

3

Prelude> (sqrt . succ) 3

2.0

(But be warned that full Haskell requires more than category S.)

Back to basics Categories Diagrams Probabilism Equations Monads References

Pairing two arrows

Back to category N, consider
the following diagram:

18 30

1

18

XX

30

FF

Fine, since 1 indeed divides
any number.

In category theory (CT)
jargon, we say that 1 is initial
in N. This means that

there always is exactly one
arrow from 1 to any n.

Diagram tells that 1 is a
common divisor of 18 and
30.

But not the only one, check
e.g.

18 30

2

15
??

9
__

1

2

OO18

WW

30

GG

Back to basics Categories Diagrams Probabilism Equations Monads References

Pairing two arrows

The diagram

18 30

2

15
??

9
__

1

2

OO18

WW

30

GG

tells that 2 is also a common
divisor, and a larger one.

How far can we go towards
larger common divisors?

Still another larger one, 6,

18 6
3oo 5 // 30

2

15
??

9
__

3

OO

1

2

OO18

WW

30

GG

but no more — 6 is the
greatest common divisor
(gcd) between 18 and 30:

gcd (18, 30) = 6

Back to basics Categories Diagrams Probabilism Equations Monads References

Pairing two arrows

A similar situation — e.g. diagram of the same shape — but in the
set inclusion category I (omitting the ⊆ label in each arrow):

{a, b, c} {b, c}oo // {b, c , d}

{c}

99ee OO

{}

OO

[[CC

In this case,

{b, c} = {a, b, c} ∩ {b, c , d}

is the greatest common subset — known as intersection.

Back to basics Categories Diagrams Probabilism Equations Monads References

Pairing two arrows

Note how both 6 = gcd (18, 30) and {b, c} = {a, b, c} ∩ {b, c, d}
are limit objects — you cannot find larger objects fitting in the
diagrams.

To understand the name given in CT jargon to such limit objects,

{a, b, c} {a, b, c} ∩ {b, c, d}oo // {b, c , d}

and

18 gcd (18, 30)︸ ︷︷ ︸
6

3oo 5 // 30

we will play once again with the same ”V”-shaped arrow pattern,
this time in the category S of sets — next slide.

Back to basics Categories Diagrams Probabilism Equations Monads References

Products

In S, two pairs of functions f ,
g and i , j fitting in a diagram
with the ”V”-topology:

A B

C

j
??

i
__

D

k

OOf

WW

g

GG

Assuming k : D → C fits in
the diagram too.

k “factors” both f and g .

The “limit factorization” of f
and g occurs when
C = A× B, the Cartesian
product of A and B,

A A× B
π1oo π2 // B

D

k

OO

f

ZZ

g

DD

for i = π1, j = π2, the two
projections π1 (a, b) = a and
π2 (a, b) = b.

Back to basics Categories Diagrams Probabilism Equations Monads References

Products (pairing)

What more can we say about k?
From the diagram there is only
one choice for k :

k d = (f d , g d)

That is, given two functions f
and g in S such that

A A× B
π1oo π2 // B

D

g

<<

f

bb

k

OO

there is a unique k such that

π1 · k = f (5)

π2 · k = g (6)

Conversely, for any function
k ∈ S (D,A× B) — that is,

A× B

D

k

OO

in S there is a unique pair of
functions

A B

D
g

;;

f

cc

which fit into the diagram, as
given by (5,6).

Back to basics Categories Diagrams Probabilism Equations Monads References

Products

Thus, there is a bijection between pair-valued functions and pairs
of functions,

S (D,A× B)

unsplit
,,

S (D,A)× S (D,B)

〈·,·〉
ll

k �
unsplit

// (f , g)

k (f , g)�〈·,·〉oo

where unsplit k = (π1 · k , π2 · k).

Below we will prefer the “outfix” notation k = 〈f , g〉 instead of
“prefix” notation k = 〈f , g , ·〉.

Back to basics Categories Diagrams Probabilism Equations Monads References

Products

Another way of capturing the same
bijection is to write the universal
property:

k = 〈f , g〉 ⇔
{
π1 · k = f
π2 · k = g

(7)

A A× B
π1oo π2 // B

D

g

<<

f

bb

k

OO

Interpret (7) as explained on the right.

Given f and g as in
the diagram,

• (⇒) existence
— there is
always some k
fitting into the
diagram

• (⇐)
uniqueness —
such a k is
unique.

Back to basics Categories Diagrams Probabilism Equations Monads References

Products in I

Omitting the ⊆ labels, the
product diagram in I is

A A ∩ Boo // B

D

<<bb OO

The product bijection

I (D,A ∩ B)

unsplit
,,

I (D,A)× I (D,B)

〈·,·〉
ll

in this case instantiates to the universal property of intersection:

D ⊆ (A ∩ B)

⇒
,,

⇔ (D ⊆ A) ∧ (D ⊆ B)

⇐
ll

Back to basics Categories Diagrams Probabilism Equations Monads References

Products in N

Next, the same ”V”-diagram and property in N with an example,
abbreviating gcd (x , y) by x O y :

m m O n
m

mOnoo
n

mOn // n

p

aOb

OO

a

ee

b

99
18 6

3oo 5 // 30

2

3

OO

9

cc

15

;;

Universal property:

k = a O b ⇔
{

m
mOn · k = a
n

mOn · k = b

Corollary (k = a O b):

m

a
=

n

b
=

m O n

a O b

Back to basics Categories Diagrams Probabilism Equations Monads References

Products in M

Finally, still the same ”V”-shape and property, now in M:

m m + n
π1oo π2 // n

p

[MN]

OO

M

cc

N

<< NB:
[
M
N

]
is the vertical stacking

of two matrices M and N with
the same number of columns p.

Universal property:

X =

[
M

N

]
⇔

{
π1 · X = M
π2 · X = N

(8)

What kind of matrices are π1 and π2? (Next slide)

Back to basics Categories Diagrams Probabilism Equations Monads References

Products in M

Consider this instance of the
diagram:

m m + n
π1oo π2 // n

m + n

[
π1
π2

] OO
π1

^^

π2

@@

Necessarily,[
π1
π2

]
= id (9)

because of uniqueness.

Don’t buy this argument?

Take the universal property,

X =

[
M

N

]
⇔

{
π1 · X = M
π2 · X = N

for X = id and solve it for M and N. You get M = π1 and N = π2.

Back to basics Categories Diagrams Probabilism Equations Monads References

Products in M

Equality (9) tells that π1 and π2 are complementary fragments of the

identity matrix, for example 2 2 + 3
π1oo π2 // 3 in MATLAB:

>> p1(2,3)

1 0 0 0 0

0 1 0 0 0

>> p2(2,3)

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

>> [p1(2,3) ; p2(2,3)]

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

π1, π2 and id are examples of Boolean matrices — they contain either

0s or 1s.

Back to basics Categories Diagrams Probabilism Equations Monads References

Reversing the arrows

Suppose one wants to investigate what it means to reverse the
arrows of a diagram. Does it make sense? What does one get?

In M, each arrow m
M // n can be converted into the reverse

arrow m n
M◦oo known as the converse or transpose of M, such

that

(M · N)◦ = N◦ ·M◦ (10)

(M◦)◦ = M (11)

Clearly, M◦ is M with rows swapped with columns.

Back to basics Categories Diagrams Probabilism Equations Monads References

Coproducts in M

The converse of a product diagram in M is a so-called coproduct
diagram,

m

M ##

π◦1 // m + n

[M|N]

��

n
π◦2oo

N||
p

NB: [M|N] is the horizontal
gluing of two matrices M and N
with the same number of rows p.

Universal property:

X = [M|N] ⇔
{

X · i1 = M
X · i2 = N

(12)

where i1 = π◦1 and i2 = π◦2 are known as injections.

Back to basics Categories Diagrams Probabilism Equations Monads References

Coproducts in M

Terminology:

Read
[
M
N

]
as “M split N” and [M|N] as “M junc N”.

Duality:

[M|N]◦ =

[
M◦

N◦

]
(13)

Exchange law:[[
M

N

]
|
[

P

Q

]]
=

[
[M|P]

[N|Q]

]
(14)

(More in the sequel.)

Back to basics Categories Diagrams Probabilism Equations Monads References

Coproducts in other categories

This duality in M is quite strong and is called self duality. In
other categories the objects involved may change.

In I, coproducts correspond
to set union, cf.

D

A ∪ B

OO

A

99

BB

B

ee

\\

In N, coproducts correspond
to least common multiple,
cf.

60

30

2

OO

6
5

;;
10

DD

10
3

dd
6

ZZ

Universal properties

(A ∪ B) ⊆ D ⇔ A ⊆ D ∧ B ⊆ D

etc

Back to basics Categories Diagrams Probabilism Equations Monads References

Coproducts in S

The coproduct diagram in S:

A

f ""

i1 // A + B

[f ,g]
��

B
i2oo

g
||

C

NB: A + B is the disjoint union
of A and B under injections
i1 a = (1, a) and i2 b = (2, b);
the intuitive meaning of [f , g]
will be given later.

Universal property:

k = [f , g] ⇔
{

k · i1 = f
k · i2 = g

(15)

Combinator [f , g] hides a kind of “if-then-else”: either f or g to
run depending on the type of the input.

Back to basics Categories Diagrams Probabilism Equations Monads References

Conditional arrows in S

Given a predicate A
p // Bool , define

p? : A→ A + A

p? a =

{
i1 a⇐ p a
i2 a⇐ ¬ p a

Then arrow composition grants the existence of conditional
arrows:

if p then f else g = [f , g] · p?

These arrows are of the same type as their arguments f , g .

(Note how we are getting closer and closer to having a
programming language...)

Back to basics Categories Diagrams Probabilism Equations Monads References

Diagrams as proofs

The existence and uniqueness of arrow k in (15) offers a nice,
diagrammatic way of calculating properties.

For instance, adding another arrow h to the coproduct diagram
entails, by existence:

A

f ""

i1 // A + B

[f ,g]
��

B
i2oo

g
||

C

h
��
D

A

h·f

��

f ""

i1 // A + B

[f ,g]
��

B

h·g

��

i2oo

g
||

C

h
��
D

Back to basics Categories Diagrams Probabilism Equations Monads References

Diagrams as proofs

Still existence:

A

h·f

��

i1 // A + B

[f ,g]
��

h·[f ,g]

��

B

h·g

��

i2oo

C

h
��
D

A

h·f

��

i1 // A + B

h·[f ,g]

��

[h·f ,h·g]

��

B

h·g

��

i2oo

D

Next, by uniqueness:

h · [f , g] = [h · f , h · g] (16)

This is known as the coproduct-fusion law.

Back to basics Categories Diagrams Probabilism Equations Monads References

Saving your brain

A similar sequence of diagrams will yield the product-fusion law

〈f , g〉 · h = 〈f · h, g · h〉 (17)

in S, etc. Most importantly:

Due to the
abstract
equivalence of all
product or
co-product
diagrams, we can
port these
properties from S
to other
categories,

e.g. the gcd-fusion law in N,

(a O b) · c = (a · c) O (b · c)

the two fusion laws of blocked linear algebra in
M, [

M

N

]
· Q =

[
M · Q
N · Q

]
(18)

Q · [M|N] = [Q ·M|Q · N] (19)

and so on and so forth.

Back to basics Categories Diagrams Probabilism Equations Monads References

Save your brain!

Summing up:

• Saving one’s brain is perhaps the most practical outcome of
CT: a single, generic construct instantiates to many —
semantically disparate — concrete constructs.

• A single proof (using diagrams, if you like) replaces many
repetitive proofs at instance level.

• Products and coproducts are themselves instances of more
general constructs known as limits and colimits (cf. later in
the course).

• A single, unified and typed (arrow) language for all domains.

More about this next.

Back to basics Categories Diagrams Probabilism Equations Monads References

Generalizing M

The objects of M can be generalized from numeric dimensions (n,
m ∈ N0) to arbitrary denumerable sets (types) (X , Y), taking

• disjoint union X + Y for m + n,

• Cartesian product X × Y for m × n

• Any (fixed) singleton type 1 for number 1 ∈ N.

Matrix multiplication — composition in M — is still well-defined
since addition is commutative, so the order in the summation

y (M · N) x = 〈
∑

z :: (y M z)× (z N x)〉 (20)

is irrelevant.

NB: note that the (b, a)-cell of matrix M is denoted by b M a and not
by Mb,a or any other notation. (The rationale behind this choice of
notation will be explained later.)

Back to basics Categories Diagrams Probabilism Equations Monads References

Subcategories

Are the categories we have seen completed isolated worlds?

No — we can relate/combine them. Let us show, as example, how
S can be expressed in (generalized) M.

Think of a function f : A→ B in S and check how it can be
represented by a matrix M : A→ B in M, say

M = Jf K

defined by

b Jf K a =

{
1 if b = (f a)
0 otherwise

(21)

Back to basics Categories Diagrams Probabilism Equations Monads References

Subcategories

Example: the function in S

Bool
¬ // Bool =

{
¬ False = True
¬ True = False

is represented in M by the matrix

Bool
J¬K // Bool =

[
0 1
1 0

]
— a representation we use all the time, albeit “informally”.

The same matrix with the typing made explicit:

Bool
J¬K // Bool =

False True

False 0 1
True 1 0

Back to basics Categories Diagrams Probabilism Equations Monads References

Subcategories

Moreover, everything we can do in S can be done in M, for
instance composition

Jf · gK = Jf K · JgK

with identity JidK = id — cf. the following check in MATLAB
that negation (¬) is a bijection:

>> not = [0 1; 1 0]

>> not * not

ans =

1 0

0 1

Back to basics Categories Diagrams Probabilism Equations Monads References

Subcategories

However, not every matrix in M represents a function from S.

Not even every Boolean matrix (containing zeros and ones only)
represents a function, e.g.

M =

[
1 0
1 0

]
Here we don’t know which output for the first argument to choose,
and for the second argument the “function” is undefined...

We say that S is a subcategory of M.

(This relationship will be later made more precise using so-called
functors between categories.)

Back to basics Categories Diagrams Probabilism Equations Monads References

Subcategories

There is a nice way of checking whether a matrix represents a
function on not.

Pick the unique function that one can think of, of type A→ 1 —
(necessarily) a constant function.

This function is usually named “bang” (as it “destroys” every
argument!) and written ! : A→ 1.

A Boolean matrix M : A→ B in M uniquely represents
a function of the same type A→ B in S iff

! ·M = ! (22)

holds.

Note the polymorphism of the two copies of !.

Back to basics Categories Diagrams Probabilism Equations Monads References

Subcategories

MATLAB: checking that matrix

M =

1 0 1

0 1 0

represents a function:

>> [1 1] * M

ans =

[1 1 1]

You can see above two copies of the polymorphic “bang” matrix.

Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic functions (P)

Question: What does clause (22) mean in case we relax the
Boolean requirement and let M hold positive real numbers?

One easily checks that e.g. the following matrix,

M =

[
0.5 0.3 0 0.75
0.5 0.7 1 0.25

]
satisfies (22).

Thus we have found another interesting subcategory of M — that
which includes all probabilistic functions (P), instances of which
are commonly known as Markov chains.

S is also a subcategory of P — as “pure” functions correspond to
restricting to Dirac distributions — one sole 1 per column.

Back to basics Categories Diagrams Probabilism Equations Monads References

Distributions (P)

What does a morphism of type 1 // A mean?

• In N, 1
n // n denotes the number n itself

• In S, 1
p // A means a point, since p can only yield one

element (point) of A

• In M, 1
v // A is known as a column vector (matrix with

only one column)

• In P, 1
δ // A is called a distribution, for instance

1
δ // 6 =



0
0.2
0.2
0.6
0
0



Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic pairing

What does arrow pairing mean in M or P? Check the diagram:

2 2× 3
fst=

[
1 1 1 0 0 0
0 0 0 1 1 1

]
oo

snd=

[
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

]
// 3

4

MON=


0.15 0.12 0 0
0.35 0.06 0 0.75
0 0.12 0 0

0.15 0.28 0.1 0
0.35 0.14 0.2 0.25
0 0.28 0.7 0



OO

N=

[
0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

]

==

M=
[
0.5 0.3 0 0.75
0.5 0.7 1 0.25

]

aa

Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic pairing

In M (also P) pairing corresponds to the so called Khatri-Rao

product A× B C
MONoo of two matrices A C

Moo and

B C
Noo :

(a, b) (M O N) c = (a M c)× (b N c) (23)

Example in MATLAB:

>> kr([1,0,11;-3,-4,0;], [0,1,3;0,2,4;])

ans =

0 0 33

0 0 44

0 -4 0

0 -8 0

Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic pairing

This time there are differences, however, compared to S, as pairing
in P is not perfect:

X = M O N ⇒
{

fst · X = M
snd · X = N

(24)

As (⇐) is not guaranteed, lossless decomposition may fail and

(fst · X) O (snd · X)

differs from X in general.

We say that pairing in P is a weak-product.

Note, however, that Jf K O JgK = J〈f , g〉K, where f and g are “pure”
functions.

Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic pairing (entanglement)

The problem is that reconstruction

X = (fst · X) O (snd · X)

doesn’t hold in general, cf. e.g.

X : 2→ 2× 3

X =


0 0.4

0.2 0
0.2 0.1
0.6 0.4
0 0
0 0.1


(fst · X) O (snd · X) =


0.24 0.4
0.08 0
0.08 0.1
0.36 0.4
0.12 0
0.12 0.1


X is not recoverable from its projections: Khatri-Rao not surjective.

In quantum computing this situation is known as entanglement —
entangled distributions on pairs cannot be projected into pairs of
distributions.

Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic programming

Consider the following instance of pairing, in S,

12 6× 6
addoo 1

aOboo (25)

where add (x , y) = x + y .

Clearly, the composition expresses the term a + b, since a and b
stand for numbers in {1 . . 6}.

What does the same diagram mean in P? In this case a and b are
bound to be distributions.

One can think of a and b being two dice and of diagram (25) as
expressing the probability of the sum of the faces shown (next
slide).

Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic programming

Assume both dice are fair, that is, the input
distributions are uniform:

a = b =
[
1
6

1
6

1
6

1
6

1
6

1
6

]◦
Addition is represented by the matrix

y JaddK (a, b) = if y = a + b then 1 else 0

Then the arrow 12 1
add ·(aOb)oo evaluates to

the distribution aside, where outcome 1 is
impossible, outcome 7 is the most likely, and
so son.



0
0.0278
0.0555
0.0833
0.1111
0.1389
0.1667
0.1389
0.1389
0.0833
0.0555
0.0278



Back to basics Categories Diagrams Probabilism Equations Monads References

Probabilistic modelling

Example adapted from

[https://en.wikipedia.org/wiki/Bayesian_network]

Control a sprinkler to wet the grass in case it does not rain.

https://en.wikipedia.org/wiki/Bayesian_network

Back to basics Categories Diagrams Probabilism Equations Monads References

Deterministic model in S

S = R = G = 2

sprinkler : R → S
sprinkler r = ¬ r

grass : S × R → G
grass (s, r) = s ∨ r

rain ∈ {0, 1}

G × (S × R)

S × R

grassOid
OO

R

sprinklerOid
OO

1

rain

OO

Grass always wet:

grass (sprinkler r , r) = ¬ r ∨ r = True

Altogether, two possible states {(1, (1, 0)), (1, (0, 1))} of type:

G × (S × R) 1
stateoo = (grass O id) · (sprinkler O id) · rain

Back to basics Categories Diagrams Probabilism Equations Monads References

Bayesian networks

Previous model (in S) is not realistic — the pictures actually found
on Wikipedia are:

Back to basics Categories Diagrams Probabilism Equations Monads References

Bayesian network (P)

This corresponds to moving to P and letting

S = R = G = 2

S R
sprinkleroo =

[
0.60 0.99
0.40 0.01

]
R 1

rainoo =

[
0.80
0.20

]
G S × R

grassoo =

[
1.00 0.20 0.10 0.01

0 0.80 0.90 0.99

]

G × (S × R)

S × R

grassOid
OO

R

sprinklerOid
OO

1

rain

OO

The “same” state arrow

G × (S × R) 1
stateoo = (grass O id) · (sprinkler O id) · rain

now has a different meaning since the category became P (next
slide).

Back to basics Categories Diagrams Probabilism Equations Monads References

Bayesian network (P)

G × (S × R) 1
stateoo =

G S R

dry
off

no 0.4800
yes 0.0396

on
no 0.0320
yes 0.0000

wet
off

no 0.0000
yes 0.1584

on
no 0.2880
yes 0.0020

Moreover, we can define

1 G × (S × R)
grass wetoo = [0 1] · fst

1 G × (S × R)
rainingoo = [0 1] · snd · snd

etc. to obtain e.g. Pstate(grass wet) = grass wet · state = 44.84%.

Back to basics Categories Diagrams Probabilism Equations Monads References

Bayesian network querying

Conditional probabilities over a state distribution δ:

Pδ(a | b) =
(a× b) · δ

b · δ
given 1 S

a,boo 1
δoo (26)

Boolean vectors a and b describe ”event” sets.

Recall

G × (S × R)

grass wet,raining

��

R
(grassOid)·(sprinklerOid)oo

1 1

rain

OO
state

ll

(grass wet×raining)·state
grass wet·state

oo

Forwards: Pstate(grass wet | raining) = 80.19%

Backwards: Pstate(raining | grass wet) = 35.77%

Back to basics Categories Diagrams Probabilism Equations Monads References

Summary thus far

Diagrams central to category theory.

They can express abstract properties or abstract models of
problems.

A diagram modeling a problem captures its essence, or abstract
structure.

Keeping the diagram, more elaborate semantics for the problem
can be expressed just by changing category:

“Keep definition, change category” principle (Oliveira
and Miraldo, 2016)

Back to basics Categories Diagrams Probabilism Equations Monads References

Enriched categories

Given two numbers a and b, we can add them (a + b), multiply them
(a× b) etc.

Likewise, given two matrices n m
M,Noo we can add them (M + N), e.g. 1 0 0

−9 3 12
0 −1 0

+

 1 1 1
2 3 4
0 1 0

 =

 2 1 1
−7 6 16
0 0 0


and multiply them (M × N): 1 0 0

−9 3 12
0 −1 0

×
 1 1 1

2 3 4
0 1 0

 =

 1 0 0
−18 9 48

0 −1 0


But, matrices are arrows (morphisms) — does it make sense to “add /
multiply arrows”?

Back to basics Categories Diagrams Probabilism Equations Monads References

Enriched categories

Yes it does, in so-called enriched-categories: categories with extra
mathematical structure.

Recall that a homset C (m, n) in a category C is a set.

An enrichment consists in adding some algebraic structure to such
sets.

Some care is needed concerning the interplay between such
enriched C (m, n) and the basic structure, namely composition.

Abelian categories (next slide) are particularly interesting cases of
enriched categories.

Back to basics Categories Diagrams Probabilism Equations Monads References

Abelian categories

M is Abelian because every homset M (m, n) forms an additive Abelian
group (Ab-category) such that composition is bilinear relative to +:

M · (N + L) = M · N + M · L (27)

(N + L) · K = N · K + L · K (28)

The Abelian structure grants M + 0 = M, where 0 is the all-0 matrix of
its type.

The Abelian structure can be further enriched to a ring with
M × N given by the so-called Hadamard product:

b (M × N) a = (b M a)× (b N a) (29)

M × 1 = M holds where 1 is the all-1 matrix of its type.

NB: as before we assume M defined over the reals.

Back to basics Categories Diagrams Probabilism Equations Monads References

Abelian categories

The additive structure of M grants a number of laws, namely the
so called divide-and-conquer law

[M|N] ·
[

P

Q

]
= M · P + N · Q (30)

which is the basis of (parallel) blocked linear algebra, and can also
be written as

[M|N] · [P|Q]◦ = M · P◦ + N · Q◦ (31)

It turns out that

[M|N] = M · π1 + N · π2 (32)[
M

N

]
= i1 ·M + i2 · N (33)

also hold.

Back to basics Categories Diagrams Probabilism Equations Monads References

Order enrichment

Categories can also be enriched by regarding homsets as ordered
structures, for instance partial orders.

This is useful when we want to solve recursive equations in a
category (more about this later).

The topic brings about another category — the category of binary
relations R.

This category is very useful to model real-life problems: relational
databases rely on R by definition.

Back to basics Categories Diagrams Probabilism Equations Monads References

Everything is a relation...

... in real life — recall

Back to basics Categories Diagrams Probabilism Equations Monads References

Arrow notation for relations

The picture is a collection of relations — aka. a semantic
network — elsewhere known as a (binary) relational system.

However, in spite of the use of
arrows in the picture (aside)
not many people would write

mother of : People → People

as the type of relation
mother of .

Back to basics Categories Diagrams Probabilism Equations Monads References

The category of relations R
Let the arrows of S be not only functions, say A

f // B , but also

relations A
R // B .

In the same way assertion b = f a may hold or not, so may b R a,
the assertion that pair (b, a) belongs to R.

Thus extended, S becomes R, the category of binary relations.

In R, id is the equality relation; composition R · S is given by

b (R · S) c ⇔ ∃ a : b R a ∧ a S c (34)

cf.

B A
Roo C

Soo

R·S

gg

Back to basics Categories Diagrams Probabilism Equations Monads References

The category of relations R

In general, the converse f ◦ of a function f is a relation, not a
function.

Thus S does not have converse morphisms, while R does: a (R◦) b
means the same as b R a — as in M, recall.

Like in M, we have the laws

(R · S)◦ = S◦ · R◦ (35)

R◦◦ = R (36)

So R is another example of a self-dual category. Arrows A→ 1
and 1→ A both denote sets.

Back to basics Categories Diagrams Probabilism Equations Monads References

The category of relations R

Category R provides a useful generalization of S.

A rich terminology emerges simply by defining the order

R ⊆ S ⇔ R ∪ S = S (37)

on the homsets:

• R is reflexive iff id ⊆ R

• R is symmetric iff R◦ ⊆ R

• R is transitive iff R · R ⊆ R

• R is injective iff R◦ · R ⊆ id

• R is simple (aka. a partial function) iff R · R◦ ⊆ id

• R is entire (aka. total) iff id ⊆ R◦ · R
• R is surjective iff id ⊆ R · R◦

Back to basics Categories Diagrams Probabilism Equations Monads References

The category of relations R

Each homset R (A,B) forms a Boolean algebra under union (∪),
intersection (∩) and complementation, plus a topmost relation

B A
>oo and a least relation B A

⊥oo .

Pairing in R

(a, b) (R O S) c = (a R c) ∧ (b S c) (38)

does not even form a weak-product. But its universal property
takes advantage of the order-enriched structure:

π1 · X ⊆ R ∧ π2 · X ⊆ S ⇔ X ⊆ R O S (39)

(This is an example of a so-called Galois connection.)

Back to basics Categories Diagrams Probabilism Equations Monads References

Exercise

So-called “Entity-Relationship” (ER) diagrams are commonly
used to capture relational data schemas, e.g.1

Draw the same using morphism (arrows) in R and identify the
properties of each relation in the diagram.

1Credits: https://dba.stackexchange.com/questions.

https://dba.stackexchange.com/questions

Back to basics Categories Diagrams Probabilism Equations Monads References

Relational programming

If S supports functional programming, R supports another
programming paradigm: take the (simple) Prolog program

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

grand_parent(X, Y) :- parent_child(X, Z), parent_child(Z, Y).

Back to basics Categories Diagrams Probabilism Equations Monads References

Relational programming (R)

Meaning of this program in category R:

P P

sibling
grand parent
oo
father child
mother child
parent child

oo 1
{trude,sally ,...}oo

Clauses:

mother child ∪ father child ⊆ parent child (40)

parent child◦ · parent child ⊆ sibling (41)

parent child · parent child ⊆ grand parent (42)

Note how object P (type for people) is made explicit (typing!).

Back to basics Categories Diagrams Probabilism Equations Monads References

Relational programming (R)

Running query

?- sibling(erica,sally)

cf. diagram

1
erica

��
sally
��

P P
sibling
oo

corresponds to checking whether arrow 1 1
erica◦·sibling ·sallyoo (a scalar

in R) is empty or not.

NB: erica and sally are atoms, therefore (“atomic”) functions.

Back to basics Categories Diagrams Probabilism Equations Monads References

Relational programming (R)

Checking:

erica◦ · sibling · sally

⊇ { (41) ; (35) }

(parent child · erica)◦ · parent child · sally

⊇ { (40) }

(father child · erica)◦ · father child · sally

= { facts }

tom◦ · tom

= { tom is an atom }

>
�

Back to basics Categories Diagrams Probabilism Equations Monads References

What about quantum programming?

“Equation” a la Wirth:

(Quantum) Programs = (Quantum) Algorithms +
(Quantum) Data Structures

Quantum algorithms based on elementary components, called
quantum gates.

Classical bits generalize to quantum bits (qubits) — quantum
data.

Control
Classic Quantum

Data
Classic – x

Quantum x x

Back to basics Categories Diagrams Probabilism Equations Monads References

What about quantum programming?

In quantum programming, all computations are reversible.

This is expressed in linear algebra by so-called unitary matrices.

Standard quantum programming gates, used in quantum
circuits (Nielsen and Chuang, 2011) can be expressed in M, that
is, in typed LA.

They can be decomposed into polymorphic, elementary matrix
categorial units.

Pairing (Khatri-Rao O + Kronecker products ⊗) is central to
quantum data structuring.

From now on we extend matrices in M to hold complex numbers
(C) ans not just reals.

Back to basics Categories Diagrams Probabilism Equations Monads References

Unitary gates

A C-valued matrix U is unitary iff U · U∗ = U∗ · U = id , where U∗ is the
conjugate transpose of U.

Thus all isomorphisms (reversible functions) are special cases of unitary
matrices.

But isomorphisms admit further decompositions in terms of such
matrices, for instance “the sqrt of not”

¬ = (
√
¬) · (

√
¬)

where

√
¬ =

1

2
(>+ i (id − ¬)) =

1

2

[
1 + i 1− i
1− i 1 + i

]
Thus one gets into the wonderful world of actual quantum gates in
which classical logic operations are no longer primitive.

Back to basics Categories Diagrams Probabilism Equations Monads References

Quantum processing

Quantum application — like
function application, the
outcome of processing
quantum data s by quantum
gate P is given by P · s.

1
P·s

��
s
��

B A
P
oo

Qubits — The smallest (useful) A is 2, the Booleans — so a

(qu)bit 2 1
soo is always a vector of the form

[
a
b

]
.

‘Ket’ Notation — traditionally,

• |0〉 : 1→ 2 denotes the vector
[
1
0

]
which represents point 0 (a

bit holding 0).

• |1〉 : 1→ 2 denotes the vector
[
0
1

]
which represents point 1 (a

bit holding 1).

Back to basics Categories Diagrams Probabilism Equations Monads References

|φ〉 notation

Since
[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
, the notation a |0〉+ b |1〉 is normally

used to denote qubit
[
a
b

]
.

A qubit 2 1
a |0〉+b |1〉oo expresses a quantum superposition of

the two truth values.

Complex numbers a, b ∈ C are called amplitudes and are such
that a2 + b2 = 1.

Given two qubits 1
u // 2 and 1

v // 2 , 1
uOv // 2× 2

denotes their pairing.

This leads to an extension of the ‘ket’ notation (next slide).

Back to basics Categories Diagrams Probabilism Equations Monads References

|φ〉 notation and pairing

|0〉 O |1〉

= { thinking functional helps here }

0 O 1

= { constant functions }

(0, 1)

= { vector notation }
0
1
0
0


= { extended ‘ket’ notation }

|01〉

Back to basics Categories Diagrams Probabilism Equations Monads References

|φ〉 notation and pairing

More generally, the qubit pairing (a |0〉+ b |1〉) O (c |0〉+ d |1〉) yields,
once converted to vector notation[a

b

]
O

[c
d

]
= { Khatri-Rao }

ac
ad
bc
bd


= { vector addition }

ac
0
0
0

+


0
ad
0
0

+


0
0
bc
0

+


0
0
0
bd


that is, ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉.

Back to basics Categories Diagrams Probabilism Equations Monads References

Qubit entanglement

The qubit pair

2× 2 1

|00〉+|01〉√
2oo

is a well-known example of entaglement – you get

fst · (|00〉+|01〉√
2

) = (|0〉+|1〉√
2

)

snd · (|00〉+|01〉√
2

) = (|0〉+|1〉√
2

)

but

|0〉+|1〉√
2

O
|0〉+|1〉√

2
= 2× 2 1

(!
2
)◦

oo

is different from the original 2× 2 1

|00〉+|01〉√
2oo .

Back to basics Categories Diagrams Probabilism Equations Monads References

Classic (quantum) control

(Polymorphic) functional programming can play a nice role in
quantum processing (perhaps not fully appreciated yet).

Think of the function swap (a, b) = (b, a), that is, the
isomorphism:

A× B
swap // B × A = snd O fst.

For A = B = 2, this corresponds to the classical gate

0 0 1 1
0 1 0 1

0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 1

b′

a′

b

a

×

×

Back to basics Categories Diagrams Probabilism Equations Monads References

SWAP Gates
Applied to a qubit pair it will yield:

swap · (a |00〉+ b |01〉+ c |10〉+ d |11〉)

= { expland to vector notation }

swap · (a


1
0
0
0

+ b


0
1
0
0

+ c


0
0
1
0

+ d


0
0
0
1

)

= { swap = snd O fst ; vector addition }

(snd O fst) ·


a
b
c
d


= { matrix-vector mutiplication; then back to |φ〉 notation }

a |00〉+ c |01〉+ b |10〉+ d |11〉

Back to basics Categories Diagrams Probabilism Equations Monads References

Quantum control

A well-known quantum gate is the Hadamard gate:

2 2
Hoo = 1√

2

[
1 1
1 −1

]
Applying this gate to qubit u = a |0〉+ b |1〉:

2 2
Hoo 1

uoo

H·u

ff

Calculation:

1√
2

[
1 1
1 −1

]
· (a |0〉+ b |1〉) = 1√

2
(

[
1 1
1 −1

]
·
[
a
b

]
) =

1√
2

[
a+b
a−b

]
= a+b√

2
|0〉+ a−b√

2
|1〉.

Back to basics Categories Diagrams Probabilism Equations Monads References

Summary

Function (S)

��

f =

1 0 0 0
0 1 0 1
0 0 1 0



Probabilistic function (P)

b·c

��

g =

1 0 0.5 0.1
0 0.7 0 0.9
0 0.3 0.5 0



Relation (R)

��

f ⊆ R = bgc =

1 0 1 1
0 1 0 1
0 1 1 0


Matrix (M)

bgc is called the support of g . Supports “convert” probabilistic functions
into relations. Matrices in M can be unitary.

Back to basics Categories Diagrams Probabilism Equations Monads References

Pivot point

What is the exact meaning of the word “convert” in the previous
slide?

This question also arises about matrix Jf K (in category M)
“representing” function f in category S.

The type of J K should be something like S→M.

But S and M are categories, not mere sets.

This raises the need for functors — functions which “map arrows
to arrows”.

Back to basics Categories Diagrams Probabilism Equations Monads References

Functors

Given categories C and D, a functor C F // D maps the arrows
of C into the arrows of D,

C (a, b)
F // D (a, b) C F // D

a

f ��

F a

F f��
b F b

such that

F id = id (43)

F (g · f) = (F g) · (F f) (44)

So F“respects” the core structure of categories: identity and
composition.

Back to basics Categories Diagrams Probabilism Equations Monads References

Functors

A well-known example of a functor in S, dear to functional
programming, is the operation which maps a function f over a
list, F f = f ∗ where f ∗ x = [f a | a← x], cf. the diagram

A

f

��

A∗

f ∗

��
B B∗

Clearly, (43) and (44) hold for this functor, that is,

id∗ x = x

(g∗ · f ∗) x = [(g · f) a | a← x] = (g · f)∗

hold. Functor ∗ : S→ S is an example of a endo-functor — a
functor from a category to itself.

Back to basics Categories Diagrams Probabilism Equations Monads References

Bifunctors

Given in general three categories C, D and E, a bifunctor

C× D F // E is a binary functor

C × D F // E

a

f
��

c

g
��

F (a, c)

F (f ,g)
��

b d F (b, d)

such that:

F (id , id) = id (45)

F (h · f , k · g) = F (h, k) · F (f , g) (46)

Back to basics Categories Diagrams Probabilism Equations Monads References

Bifunctors

Wherever C = D = E we say F is an endo-bifunctor.

Examples: in M, direct sum

M ⊕ N =

[
M 0

0 N

]
(47)

is an (endo)bifunctor defined by

M ⊕ N = [i1 ·M|i2 · N] (48)

cf. the coproduct diagram

A

M
��

i1 // A + B

M⊕N
��

B
i2oo

N
��

C
i1 // C + D D

i2oo

Back to basics Categories Diagrams Probabilism Equations Monads References

Bifunctors

Direct sum
Notably, direct sum (48) is present in all categories M, S and R, as
coproducts of S lift to coproducts in R:

A

R ""

i1 // A + B

[R,S]
��

B
i2oo

S||
C

X = [R, S]⇔
{

X · i1 = R
X · i2 = S

Kronecker product

Also interesting is the fact that, in spite of not being a product,
pairing in M leads to a bifunctor,

M ⊗ N = M · fst O N · snd (49)

known as Kronecker product, which also extends to S and R.

Back to basics Categories Diagrams Probabilism Equations Monads References

Composite Functors

As expected, functors compose with each other.

The most simple functors are the identity functor, which maps an
arrow onto itself,

I (b a
foo) = b a

foo

and so-called constant functors: given an object k of a category
C, we define the constant functor K as

K (b a
foo) = k k

idoo

In M we will be particularly interested in the composite functor

M M = id ⊕M

which will be present in examples to follow.

Back to basics Categories Diagrams Probabilism Equations Monads References

Stop and think

Recall where we started from (broad picture):

• Divisibility ordering in N as example of a reflexive and
transitive orders (preorders)

• We replaced each ordered pair by an arrow (witness)

• Thus preorders were “lifted” to categories.

In the same trend,

• what is the “lifting” of the concept of a monotone function
between preorders, a 6 b ⇒ (f a) v (f b)?

Well, we’ve just studied it:

Functors between categories generalize monotone
functions between preorders.

Back to basics Categories Diagrams Probabilism Equations Monads References

Equations

Functors make it possible to think of solving equations in a
categorial setting.

Starting point: we know that, given a monotonic function f we
have techniques for solving the equation

x = f x

Above we have seen that monotonic functions between ordered
structures scale up to functors between categories. So, what does
the “categorial lifting” of x = f x ,

x = F x

yield? Note that, in the CT setting, any solution to x = F x is
bound to be an arrow: what kind of arrow?

Back to basics Categories Diagrams Probabilism Equations Monads References

Functor equations

Let us draw a diagram for a candidate solution x0,

A

x0

��

F A

F x0
��

B F B

How do x0 and F x0 relate to
each other?

We need to “bridge” them up,

A
c //

x0

��

F A

F x0
��

B F B
a

oo

so that indeed there is an
equation to solve:

x0 = a · (F x0) · c

In S, x0 can be regarded as a recursive morphism — a
program.

Questions: given a and c , does x0 always exist? Is there a unique solution
to x0 = a · (F x0) · c?

Back to basics Categories Diagrams Probabilism Equations Monads References

Divide & conquer programs

Compare diagram

A
c //

x0
��

F A

F x0
��

B F Ba
oo

with the drawing
aside.

This is how every
algorithm, or
program works...

(Dictionary) Divide & rule — “the policy of maintaining control
over subordinates by encouraging dissent between them”.

Back to basics Categories Diagrams Probabilism Equations Monads References

Functor equations

In the R category:

As homsets form a complete Boolean algebras in R, for
monotonic F the equation

x = a · (F x) · c

always has a least solution (Knaster-Tarski fixpoint
theorem) termed hylomorphism and denoted by J a, c K.

In the S category:

S is not so flexible because solutions have to be total
functions. But for particular a and c we can find
standard solutions in S termed catamorphisms and
anamorphisms, as explained below.

Back to basics Categories Diagrams Probabilism Equations Monads References

F algebras and coalgebras

Terminology: in the equation

A
c //

x0
��

F A

F x0
��

B F Ba
oo

• B F B
aoo is referred to as an F-algebra

• A
c // F A is referred to as an F-coalgebra.

We will understand this terminology in a minute.

Before this, let us be aware that some F-(co)algebras are rather
special.

Back to basics Categories Diagrams Probabilism Equations Monads References

F algebras and coalgebras

A morphism a
f // b in a category C is an isomorphism if it

has a “two-sided” inverse, namely another morphism a b
goo in

the same category such that g · f = id and f · g = id .

One way of recording such an isomorphism is by drawing

a

f

&&∼= b

g

ff

It can be shown that the isomorphisms in R, for instance, are the
functions whose converses are also functions — the so-called
bijections.

Back to basics Categories Diagrams Probabilism Equations Monads References

F algebras and coalgebras

To understand all this terminology, let us see an example in R.

Take Peano’s (1858-1932)
definition of the natural
numbers (N0):

• 0 is a natural number

• n + 1 is a natural
number once n is so

• there are no more natural
numbers.

We thus have a constant
0 ∈ N0 and a natural
number “factory”
succ : N0 → N0 such that
succ n = n + 1.

0 can be represented by the
constant function zero x = 0,
of type zero : A→ N0, for
some non-empty set A.

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano algebra

Also note that zero and succ
together generate a coproduct
diagram:

A

zero
##

i1 // A + N0

[zero, succ]

��

N0
i2oo

succ
{{

N0

Let us define functor
F X = A + X , constant in A:
F f = id ⊕ f .

Re-draw the diagram using F:

A

zero !!

i1 // F N0

[zero, succ]

��

N0
i2oo

succ||
N0

Thus [zero, succ] is an
F-algebra.

Yes! it packs the algebraic
operators of N0 into a single
arrow.

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano algebra

The same algebra, rotated 90 degrees (in R, cf. converse):

N0

[zero,succ]◦

))
(?) F N0

[zero,succ]

hh

Question: is [zero, succ] an isomorphism?

• It is surjective — “there are no more natural numbers...”

• It is not injective — the A inputs are all ignored!

Clearly: it would be injective had A only one element...

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano algebra

So we choose A = 1. Recall
that 1 denotes a set with only
one element (predefined, not
relevant which one in
particular).

N0

[zero,succ]◦

**
∼= 1 + N0

[zero,succ]

hh

By the way, object 1 discriminates S from both R and M: the
homset S (A, 1) is a singleton, a constant function which we have
denoted by ! : A→ 1.

In R the homset R (A, 1) contains many relations, all below !.

In M the homset M (A, 1) contains all row vectors with | A |-many
columns.

Back to basics Categories Diagrams Probabilism Equations Monads References

Catamorphims

Back to diagram

A
c //

x
��

F A

F x
��

B F Ba
oo

suppose coalgebra c := in◦

exists as an isomorphism over
the smallest possible object
A := I :

I

in◦

((∼= F I

in

ff

In this case, solution x
uniquely depends on algebra
a,

I

in◦

((

x��

∼= F I

in

gg
F x��

B F B

a

gg

and we write (|a|) to denote it
in the corresponding
universal property:

x = (|a|) ⇔ x · in = a · F x

Back to basics Categories Diagrams Probabilism Equations Monads References

Anamorphims

Back to diagram

A
c //

x
��

F A

F x
��

B F Ba
oo

suppose algebra a := ω exists
as an isomorphism over the
largest possible B := T :

T

ω◦

((∼= F T

ω

gg

In this case, solution x

uniquely depends on
coalgebra c ,

A

c
((

x ��

F A
F x��

T

ω◦

((∼= F T

ω

gg

and we denote it by [(c)] in
the corresponding universal
property:

x = [(a)] ⇔ x · ω◦ = c · F x

Back to basics Categories Diagrams Probabilism Equations Monads References

Summing up

• Programs can be of three different kinds, catamorphisms,
anamorphisms or hylomorphisms.

• In R, initial F-algebra I coincides with terminal F-algebra T
and therefore the category has hylomorphisms,

J a, c K = (|a|) · [(c)]

• In S, initial F-algebra I is smaller than terminal F-algebra T ,
and so J a, c K = (|a|) · [(c)] is not always defined.

• P is “half way” between R and S, but we need to study still
another concept — that of a monad — to understand the
relation between S and such categories.

Before this, some examples to help understand why the diagrams
above are regarded as programs.

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano programs (for-loops)

As earlier on, we play the game of adding arrows to diagrams and
seeing what happens:

Add function f on N0:

N0

[zero,succ]◦

**

f
��

∼= 1 + N0

[zero,succ]

hh

B

Since F is a functor:

N0

[zero,succ]◦

**

f
��

∼= 1 + N0

[zero,succ]

hh

id+f
��

B 1 + B

We can close the diagram provided we add another (1+)-algebra
from 1 + B to B (next slide).

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano programs (for-loops)

Thus our first (recursive, but still abstract) program is born:

N0

[zero,succ]◦

**

f
��

∼= 1 + N0

[zero,succ]

hh

id+f
��

B 1 + B

g

hh

f = (|g |)⇔
f · [zero, succ] = g · (id + f)

Note that g = [g1, g2], since it mediates a sum: g1 : 1→ B will tell
how the program stops while g2 : B → B calls for further
iterations.

An instance of this schema follows in the next slide.

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano programs (for-loops)

Example: let g = [zero, (n+)], where (n+) x = n + x , as expected.
Then, using the universal property,

f = (|g |) ⇔ f · [zero, succ] = [zero, (n+)] · (id + f)

⇔ { fusion and absorption (coproducts in S or R) }

[f · zero, f · succ] = [zero, (n+) · f]

⇔ { coproduct equality }{
f · zero = zero
f · succ = (n+) · f

Clearly, f = (n×). That is, we’ve synthesized the functional program

n × 0 = 0
n × (m + 1) = n + n ×m

the same as: n ×m = (if m = 0 then 0 else n + n × (m − 1)).

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano programs (for-loops)

Another way to write the same program would be

(n×) = for (n+) 0

by introducing a suggestive shorthand combinator

for g k = (|[k, g]|)

where k x = k denotes the constant function yielding k.

Example in Haskell:

*Nat> let mul n = for (n+) 0

*Nat> mul 34 23

782

Back to basics Categories Diagrams Probabilism Equations Monads References

Peano predicates

Another example for the same F, but in R:

(>) = (|[>, succ]|)

⇔ { universal property (in R) }

(>) · [zero, succ] = [>, succ] · (id + (>))

⇔ { fusion, absorption, equality etc }{
(>) · zero = >
(>) · succ = succ · (>)

⇔ { introduce variables }{
n > 0⇔ true
n > m + 1⇔ ∃ k : n = k + 1 ∧ k > m

Cf. primitive induction.

Back to basics Categories Diagrams Probabilism Equations Monads References

Why monads

So far we have been able to encode, in instances of the CT
framework, neat constructs and elegant programs.

What about “dirty” programs, that is, those which produce
side-effects ?

What about imperative ones?

And what about “faulty” programs, that is, those which
misbehave, e.g. because they run on defective hardware?

We need another CT concept, and a very relevant one — that of a
monad. Our last topic in this module.

Back to basics Categories Diagrams Probabilism Equations Monads References

The monadic “curse”

“Monads [...] come with a
curse. The monadic curse is
that once someone learns
what monads are and how to
use them, they lose the ability
to explain it to other people”

(Douglas Crockford: Google
Tech Talk on how to express
monads in JavaScript, 2013)

Douglas Crockford (2013)

(https://www.youtube.com/watch?v=b0EF0VTs9Dci)

https://www.youtube.com/watch?v=b0EF0VTs9Dci

Back to basics Categories Diagrams Probabilism Equations Monads References

Why monads

Some patterns of arrow composition don’t work because the
output are “F-times” more complex than expected, e.g.

F B A
goo

ggF C B
foo

(50)

Let e.g. F B = E + B record the fact that g fails for some outputs,
raising an exception in E , otherwise yielding a B.

In general, F B (and F C etc) carry some information about a
computational effect which we have to handle but would like
(technically) to ignore...

Back to basics Categories Diagrams Probabilism Equations Monads References

Example

Declare in Haskell (S):

g a = [a + 1, a− 1]
f a = [

√
a,−
√

a]

This defines two arrows:

g :: Num t ⇒ t → [t]
f :: Floating t ⇒ t → [t]

which do not compose. We search for a new form of arrow composition
f • g such that e.g.

(f • g) 3 = [2.0,−2.0, 1.414213562,−1.414213562]

Output yields the square roots of the two natural numbers centered at 3.

Back to basics Categories Diagrams Probabilism Equations Monads References

Example

Programming f • g :

f • g a = concat [f b | b ← g a]

where concat :: [[a]]→ [a] concatenates a list of lists.

This works because, in Haskell, lists form a monad

F x = x∗ is not only a functor but also a monad.

Our purpose in the slides to follow is to generalize F x = x∗ to
other monads.

Remember that CT as a whole is based on two core notions:

• composition of arrows

• identity arrows.

Back to basics Categories Diagrams Probabilism Equations Monads References

Monads

So the way to go about the F-inflated arrows of (50) has to devise
a form of composition and an identity.

For this we need a CT construction known as a monad:

Let F be an (endo)functor in some category C, such that
the following arrows always exist, for any X :

X
η // F X F2 X

µoo

subject to a number of properties left out for the
moment.

Why are such arrows useful?

Back to basics Categories Diagrams Probabilism Equations Monads References

Monads

They enable us to complete diagram (50),

F2 C

µ

��

F B
F foo A

goo

f •g

ggF C B
foo

where µ copes with the nesting of effects (exceptions on top of

exceptions, for instance). The other arrow, X
η // F X , converts

a pure value into an effectful one.

Thus f • g can be regarded as a form of (monadic) composition.

Back to basics Categories Diagrams Probabilism Equations Monads References

Monads

Indeed, the monadic properties (which we once again skip for
brevity) grant the expected properties, with η behaving as identity:

f • (g • h) = (f • g) • h

f • η = f = η • f

Now suppose F X = X , the identity functor:

C

id
��

B
foo A

goo

f •g=f ·g

ffC B
foo

Conclude that we have been working in a monad since the very
beginning of this course — the identity monad!

Back to basics Categories Diagrams Probabilism Equations Monads References

The list monad

A monad instance dear to functional programmers is the list
monad :

µ [] = []
µ (l : t) = l ++ µ t

where µ = concat — list concatenation — and

η a = [a]

builds singleton lists.

If we ignore the ordering of elements in a list, this monad mimics
bounded non-determinism. See the next slide for an evolution of
this idea.

Back to basics Categories Diagrams Probabilism Equations Monads References

The (finite) powerset monad

The monad

X
η // P X P2 X

µoo

is par excellence the one behind non-deterministic finite automata
(NFSA), where P X = {S | S ⊆ X }. Its components are

µ { } = { }
µ ({l} ∪ t) = l ∪ µ t

— union of a set of sets — and

η x = {x }

which builds singleton sets.

Back to basics Categories Diagrams Probabilism Equations Monads References

Monads pointwise

Here is a way of writing f • g in a (generic) pointwise manner

(f • g) a = do {b ← g a; return (f b)}

where return is a synonym for η popular in monadic languages
such as e.g. Haskell.

Likewise,

do {a← x ; return (g a)}

denotes the application of A
g // F B to monadic data x .

A final example: do {a← x ; b ← y ; return (x + y)} adds two
numbers extracted from monadic data.

Back to basics Categories Diagrams Probabilism Equations Monads References

Monads pointwise

Here is a cartoon

for the calculation of F (+3) x , where x = return 2 is the monadic
object which contains number 2 in monad F:

do {a← return 2; return (a + 3)}

Back to basics Categories Diagrams Probabilism Equations Monads References

Kleisli category

We observe that properties

f • (g • h) = (f • g) • h

f • η = f = η • f

where

f • g = µ · (F f) · g

offer a sub-category of C, that made of F-inflated arrows only, that
is, homsets of pattern C (A,F B).

Such a sub-category (usually denoted by C[) is known as the
Kleisli category associated to monad F in C, as follows:

C[(A,B) ∼= C (A,F B)

Back to basics Categories Diagrams Probabilism Equations Monads References

Kleisli category

The best known example of a Kleisli category is R = S[, induced
by monad P:

R (A,B) ∼= S (A,P B)

This simply tells that every relation can be represented by a
set-valued function.

It can also be shown that M and P can be regarded as Kleisli
categories of suitable monads in S.

This is why S is, for many people, “the category par excellence”.

Back to basics Categories Diagrams Probabilism Equations Monads References

Wrapping up

The application of the two CT concepts of functor and monad to
programming is perhaps the most significant development in the
software sciences for the last 30 years.

To program with them one needs to know about CT, the lingua
franca of software science.

Many useful monads can be found in the literature.

Haskell is among the languages that first incorporated functors
and monads into themm.2

Python, Scala, Swift, F# have got there too; Java8 seems to have
tried.

2See e.g. https://hackage.haskell.org/package/base-4.9.0.0/docs/
Control-Monad.html.

https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Monad.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Monad.html

Back to basics Categories Diagrams Probabilism Equations Monads References

Postlude

Sir Arthur Eddington (1882-1944):

”I cannot believe that
anything so ugly as
multiplication of matrices is
an essential part of the
scheme of nature”

(in ”Relativity Theory of Electrons and
Protons”, 1936).

Serious warning to mathematicians and physicists — notations
should be elegant :-)

I agree — standard linear algebra notation is clumsy by modern
computer science standards.

Back to basics Categories Diagrams Probabilism Equations Monads References

Postlude

Unfortunately, Sir A. Eddington
did not live long enough to find
the following answer to his
complaint,

“New Structures for
Physics”, Lect. Notes
in Physics volume 813

compiled by B. Coecke.

Back to basics Categories Diagrams Probabilism Equations Monads References

Postlude

The generic structures
(monoidal categories) in which
quantum physics are expressed
in this book generalize the
categories R and P that we have
studied in this module.

Back to basics Categories Diagrams Probabilism Equations Monads References

Postlude

More recently, a quite accessible
book by B. Coecke and Aleks
Kissinger:

Back to basics Categories Diagrams Probabilism Equations Monads References

Local setting (HASLab)

This unified way of thinking has been a subject of research at the
HASLab (INESC TEC & U.Minho) laboratory for quite a while,
covering application areas as disparate as e.g.

• Data mining — (Macedo and Oliveira, 2015; Oliveira and
Macedo, 2017)

• Component-oriented programming — (Oliveira and Miraldo,
2016)

• Fault propagation — (Oliveira, 2012)

• Managing risk in functional programming — (Murta and
Oliveira, 2015)

• Weighted automata — (Oliveira, 2013)

• Linear algebra — (Macedo and Oliveira, 2013)

Back to basics Categories Diagrams Probabilism Equations Monads References

Textbooks

Having a look at one (or more!) of these textbook is highly
recommended:

The standard “bible” on category
theory: (MacLane, 1971), aside.

An enjoyable introduction to the same
field: (Lawvere and Schanuel, 1997)

Another good book for computer
scientists: (Pierce, 1991)

The standard “algebra of programming”
textbook: (Bird and de Moor, 1997)

(There is much more on the web — just search for ”Category Theory
textbook”).

Back to basics Categories Diagrams Probabilism Equations Monads References

References

Back to basics Categories Diagrams Probabilism Equations Monads References

R. Bird and O. de Moor. Algebra of Programming. Series in Computer
Science. Prentice-Hall, 1997.

B. Coecke, editor. New Structures for Physics. Number 831 in Lecture
Notes in Physics. Springer-Verlag, 2011.

B. Lawvere and S. Schanuel. Conceptual Mathematics: a First
Introduction to Categories. Cambridge University Press, 1997. ISBN
0521472490.

H.D. Macedo and J.N. Oliveira. Typing linear algebra: A
biproduct-oriented approach. SCP, 78(11):2160–2191, 2013.

H.D. Macedo and J.N. Oliveira. A linear algebra approach to OLAP.
FAoC, 27(2):283–307, 2015.

S. MacLane. Categories for the Working Mathematician. Springer-Verlag,
1971.

D. Murta and J.N. Oliveira. A study of risk-aware program
transformation. SCP, 110:51–77, 2015.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
New York, NY, USA, 10th edition, 2011. ISBN 1107002176,
9781107002173.

Back to basics Categories Diagrams Probabilism Equations Monads References

J. N. Oliveira and H. D. Macedo. The data cube as a typed linear
algebra operator. In Proc. of the 16th Int. Symposium on Database
Programming Languages, DBPL ’17, pages 6:1–6:11, New York, NY,
USA, 2017. ACM.

J.N. Oliveira. Towards a linear algebra of programming. FAoC, 24(4-6):
433–458, 2012.

J.N. Oliveira. Weighted automata as coalgebras in categories of matrices.
Int. JFCS, 24(06):709–728, 2013.

J.N. Oliveira and V.C. Miraldo. “Keep definition, change category” — a
practical approach to state-based system calculi. JLAMP, 85(4):
449–474, 2016.

B. Pierce. Basic category theory for computer scientists. Foundations of
computing. MIT Press, 1991. ISBN 978-0-262-66071-6.

	Back to basics
	Categories
	Diagrams
	Probabilism
	Equations
	Monads

